PONTRJAGIN CLASSES OF RATIONAL HOMOLOGY MANIFOLDS

AND THE SIGNATURE OF SOME AFPFINE HYPERSURFACES

F, Hirzebruch

Let X be a rational homology manifold in the sense of Thom (Symp. Intern, Top.

Alg. 1956, p. 54=67, Universidad de Mfxico 1958). Thom defines Pontrjagin classes
p, (0 € #N(x, Q).

Ingtead of defining

p(X)

#

1+ pl(X) + pz(K) 4 eee E I'f'(X, Q}

one cen def'ine

i

2(x) 1+ L(K) +L(K) +...e H(x, Q)

(see Hirzebruch, Topological methods in algebraic geometry, third edition, Springer
1966, §1). The classes p{X) and £(X) determine each other,

let Gm be the group of mth roots of unity and

Gb = Gbo X eee X G-bn where b = (bo, vees bn)’ bk > 1.

Let Gb act on the complex projective space Pn(C) (homogeneous coordinates

to, eesy tn) ag follows:

a(tgs eees tn) = (aoto, cees antn),

where o = (ao, eens ocn) € 6.
The orbit space Pn(c)/c'b is a rational homology manifold. The map

p: Pn(C) - Pn(C)/Gb induces an isomorphism

P (R (06, Q) » H(P(0), Q.

H'(PH(C), Q) is the truncated polynomial ring Q{x}/(xm'l) where x € Hz(Pn(C),ZZ)

is the Poincaré dusl of the hyperplane. Bott (not yet published) has calculated the
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Pontrjagin classes of Pn(C)/G:b.

@) AR O6) - = oé;"ﬂ m

where [bo, cesy bn} is the greatest common divisor of b{)’ vesy bn’ The sum is
over &ll real numbers ¢ with 0< § < 7w, Observe, however, that for any natural

number a > 1 the term (tanh a(x + i§))-1 is & power series in x if af ¥ O
b, x

mod Z 7, Therefore, fl Tanh B 1E) is divisible by xn+l, and thus vanishes
k= k

in the truncated polynomial ring, if for all k we have b ¢ # Omod Zw,

Therefore, the above sum (1) is actually only over the finitely many ¢ for which

b O mod Zw

6
for at least one k with O < k < n.

Let N be a common multiple of bo, cony bn and consider hypersurface

XN:tN+..-+ tN::O
0 n

in Pn(C). Then a(XN) =¥ for ® €6 and XN/Gb c Pn(c)/&D. This Ysubmenifold®
XN/(;b of Pn(C)/Gb has a normal bundle v in the sense of Thom (loc, cit.), It is
a U{1)~bundle whose 1lift to ol is the normal bundle of X' in Pn(C). Observe
that for each a € G-.D the set Pn(C)a of fixed points is transversal to XN. We

obtain for the signature of XN/Gb

sign XN/Gb = coefficient of x° in

tanh  (Nx). OZ ﬁ) ——-—’“-(—-57 .
* §:<1T k= tanh bk X+

Here we used the fact that the map p has degree bo cee bn/[bo’ seey bn]. Since

N is a multiple of all the b

e ©asy shifting of coordinates yields

(2) sign XN/G-b =

' 1
res, tanh Nz . p———e
;Qr i {_ g tanh b z:{

where the sum is over those ¢ with Osé<m such that d I tanh bk ) has a pole

in i€.
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Let us denote the expression between brackets in (2) by g(z). We integrate g(z)

along the following path ')/M in the z=-plane,

~Mtrri i Mimd
< ~ <
¥ ~N
0
LN
£

\W/

-M M

The integrals along the "horizontal! parts of Yy cancel each other since

g{z + 7i) = g{z). The sum of the integrals along the vertical parts of Yy

converges for M- o 1o

mi(1 - («-1)“),
because tanh(M + iy) converges uniformly to 1 or <1 respectively if M
converges to 4% or == respectively. The real dimension of XN/Gb is 2{n - 1).

