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THE RING OF HILBERT MODULAR FORMS FOR REAL QUADRATIC FIELDS 

OF SMALL DISCRIMINANT 

F. Hirzebruch 

In this lecture we shall show how the resolution of the singulari- 

ties at the cusps of the Hilbert modular surfaces [7] can be used for 

a detailed study of these surfaces which makes it possible in some 

cases to determine the structure of the ring of Hilbert modular forms. 

§1. CUSP SINGULARITIES AND INVOLUTIONS. 

Let K be a real quadratic field, M c K a module (free Z-module of 

+ 
rank 2) and U M the group of the totally positive units c of K with 

+ + 
aM = M. The group U M is infinite cyclic. Let V c U M be a subgroup of 

finite index. The semi-direct product 

acts freely on H 2 by 

(Zl,Z 2) ~ (sz I + ~,s'z 2 + ~' , 

where x ~ x' is the non-trivial automorphism of K. We add a point to 

H2/G(M,V) and topologize H2/G(M,V) u {~] by taking 

{(Zl,Z2) e H21ylY2 > C}/G(M,V) u {~} 

(for C > 0) as neighborhoods of ~. (Notation : zj = xj + i yj with 
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xj,yj • 1R and yj > 0). Then H2/G(M,V) u {~} is a normal complex space 

singularlty de- with as the only singular point. This is the "cusp " " 

fine~d by M,V. The local ring at ~ is denoted by 0(M,V). It is the ring 

of all Fourier series f convergent in some neighborhood of ~ of the 

form 

(1) f -- a 0 + 
2~i(lzl+l'z 2 ) 

el M ~ a I . e 

I>> 0 
a~, : ag~, for a • V 

where M ~ is the dual module of M, i.e. 

M ~ = {~ • K I Tr(l~) • Z for all ~ •M}. 

The singular point ~ can be resolved [7]. Under the process of minimal 

desingularisation it is blown up into a cycle of r non-singular rational 

curves (r ~ 2) or into one rational curve with a double point (r = 1). 

Such a cycle is indicated by a diagram 

-b 

/ 

// 

\ 

where -b0, -bl,... are the selfintersection-numbers (for r ~ 2). We 

have b i ~ 2. This cycle of numbers is denoted by ((b0,bl,...,br_l)). 

It is determined by the denominators of a periodic continued fraction 

associated to M, see [7]. 

The non-singular surface obtained from H2/G(M,V) u {~} by resolving the 

singular point will be called X(M,V). Of course, it is not compact. 

For the intersection point of two consecutive curves of the cycle we 
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have a natural coordinate system (u,v) centered at that point [7]. Any 

f e 0(M,V) can be written as a power series in u~v (this is analogous 

to the q-expansion in one variable.) 

If M = M' , then the cusp is called symmetric. The involution 

T : (Zl,Z 2) ~ (z2,z 1) operates on H2/G(M,V) u {~} with T(~) : ~. The 

fixed point set of T in H2/G(M,V) is a non-singular curve C consisting 

of 2,3 or 4 components. Therefore, the quotient of H2/G(M,V) u {~} by 

T has no singular point except possibly ~ , the image of ~. The involu- 

tion • acts on 0(M,V), and 0(M~V) T (consisting of all f in (1) with 

al = al, for ~ e M) is the local ring at a T. The involution T can be 

lifted to X(M,V). The curve C extends to a non-singular curve in 

X(M,V), also denoted by C. If the number of curves in the cycle is 

even, then T maps none or two of the curves in the cycle, say S and T, 

to themselves and interchang~ the others, if the number of curves in 

the cycle is odd, then T maps one curve S ~ the cycle to itself and 

interchanges the others. The curve C intersects each curve S and T 

transversally in two points or in one point depending on whether the 

selfintersection number of S or T respectively is even or odd. The 

fixed point set of T in X(M,V) consists of C and an isolated fixed 

point on each of the curves S and T which have odd selfintersection- 

number. Blowing up the isolated fixed points of T gives a surface 

X(M,V) on which T operates having no isolated fixed points. The excep- 

tional curves on X(M,V) obtained by this blowing up belong to the fixed 

point set of T. The surface X(M,V)/T is non-singular. On it we have 

a chain of rational curves mapping to • This is a resolution of . 

