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But for me the Chern classes, first introduced by S. S. Chern in 1946
[4] became more important. The book by N. Steenrod [5] of 1951 was
revealing.

Consider a compact complex manifold X of complex dimension n,
for example a projective algebraic manifold embedded in some complex
projective space PN(C).

An r-field is an r-tuple of vector fields on X which are complex
linearly independent outside a cycle of dimension 2r − 2 which deter-
mines an element in the homology group H2r−2(X, Z). A basic fact
is that such r-fields always exist and the homology class of the “cy-
cle of singularities” does not depend on the r-field. This is intuitive
and not precise. The cohomology class corresponding to the “cycle of
singularities” by the Poincaré isomorphism is the Chern class

cn−r+1 ∈ H2(n−r+1)(X, Z)

which can be defined directly and precisely by obstruction theory [5].
For r = 1 we have the Poincaré-Hopf theorem applied to complex
manifolds. It follows

cn[X] = e(X)

§2. Chern numbers

We denote the Chern classes of a compact complex manifold X of
complex dimension n simply by

ci = ci(X) ∈ H2i(X, Z)

The index i runs from 0 to n, where c0 denotes the unit element of
the commutative graded cohomology ring

Hev(X, Z) =
n⊕

i=0

H2i(X, Z)

The notation ev indicates even dimensional cohomology. We have
the total Chern class

c = 1 + c1 + · · · + cn ∈ Hev(X, Z)

For any partition (λ1, λ2, . . . , λk) of n we consider the number

CHERN CHARACTERISTIC CLASSES IN TOPOLOGY
AND ALGEBRAIC GEOMETRY

F. HIRZEBRUCH

These are notes of my Oberwolfach lecture on October 10, 2009 (§9
was not treated in the lecture). It was a great pleasure and honor
for me to give this talk. I thank the director, Professor Gert-Martin
Greuel, very much for the invitation. I wish the MFO, its committees,
the director and all the staff continued great success in future years.

§1. Introduction

I learnt about characteristic classes for the first time when I visited
Heinz Hopf in Zurich in 1948 for one week after three weeks of work on
a Swiss farm [1]. Heinz Hopf visited Oberwolfach already in 1946. At
the meeting of the German Mathematical Society in Danzig in 1925 [2]
he had reported about his work including what is now called Poincaré-
Hopf theorem:

Let X be a compact differentiable manifold of dimension n ≥ 1 and v
a continuous vector field which is different from zero in all but finitely
many points, also called singularities. Then the number of singularities
each counted with its proper multiplicity is independent of the vector
field. It is always equal to the Euler number e(X).

The multiplicity of a singularity x is equal to the degree of a map
of the (n − 1)-dimensional sphere (boundary of a small neighborhood
of x) to itself. This is well defined also for non-orientable manifolds.
For n odd the Euler number e(X) vanishes. There exist vector fields
without singularities.

I learnt from Heinz Hopf the theory of Stiefel-Whitney classes for
compact differentiable manifolds. E. Stiefel was a student of Hopf,
who proposed to Stiefel the problem:

Which manifolds of dimension n admit an m-field, i. e. m vector
fields v1, . . . , vm which are linearly independent everywhere? (Compare
[3], §1.5 and §2.9).
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singularities” by the Poincaré isomorphism is the Chern class

cn−r+1 ∈ H2(n−r+1)(X, Z)

which can be defined directly and precisely by obstruction theory [5].
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(1) cλ1cλ2 . . . cλk
[X], λ1 + λ2 + . . . λk = n

(evaluation of a 2n-dimensional cohomology class on the fundamental
cycle of X).

The cup product of cohomology classes is used. For the correspond-
ing homology classes intersection theory comes in. Any linear combi-
nation of numbers like (1) with rational coefficients depending only on
the partition is also called Chern number.