Therefore, we suppose n odd from now on., Otherwise the signature vanishes by

definition. We obtain from (2)

(3) sign )[N/Gb = 1 = ; res;, g(z)

<
where the sum is now over those 7 with O< n < 7 such that +tanh Nz has a pole

in in, which means

mJ . .
1732—%, jodd, 1= j< 2N,

The function +tanh Nz has poles of order 1 at the in. The residue in all these

< 1 .
poles is F . By (3) we get (with a = N/bk)

(&) sign XN/Gb -1 =
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(n-l)/2 . . .
-(-%1-1 Z cot-gil- cotzlﬁl- ves cot%—rag—.
ioaa 20 3 n

1 j<2N

Brieskorn (Inventiones math. 2, 1-1i (1966)) has studied the non-singular

. . n o
affine hypersurface Val’az’ et in € given by
a a a
1 2 n
(5) 27 0+ z" e+ oz + 1 = 05

its signature is related to the theory of exotic spheres.

Let E be the hyperplene t, = 0 in Pn(C). Let N be any common multiple
of Gy By esey B and
(6) b, = % (for =1, so., n), by=1,8;=N
YN = XN-XNHE is given in Pn(C) - B by
tllq + tg Foane b tﬁ 1= 0 (pub ty=1).

b
By the map gz, = tkk from Pn(c) -E to C" (k=1, eeep n) we have

) v = T/e

LTI

where G = GbO x Gbl X ees X Gbn and b= (1, bys eees bn) as in (6).

The Lefschetz theorem on hyperplane sections implies the following fact. XN NE
has a tubular neighbourhood T in }CN invariant under Gb. The middle dimensional
homology group of T 4is infinite cyclic with a generator (invariant under G:b) of
self~intersection number + 1. By the Novikov additiviiy of the signature we get
from (4) and (7)

Theorem Let n be odd and N any common multiple of 85 sees 8o Then the

signature of the Brieskorn variety Va a is given by the formula of Zagier
l, Yaey n
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(n-1)/2 . . .
(8) sign V = (5] :E: cot L cot 4 ,,, cot T,
algoa.,an N “—oad 2N 2&1 28

1g je2N

Brieskorn {loc. cit.) gives the following formula

8i v =
gn al,...,an

(9) ﬁ{0<xk<ak|0< 2%<1 modz}

- #{ocx <o 1< ;;k‘- <2 maz} ,

[(xl, vees xn) are n-tuples of integers].

Zagier has proved by Fourier series and by other methods that the two express-
ions in (8) and (9) equal each other, The interesting formula (8) is due to him. In
virtue of Zagier's result, we have given a new method (involving Pontrjagin classes)
to calculate sign V;l’__.’an and to prove (9).

We can identify (8) and (9) in the following way (which is essentially Zagier's

method). Put

((x))
((x))

x -{x] ~%, 4if x is not an integer ;

0

1t

N if x dis an integer,

Then the expression in (9) is

(10) sign V;l’_..’an =
2 3 ((%+...+2_;=;+)) '((;171*"‘*5%))'
Oeme<ay

If r= g is any positive rational number (where p, g are natural numbers, not

necessarily coprime), then
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q~1

. i mj  2miJir
(=) = 55 D et ™ e .

i=1

This is a formula of Bisenstein (see Rademacher, Lectures on Analytic Number Theory,

Notes, Tate Institute, Bombay 1954~55, p.276). Feeding it into (10) gives (8).

Remark: The Dedekind sums studied by Rademacher are in close relation to formula
(8) and the Atiyah-Bott-Singer fixed point theorem applied to the "signature
operator" as will be explained elsewhere,

H, A, Hamm (Dissertation Bonn-GHttingen : see also the following paper) has

studied the following affine varieties (given by r equations in Cn)

a1 an

Spfp teeet opfn *oo5nn <0 0
J=1y esey r and T < n.
If all s x 8 subdeterminants of the r x (n + 1)-matrix (cJ.k) are different
from O for 1< s < r, then the affine variety is a non-singular completie
intersection of hypersurfaces. (Our conditions are stronger than those of Hauun.)
We denote such a variety by Vz yeanyn " Its complex dimension is n - r, If we
assume n - r to be even, thenlthe sage method as above yields

i

(11) sign V.

31,"-,an

N r Nz
- Z resﬂij/aN( (tanh Nz) coth zﬁ coth ;k—)

1g j<2N k=1
3 odd

where N is any common multiple of Byr sees an. But it seems harder to get a
formule similar to (8) or (9) because we have poles of order > 1, Bott's proof of
(1) involves also residue calculations and there is in fact a short cut to (8) or (9)
from & point on the way to (1). But it seemed amsing to adopt the view of somebody

knowing (1) and not its proof and to begin to calculate,