It need not be minimal. In fact, ~ could be a regular point. In any 

case, the existence of this resolution by a chain of rational curves 

proves that ~T is a quotient singularity [6]~ [1]. The above investi- 

gation of X(M,V) for M = M' is due to Karras [12] (Lemma 3.3). The 

fact that ~T is a quotient singularity was proved earlier by H. Cohn 
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and E. Freitag (see the literature quoted in [12]). Gundlach [5] has 

given necessary and sufficient conditions that a T is regular. Such 

symmetric cusps are called quasi regular. 

THEOREM (Karras). A cusp given b~ (M,V) with M = M' is quasi regular if 

and only if its cycle ((b0,bl,...,br_l)) is equal to one of the follo- 

wing cycles 

i) ((3,2,..~)) with m ~ 0 

m 

ii) ((4,~£)) with m ~ 0 

m 

i i i )  ( ( 2 ~ . . . , 2 ,  3 , 2 , . . . , 2 , 3 ) )  w i t h  m > n 

n m 

and if in iii) the two curves of selfintersection number -3 are inter- 

changed under T (which is automatic for m > n). 

Consider the following curves in C 2 (coordinates X,Y) 

i) (X +Y2)(X2 +ym+5) = 0 with m > 0 

ii) (X 2 +y2)(X2 + ym+3) = 0 with m > 0 

iii) (xn+3 +y2)(X2 +ym+3) = 0 with m > n > 0 

Let F(X,Y) : 0 be one of these curves. The double cover of ~2 branced 

along F(X,Y) : @ has the point above (0,0) e C 2 as isolated singular 

point whose minimal resolution is a cycle of rational curves with self- 

intersection numbers as given in the preceding theorem of Karras. This 

can be checked directly. By a theorem of Laufer [15] (see also [13]) a 

singularity whose resolution is a cycle of rational curves is determined 

up to biholomorphic equivalence by its cycle of selfintersection numbers. 

Therefore, the structure of the local rings 0(M,V) of quasi regular 

cusps is now known ([12], Satz 3), namely 
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(2 )  0(M,V) ~ ~[C,Y,Z]/(Z 2 = F(X,Y)) 

where F(X,Y) is the polynomial given in i), ii), iii) above and where T 

corresponds to the natural involution of the double cover. See also 

H. Cohn as quoted in [12]. 

In the following examples a), b), c) of quasi regular cusps we indicate 

the fixed point set C of T on X(H~V) by heavily drawn lines. Isolated 

fixed points of m on X(M,V) do not occur in examples a), b), c). 

a) ~ b) 
-3 

e) 

2 -2 ~-2 
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In example a) we have K : @(~/5) with M = ~o.0 and [U~ : V] = 2. (For 

a field K we denote its ring of integers by 0.) After dividing by 

(which interchanges the two (-3)-curves) we have in X(M,V)/T the follo- 

wing situation 

-I 

c C 

The non-singular rational (-1)-curve is the image of the two (-3)-curves. 

The image curve of C will also be denoted by C. It simply touches 

the (-1)-curve in two points. If we blow down the (-1)-eurve we get 

(H2/G(M,V))/T u {~T} which shows that ~T is regular. After blowing 

down the (-1)-curve, the two components of C become singular. Each 

has a cusp (in the sense of curve singularities). The two cusps have 

separate tangents which checks with iii) (m = n = 0). The structure of 

0(M,V) is given by (2). Therefore, there must exist three Fourier se- 

ries f, g, h as in (1) generating 0(M,V) and satisfying 

h 2 = (f3+g2)(f2+g3). 

+ 
In example b) we have K = @(~/~) with M : 0 and V = U M 

Cl j .~  c2 

b) ;:: '  

C 3 

in X(M,V) "in X(M,V)/T 
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We have numbered the four branches of C. 