As mentioned before, the Chern number cn[X] equals the Euler num-
ber, thus is a topological invariant. In the problem collection [6] I
formulate the question:

Which Chern numbers are topological invariants of projective alge-
braic manifolds? (Problem 31).

Very recently D. Kotschick [7] proved:

A Chern number is a topological invariant of projective algebraic
manifolds if and only if it is a multiple of the Euler number.

For Kotschick’s proof the following is basic: There exist pairs of alge-
braic surfaces X, Y which are homeomorphic with reversal of orienta-
tion and have non-vanishing signatures. The signature is a topological
invariant of oriented 4-dimensional manifolds. For an algebraic surface
X it is a Chern number:

signature =
c2
1[X] − 2c2[X]

3

The signature changes sign under reversal of orientation. This proves
Kotschick’s theorem for n = 2. The existence of pairs of surfaces (X, Y )
uses deep results of Friedman ([8], [9]). In fact, X and Y are not dif-
feomorphic. Kotschick has also results concerning invariance of Chern
numbers under diffeomorphisms and under orientation preserving dif-
feomorphisms.

Kotschick’s work was motivated in part by an old result of Borel-
Hirzebruch [10], II. §24(11), in a modified formulation by E. Calabi.
Consider the projective tangent bundle of P3(C) and the projective co-
variant tangent bundle of P3(C). These two five-dimensional projective
algebraic manifolds are diffeomorphic. They have as Chern numbers c5

1

the integers 4500 and 4860 respectively.
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§3. Chern classes of complex vector bundles

We study complex vector bundles (C∞-differentiable) with fibre Cn

and basis a compact oriented differentiable manifold X of even dimen-
sion 2m (for reasons of exposition). For such a vector bundle E Chern
classes ci ∈ H2i(X, Z) can be defined. In §1 and §2 the bundle E was
always the tangent bundle of a compact complex manifold of complex
dimension n. In our more general case the Chern class ci can be in-
tuitively characterized by a cycle of dimension 2m − 2i given by the
singularities of an (n − i + 1)-tuple of sections of E. For us the case
m = n and i = n will be very important. This case is close to the
Poincaré-Hopf theorem:

Take a section of E with isolated singularities. Then its number is
finite and equal to cn[X] if each singularity is counted with its proper
multiplicity, the degree of a map between two (2n − 1)-dimensional
spheres: S2n−1

1 → S2n−1
2 .

The first sphere is the boundary of a small neighborhood of x in X,
the second sphere is the boundary of a small neighborhood of the origin
in the fibre of E over x.

For the Poincaré-Hopf theorem the two spheres were identical and
hence orientation not needed to define a mapping degree.

The number cn[X] is independent of the section.

The total Chern class of E can be formally written as

(2) c(E) = 1+c1 + · · ·+cn = (1+x1)(1+x2) . . . (1+xn) ∈ Hev(X, Z)

where the xi are two-dimensional integral cohomology classes in some
extension of Hev(X, Z). For this we can take Hev of the flag manifold
bundle F associated to E. If we lift E to F, then E becomes a direct
sum of line bundles Li, and xi is the first Chern class of Li. This can
also be taken as definition of the Chern classes.

Every symmetric polynomial with integral coefficients of degree k
in the xi is a polynomial with integral coefficients in the elementary
symmetric functions and hence a polynomial in the Chern classes ci

defining a cohomology class of dimension 2k.

Formula (2) and these applications represent the splitting principle
in [11].

Let E and F be vector bundles of dimensions r and s over the same
base manifold X. Then we have for the total Chern classes
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c(E ⊕ F ) = c(E)c(F ),

in particular for the highest Chern class

cr+s(E ⊕ F = cr(E)cs(F ).

This follows easily from the splitting principle. In the sequel we
shall use freely the formula for c(E⊕F ). We shall make a few intuitive
remarks for the highest Chern class.