In X(M,V)/T we blow down the (-1)-curve, the (-2)-curve beeomes a (-1)- 

curve and can be blown down also. The image of the two curves is T~ 

which is therefore a regular point. In (H2/G(M,V))/~ u {~} the four 

branches of C in a neighborhood of ~ behave as follows : 
T 

b) 

c3 ~ Ch 

e) -2 

C3, C 4 touch simply, all other intersections are transversal. 

checks with ii) (m = 1). 

+ 
In example c) we have K : ~(~/7) with M = ~/~.0 and V = U M. 

C I C 2 

i -2 -1 

\ 

-2 

> 
/ 

C 3 

This 

C 3 

in X(M,V) in X(M,V)/T 



295 Hi-8 

In X(M,V)/T the (-2)-curve ~ouehes the component C 3 of C simply. 

Blowing down - - - ives the regular point T where 

C1, C2, C 3 behave locally like 

(X 3 + y2)(X2 +y6) : 0 

with X 3 + y2 = 0 corresponding to C3, and X ± i.Y 3 = 0 to C 1 and C 2 

respectively (compare iii), n = 0, m = 3). 

The following symmetric cusp is not quasi regular. 

d) • : 

/ . \  

- 2  - 2  

- 5  - 5  

isolated fixed point of T 

We have K : ~(x/~) with M : 0 and [U~ : V] : 3. Before dividin Z by T 

we blow up the isolated fixed point. Then we divide by T and obtain a 

configuration 
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-3 

5 

C 

which after blowing down the (-1)-curve shows that 
Y 

singularity admitting the minimal resolution 

is a quotien 

-2  -3  -2  -2  - 4  

Thus it is the quotient singularity of type (36; 11,1), see [6]. 
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§2. THE DIMENSION FORMULA FOR HILBERT CUSP FORMS. 

Let K be a real quadratic field and 0 the ring of integers of K. 

H 2 The Hilbert modular group SL2(0)/{ ± 1} operates effectively on . Ac- 

cording to Siegel the volume of H2/SL2(0) equals 2~K(-1). The volume 

is normalized such that if F is a subgroup of SL2(0)/{ ± 1) of finite 

index a which acts freely on H 2, then 

(3) vol(H2/F) = 2~K(-1).a : e(H2/G) 

where e(A) denotes the Euler number of the space A. (Though H2/F 

is non-compact, the Euler number can be calculated by the volume, this 

is a special case of a result of Harder, see [7] and the literature 

quoted there.) 

Let Sk(F) be the complex vector space of cusp forms of weight k for F 

where F is a subgroup of SL2(0)/{ ± 1} of finite index. 

The weight k of a form f is defined by the transformation law 

azl+___~b a'z2+b' 
f(czl+ d , c,z2+d,) = (CZl+d)k(c'z2+d')kf(zl,z2) 

This is well-defined also for k odd, because the expression 

(eZl+d)k(c'z2+d')k does not change if (a b) is replaced by (_-a -b 
_d ] • 

THEOREM. If F has index a i__nn SL2(0) 

for k > 3 

(4) dim Sk(r) - k(k-2 
2 

k(k-2 
4 

H 2 { ± 1} and acts freely on , then 

~K (-1)-a + X 

- -  e(H2/F) + X , 

where X = 1 + dim S2(F). 
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The formula (4) is found in the literature only for k even. But it 

seems to be known also for odd k (see Shimizu [17], p. 63, footnote 11). 

On my request, H. Saito has checked that (4) can be proved for odd k 

in the same way as Shimizu does it. 

If F acts freely, then H2/F is a non-singular complex surface which can 

be compactified by finitely many points, the cusps, to give a compact 

surface H2/F. The isotropy groups of the cusps are of the form G(M,V). 

The cusps are singular points of H--~/F and can be resolved in the mini- 

mal canonical way as recalled in 51. The resulting surface is a non- 

singular algebraic surface Y(F). It is a regular surface, i.e. its 

first Betti number vanishes, but it is not necessarily simply-connected. 