§4. The highest Chern class

The operations of multilinear algebra like direct sum, tensor product,
symmetric powers can be applied to complex vector bundles over X.
The resulting new vector bundles have Chern classes which can be
calculated as polynomials in the Chern classes of the given bundles.
Some of this was developed and used in [11]. Here we are interested
in the highest Chern class, because it describes the locus of zeros of a
section. Let E and F be complex vector bundles of dimension r and s
over X. For the direct sum we have

(3) cr+s(E ⊕ F ) = cr(E)cr(F )

Intuitively this is clear: Suppose we have sections in E and F , then
their sum vanishes in E ⊕ F if and only if both sections vanish. this
is the intersection of loci of zeros, corresponding to the cup product in
cohomology.

Let E and F be line bundles over X. (The fibre dimension of E and
F is one.) Then the tensor product is again a line bundle. We have

(4) c1(E ⊗ F ) = c1(E) + c1(F )

Intuitively: Suppose we have sections in E and F . In local coordi-
nates the tensor product of sections is multiplication of complex num-
bers and vanishes if and only if one of the sections vanish: Union of
the loci of zeros of E and F corresponding to addition in cohomology.
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§5. The highest Chern class of the r-th symmetric power
of a two-dimensional complex vector bundle

Consider a two-dimensional complex vector bundle V and suppose
it is a direct sum of line bundles L1 and L2. With respect to a local
trivialisation we can introduce coordinates ξ, η, such that L1 is given
by η = 0 and L2 by ξ = 0. Then ξ and η define a local basis for the
dual bundle V ∗ and locally the elements of the r-th symmetric power
SrV ∗ are the polynomials

n∑
k=0

ak ξk ηr−k

From this we conclude that

SrV ∗ =
r⊕

k=0

L∗k
1 L

∗(r−k)
2

where L∗
1, L

∗
2 are the dual line bundles of L1, L2. Let x, y be the first

Chern class of L∗
1, L

∗
2, then the highest Chern class of SrV ∗ is given by

(5) cr+1(S
rV ∗) =

r∏
k=0

(kx + (r − k)y).

This is a polynomial in c1 = x + y and c2 = xy, the Chern classes of
V ∗. By the splitting principle (5) holds for an arbitrary 2-dimensional
vector bundle V with c1, c2 being the Chern classes of V ∗. We give
some examples of (5).

c4(S
3V ∗) = 9c2(2c

2
1 + c2)(6)

c6(S
5V ∗) = 52c2(24c4

1 + 58c2
1c2 + 9c2

2)

c8(S
7V ∗) = 72c2(720c6

1 + 3708c4
1c2 + 3004c2

1c
2
2 + 225c3

2)

To indicate a fast way of calculation, we observe that

(ax + by)(bx + ay) = abc2
1 + (a − b)2c2

and hence

c6(S
5V ∗) = 52c2(4c

2
1 + 9c2)(6c

2
1 + c2)
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§6. The space of lines in a projective space

We consider the space Xn of projective lines in the complex projective
space Pn+1(C). This is also the space of 2-dimensional complex linear
subspaces of Cn+2. Thus it is the Grassmannian G(2, n + 2) which is
a projective algebraic manifold of dimension 2n. We can celebrate the
125th anniversary of Schubert calculus by remembering the paper by
Hermann Caesar Hannibal Schubert published in 1885 [12]. There he
considers the Schubert cycle consisting of all lines in Pn+1 intersecting
a given Pn−1-subspace of Pn+1. This is a very ample divisor D in Xn

corresponding to the positive generator f1 ∈ H2(Xn, Z) � Z. Schubert
proved [12], §5(6):

(7) f2n
1 [Xn] =

(2n)!

n!(n + 1)!
= Cn = the nth Catalan number.

The Catalan numbers were introduced by Euler in a letter to Gold-
bach in 1751. Formula (7) is a special case of [10](formula (9) in 24.10

Theorem).

Let us recall the proof for our case: The holomorphic Euler number
χ(Xn, rD) where the divisor D corresponds to f1 is a polynomial in
r of degree 2n. The first Chern class of Xn equals (n + 2)f1. By the
Kodaira vanishing theorem the holomorphic Euler number χ(Xn, rD)
equals for r > −(n+2) the dimension of H0(Xn, rD), the vector space
of meromorphic functions f on Xn whose divisor (f) satisfies

(f) + rD ≥ 0,

i. e. the divisor (f) + rD does not have poles. In particular, the
polynomial χ(X, rD) vanishes for −(n + 2) < r < 0 and has the value
1 for r = 0. In fact,

(8) χ(Xn, rD) =
(r + n)(r + 2)2 . . . (r + n)2(r + n + 1)

1 · 22 · n2 . . . (n + 1)

This follows from the Riemann-Roch-Hirzebruch formula [11] and
the theory of roots as explained in [10]. The RRH-formula implies that
the highest coefficient of our polynomial equals

f 2n
1 [Xn]

(2n)!
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Formula (7) follows.

The Catalan numbers Cn are for n ≥ 0:

Cn : 1, 1, 2, 5, 14, 42, 132, 429 . . .

In Schubert’s language using intersection theory formula (7) means
the following:

Take 2n projective subspaces in Pn+1 of dimension n − 1 in general
position, then the number of lines in Pn+1 intersecting each of theses
subspaces equals Cn.

The manifold Xn can also be written as

(9) Xn =
U(n + 2)

U(2) × U(n)

Over Xn we have the tautological complex vector bundles E and F
of dimensions 2 and n. For the point x of Xn the fibre Ex over x is
the 2-dimensional subspace of Cn+2 defining x and Fx is the quotient
of Cn+2 by Ex. By (9) there is an isomorphism

Ex ⊕ Fx � Cn+2

Therefore E ⊕ F is the trivial bundle. We denote the Chern classes
of E by e1, e2, those of F by f1, f2, . . . . Then

(1 + e1 + e2)(1 + f1 + f2 + . . . ) = 1

.

Consider the dual bundle E∗ and its Chern classes c1, c2, formally
written as

(1 + x)(1 + y) = 1 + c1 + c2 = 1 − e1 + e2

Then

(1 − x)(1 − y)(1 + f2 + f3 + . . . ) = 1

and

f1 = c1 = x + y

fr = xr + xr−1y + · · · + yr
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the 2-dimensional subspace of Cn+2 defining x and Fx is the quotient
of Cn+2 by Ex. By (9) there is an isomorphism

Ex ⊕ Fx � Cn+2

Therefore E ⊕ F is the trivial bundle. We denote the Chern classes
of E by e1, e2, those of F by f1, f2, . . . . Then

(1 + e1 + e2)(1 + f1 + f2 + . . . ) = 1
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Consider the dual bundle E∗ and its Chern classes c1, c2, formally
written as

(1 + x)(1 + y) = 1 + c1 + c2 = 1 − e1 + e2

Then

(1 − x)(1 − y)(1 + f2 + f3 + . . . ) = 1

and

f1 = c1 = x + y

fr = xr + xr−1y + · · · + yr
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In Schubert’s language fr corresponds by the Poincaré isomorphism
to the cycle of all lines intersecting a given Pn−r. For r = n this is a
projective space Pn which indeed has codimension n in Xn. The coho-
mology classes fr vanish for r > n, clear by Schubert, for us because
the Chern classes of F vanish for r > n.

§7. The lines on a smooth projective hypersurface in Pn+1

A smooth hypersurface of degree d in Pn+1 is given by a homogeneous
polynomial of degree d in (n + 2)-variables, the coordinates of Cn+2.
Hence it is an element of Sd((Cn+2)∗). It defines a section in the vector
bundle Sd(E∗) over Xn, because a fibre of E∗ is the dual vector space of
a 2-dimensional linear subspace of Cn+2. The lines on the hypersurface
correspond to the zeros of this section, their locus is given by the highest
Chern class cd+1(S

dE∗), hence has complex dimension 2n−d−1. This
will be a subvariety of Xn. But we do not try to make this more precise.
If d + 1 = 2n, the number of lines is finite. Assuming that every line
has multiplicity 1, we have:

The number of lines on a hypersurface of degree 2n − 1 in Pn+1 is
finite and equals c2n(S2n−1E∗)[Xn].