The cusp forms of weight 2 can be extended to holomorphic differential 

forms on Y(F) (sections of the canonical bundle of Y(F)). Therefore, 

dim S2(F) is the geometric genus pg of Y(F) and X the arithmetic genus. 

The fact that the constant term in the Shimizu polynomial (4) is the 

arithmetic genus of Y(F) was discovered by Freitag (compare [7], 3.6.). 

~3. THE FIELn K : ~(g[). 

In the field K = ~(~/~) the ring 0 of integers consists of all linear 

combinations a + b(1+\/5)/2 with a,b • Z. To the prime ideal generated 

in 0 by ~/~ there belongs a principal congruence subgroup of SL2(O) , which 

we denote by r. 

~) • SL2(O)Ia-: 6---1(mod V~),fl-=y---O(mod ~/5)). r ={[~ 

-1 0 
Because (0 _11 ~ F, the group F can be regarded as a subgroup of the 

Hilbert modular group G = SL2(0)/{ +-1} = PSL2(0). The group F acts 

freely on H 2. The volume of H2/G is equal to 2~K(-1) = 1/15. The 

factor group G/F is isomorphic to PSL2(]F 5) because @/x/5.0 ~ I~ 5. In 
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its turn, PSL2(I 5) is isomorphic to the alternating group A 5. Namely, 

A 5 is the group of automorphisms of the icosahedron and acts on the 

six axes of the icosahedron through its vertices in the same way as 

PSL2(~ 5) acts on the six points of the projective line PI(F5). We have 

(5) e(H2/F) = IA51.2gK(-1) = 60.~5 : 4 

The space H2/F is compactif~ed by adding six cusps. Since the class 

number of ~(~/~) is 1, the action of G on PI(K) = K u {~] has only one 

orbit, while the action of F on PI(K) has six. This follows, because 

the isotropy group of G and F at ~ satisfy IG~/F I = 10. In fact, 

G /F is the dihedral group of order 10, this will be used later. Two 

points ~/6 and y/~ in PI(K) with ~,~,7,~ • 0 and (~,8) : (y,6) = 1 

belong to the same orbit precisely when ~ ~ y (mod ~/~) and 8 ~ 

(mod ~), that is when e/~ and y/~ represent the same point of PI(FS). 

The surface H2/F, compactified by six points, is denoted by H2/F. This 
SIX 

is an algebraic surface with~singular points corresponding to the six 

cusps. Since the action of G on H 2 induces an action of A S ~ G/F on 

H2/F which acts transitively on the cusps, these six singular points 

have the same structure, and it is sufficient to investigate the struc- 

ture of the singularity at ~ = 1/O . The isotropy group of F at this 

point has the form 

(6) F = {[~ s ~] Is unit in 0,E-= l(mod ~/~),~ 0(mod ~)) 

The fundamental unit of 0 is s 0 = (1+w~)/2. The condition [ ~ 1 

(mod ~/5) means that e must be a power of _ 2 0" The group F~ can also 

be written as G(M,V) where M = ~/[.0 and V is generated by c 4 0" Thus 

[U s : V] = 2 and G(M,V) is as in example a) of §1. 

On the surface Y : Y(F) that arises from H2/F by resolution of the six 

singular points there are six pairwise disjoint configurations 
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-3 

As a 4-dimensional manifold, Y can be obtained as follows : 

H2/F has asdeformation retract a compact manifold X whose boundary has 

six components. Each boundary component is a torus bundle over a circle. 

All boundary components are isomorphic. Every configuration (7) in Y 

has a tubular neighborhood having as boundary such a torus bundle. The 

manifold Y arises by glueing to X the tubular neighborhoods of these 

six configurations (7). Since the Euler number of each tubular neigh- 

borhood is 2, it follows from (5) and the additivity of e that 

(8) e(Y) = e(X) + 6.2 = e(H2/F) + 12 = 16 

The action of A 5 on H2/F described above induces an action on Y. The 

diagonal z I z 2 of H 2 yields a curve in H 2 = /F, which can be compacti- 

fied to a curve C in Y. The subgroup of F carrying the diagonal into 

itself is the ordinary principal congruence subgroup F(5) of SL2(~) , 

which can also be regarded as subgroup of SL2(~)/{ ± 1}, the quotient 

group being A 5 again. 