We have to use the Chern classes c1, c2 of E∗ where c1 = f1 = x + y
and c2 = xy. The class c2 is represented by the subvariety Xn−1 of
Xn of complex codimension 2, and c1 restricted to Xn−a is the positive
generator of H2(Xn−a, Z). Therefore by (7) for a + b = n

(10) ca
2 c2b

1 [Xn] = Cb,

the bth Catalan number.

Any homogeneous symmetric polynomial of degree 2n in x and y is
a polynomial in c1, c2 of complex dimension 2n and can be evaluated
on the fundamental cycle of Xn. The vector space of these polynomials
has a basis consisting of the elements ca

2 c2b
1 with a + b = n. Using

(10) we can carry out this evaluation for any such polynomial. For the
number of lines on smooth hypersurfaces we use (5) and express these
numbers by Catalan numbers. The first example results from (6).

The number of lines on a hypersurface of degree 3 in P3 equals

9(2C1 + C0) = 27.
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The number of lines on a hypersurface of degree 5 in P4 equals

52(24C2 + 58C1 + 9C0) = 2875 = 53 · 23.

The number of lines on a hypersurface of degree 7 in P5 equals

72(720C3 + 3708C2 + 3004C1 + 225C0) = 698005 = 73 · 2035.

Remark: The number of lines on a hypersurface occurred as a Chern
number. We had to neglect, for example, the long history of the dis-
covery and study of the 27 lines on a cubic surface. On my desk there
is the classical model of a cubic surface of Clebsch and Klein defined
over the reals. Here also the 27 lines are defined over the reals. Thus
I can see them any time I wish. In this special case the lines have 10
triple points.

§8. A different way to determine the number of lines on
a hypersurface

In the preceding section we loved to work with Catalan numbers
using the basis ca

2 c2b
1 with a + b = n for the homogeneous symmetric

polynomials in x, y of degree 2n. The basis

ca
2 f2b with a + b = n

may be more convenient. The evaluation of ca
2 f2b on Xn equals the

evaluation of the Chern class f2b on Xn−a where f2b is now the Chern
class of the complementary tautological vector bundle over Xn−a with
fibre Cn−a. But 2b = n − a + b. Hence ca

2 f2b[Xn] = 0 except for b = 0.
Then f0 = 1 and cn

2 is the generator of H2n(Xn, Z): For b = 0, we have
ca
2 f2b[Xn] = 1. Now we have the following result:

Let P (x, y) be a symmetric polynomial in x, y of degree 2n, then
P (x, y)[Xn] = coefficient of xn+1 yn in (x − y)P (x, y).

This is clear because

(x − y)ca
2 f2b = x2b+a+1 ya − xa y2b+a+1

It follows:

The number of lines on a surface of degree 2n− 1 in Pn+1 equals the
coefficient of xn+1 yn in (x − y)

∏2n−1
k=0 (kx + (2n − 1 − k)y)

This is van der Waerden’s original theorem [13]. This paper has
results about the configuration of lines which we cannot mention here.
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The number of lines on a hypersurface of degree 5 in P4 equals

52(24C2 + 58C1 + 9C0) = 2875 = 53 · 23.

The number of lines on a hypersurface of degree 7 in P5 equals

72(720C3 + 3708C2 + 3004C1 + 225C0) = 698005 = 73 · 2035.

Remark: The number of lines on a hypersurface occurred as a Chern
number. We had to neglect, for example, the long history of the dis-
covery and study of the 27 lines on a cubic surface. On my desk there
is the classical model of a cubic surface of Clebsch and Klein defined
over the reals. Here also the 27 lines are defined over the reals. Thus
I can see them any time I wish. In this special case the lines have 10
triple points.

§8. A different way to determine the number of lines on
a hypersurface

In the preceding section we loved to work with Catalan numbers
using the basis ca

2 c2b
1 with a + b = n for the homogeneous symmetric

polynomials in x, y of degree 2n. The basis

ca
2 f2b with a + b = n

may be more convenient. The evaluation of ca
2 f2b on Xn equals the

evaluation of the Chern class f2b on Xn−a where f2b is now the Chern
class of the complementary tautological vector bundle over Xn−a with
fibre Cn−a. But 2b = n − a + b. Hence ca

2 f2b[Xn] = 0 except for b = 0.
Then f0 = 1 and cn

2 is the generator of H2n(Xn, Z): For b = 0, we have
ca
2 f2b[Xn] = 1. Now we have the following result:

Let P (x, y) be a symmetric polynomial in x, y of degree 2n, then
P (x, y)[Xn] = coefficient of xn+1 yn in (x − y)P (x, y).

This is clear because

(x − y)ca
2 f2b = x2b+a+1 ya − xa y2b+a+1

It follows:

The number of lines on a surface of degree 2n− 1 in Pn+1 equals the
coefficient of xn+1 yn in (x − y)

∏2n−1
k=0 (kx + (2n − 1 − k)y)

This is van der Waerden’s original theorem [13]. This paper has
results about the configuration of lines which we cannot mention here.CHERN CHARACTERISTIC CLASSES ... 11

The calculation with Catalan numbers is equivalent to van der Waer-
den’s method, because the coefficient of xn+1yn in (x−y)(x+y)2n equals(
2n
n

)
−

(
2n

n−1

)
= Cn.

For the preparation of my Oberwolfach lecture I had discussions with
Pieter Moree, who gave me the paper [14]. There I found the following
asymptotic formula by Don Zagier:

Let vn be the number of lines on a hypersurface of degree 2n − 3 in
Pn, then

vn ∼
√

27

π
(2n − 3)2n− 7

2 (1 − 9

8n
− 111

640n2
− 9999

25600n3
+ . . . )

Don, the Oberwolfach lecturer of the preceding year, was present. I
joked that he is unable to see a sequence of numbers without studying
its asymptotic behavior.

§9. Higher dimensions

Consider the Grassmannian

Xm,n =
U(m + n)

U(m) × U(n)
= G(m, m + n)

In the preceding sections we had m = 2 and wrote X2,n = Xn. Over
Xm,n we have the dual tautological vector bundle E∗ with fibre Cm

whose Chern classes generate the integral cohomology ring of Xm,n.
We write the Chern classes of E∗ as elementary symmetric functions in
x1, x2, . . . , xm. The Grassmannian Xm,n has complex dimension mn. A
generator of H2mn(Xm, Z) ∼= Z with value 1 on the fundamental cycle
is (x1x2 . . . xm)n. In generalization of §8 we can prove:

Let P(x1, . . . , xm) be a symmetric polynomial in x1, . . . , xm of degree
mn, then

P(x1, . . . , xm) [Xm,n] = coefficient of(11)

xn+m−1
1 xn+m−2

2 . . . xn
m in∏

1≤i<j≤m

(xi − xj) P(x1, . . . , xm)

In principle, we can use the preceding result to determine the number
of (m−1)-dimensional projective subspaces on a hypersurface of degree
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of (m−1)-dimensional projective subspaces on a hypersurface of degree
12 F. HIRZEBRUCH

d in Pm+n−1. The number is finite if the fibre dimension of SdE∗ (which
is also the dimension of the highest Chern class of this vector bundle)
equals the dimension of Xm,n. The condition is

(12)

(
m − 1 + d

m − 1

)
= mn.

This is true for m = 3, d = 4, n = 5. A generic quartic in P7 contains
3297280 = 212 · 805 projective planes. To get this number one has to
evaluate

64x1x2x2(3x1 + x2)(3x2 + x3)(3x1 + x3)(x1 + 3x2)(x2 + 3x3)
(x1 + 3x3)(2x1 + 2x2)(2x2 + 2x3)(2x1 + 2x3)(x1 + x2 + 2x3)
(x1 + 2x2 + x3)(x1 + x2 + 2x3)

on X3,5 using (11).

Another case which satisfies (12) is m = 4, d = 3, n = 5. A general
cubic in P8 contains 1812768336 = 35 · 7459952 projective subspaces
of dimension 3. The discussion in §9 up to this point I have from the
book [15], in particular p. 132. A computer check-up for the case
m = 3, d = 4, n = 5 was done for me by Chen Heng Huat (National
University of Singapore, visitor of the MPI).

We would like to generalize the Catalan numbers, namely study the
degree of the Grassmannian Xm,n. It is the number

degXm,n = (x1 + · · · + xm)mn[Xm,n].

Schubert [16] determined this number as a special case of the degrees
of Schubert varieties [16](26), using an inductive method. Van der
Waerden [17]((6) and (7)) reproved Schubert’s results, in particular
the formula

(13) degXm,n =
(mn)!1!2! . . . (m − 1)!

n!(n + 1)! . . . (n + m − 1)!

A Grassmannian has a Young diagram, for example if m = 3, n = 4

1

2

3

4

2

3

4

5

3

4

5

6

j

i
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Each of the mn square boxes has coordinates i, j (with 1 ≤ i ≤ m
and 1 ≤ j ≤ n) and a hook of length i + j − 1.

Formula (13) can be rewritten

degXm,n =
(mn)!

product of all hook lengths

In our example which is also an example calculated by Schubert [16]

degX3,4 =
12!

6!5!12
=

(
11

5

)
= 462

Schubert’s general formula for the degree of a Schubert variety can also
be written in terms of hooks of the Young diagram. Van der Waerden
notes ([17] p. 204) that these degrees coincide with the degrees (dimen-
sions) of irreducible representations of the symmetric group SN where
N is the dimension of the Schubert variety, equal to the number of
boxes in the Young diagram. My information on hooks and on repre-
sentations of the symmetric group comes from the book by Sagan [18].
In this book also the story about the hooks is told (Frame, Robinson,
Thrall [19]).

As a final remark I mention formula (9) in my paper [20] (compare §6
above and see [10] Part II §24.10). For the case U(m+n)

U(m)×U(n)
this formula

says

deg
U(m + n)

U(m) × U(n)
=

(mn)!∏
µ(bk)

where the complementary roots bk are the positive roots of U(m + n)
which do not belong to U(m) × U(n). The bk correspond to the mn
boxes in the diagram in a natural way such that µ(bk) becomes the
hook length of the box.

The first Chern class of Xm,n is (m + n)(x1 + x2 + · · · + xm). If we
substract from m + n a hook length, we get again a hook length. This
corresponds to a symmetry of the diagram which one can associate to
Serre duality, for the following reason: Let D be a divisor on Xm,n with
characteristic class x1 + x2 + · · · + xm. Then the hook lengths are the
negative roots of the RR-polynomial χ(Xm,n, rD), just as in formula
(8) in the case m = 2. By the Plücker embedding, the Grassmannian
X3,4 becomes a smooth 12-dimensional submanifold of degree 462 in
P34. We have
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χ(X3,4, D) =
∏

hooks

hook length + 1

hook length
= 35 =

(
7

3

)
.
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Acta Mathematica 8 (1886), 97-118

[17] B. L. van der Waerden. Zur algebraischen Geometrie. VIII. Der Grad der
Graßmannschen Mannigfaltigkeiten der linearen Räume Sm in Sn. Math. Ann.
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