Therefore, each element of A 5 when acting on Y carries C to itself. 

1 The curve H/F(5) has normalized Euler volume -[.60 = -10 and twelve 

cusps. The compactified curve ~ has Euler number -10 + 12 = 2, 

thus is a rational curve which maps onto C. For reasons of symmetry, 

the curve C must pass through each of the six configurations (7) 

exactly twice. We now describe how the curve cuts a resolution (7) by 

reducing the question to the corresponding question for the diagonal 

H2/G = (H2/F)/A5 . There is an exact sequence in 
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+ 
(9) @ ~ 0/x/~.0 ~ G /F ~ UM/V ~ i 

The groups 0/~5.0 and U~/V are cyclic of order 5 and 2 respectively, 

and G /F is a semi-direct product~ namely the dihedral group of order 

10. 

To understand the formation of the quotient of the configuration (7) 

by this dihedral group, we check first that any non-trivial element g 

of 0/~5.0 carries each of the two (-3)-curves to itself and has their 

intersection points as isolated fixed points. By blowing up these two 

points we come to the following configuration : 

-1 

-5 

-5 

-I (the verticals are fixed lines for g) 

After factorizing by 0/~'5".0 we obtain 

- 1  

-5  -5  

-1  

+ 
The group UM/V ~ ~/2% acts on this quotient by "rotation", carrying 

each (-1)-curve to the other one~ each (-5)-curve to the other one. 

Factorization leads to -5 

-1  
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and blowing down the (-1)-curve gives a configuration consisting of a 

rational curve with a double point. This is the resolution of the 

cusp of H2/G. The curve in the desingularized compactification of 

H2/G represented by z I = z 2 is usually called F 1 (see [10]). It passes 

transversally through the resolved cusp as follows 

(10) ( | "x~ (see [7], §4.) 

As explained the configuration (7) is a ten-fold covering of (10). We 

conclude that C passes through each configuration (7) in the two 

"corners" and meets in these two points each (-3)-curve of the confi- 

guration (7) transversally. 

gram 

(11) C ~ 1 ~  

This is illustrated in the following dia- 

The curve C is non-singular, because of the described behaviour at the 

cusps of H2/F and because two curves on H 2 equivalent to the diagonal 

z I : z 2 under SL2(0) cannot intersect in H 2 (see [11], 3.4. or [10]). 

Therefore H/F(5) ~ C is bijective. The value of the first Chern class 

c I of Y on C equals twice the Euler volume of H/F(5) (which is -10) 

plus 24 (see [7], 4.3. (19)). Thus we have in Y 

(12) Cl[C] = 4 and C.C : 2 (by the adjunction formula). 

Because Y is regular, this implies that Y is a rational surface 

(compare [9], [7]). 

The curve ~z 2 - ~'z I = 0 in H 2 with ~ = x/[.E 0 is a skew-hermitian curve 

which determines the curve F 5 in H2/G (see [10]). The inverse image D 

of F 5 in H2/F consists of 15 connectedness components. Namely, as can 
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be checked, the subgroup of A 5 = G/F which carries the curve in H2/F 

given by Iz 2 l'z I : 0 to itself is of order 4. The curve F 5 passes 

through the resolved cusp of H2/G as follows 

Therefore D intersects each configuration (7) in the following way 

D 

A component of D intersects exactly two of the configurations (7) and 

each in two points, one intersection point on each (-3)-curve. It is 

easy to see that each component of D is a non-singular rational curve. 

The involution (Zl,Z 2) ~ (z2,z 1) on H 2 induces an involution T on H2/F, 

because A' • F if A • F. The involution T keeps every cusp of H2/F 

fixed, because it operates on PI(K) by conjugation (x ~ x') and the 

cusps can be represented by rational points. Each cusp is symmetric, 

F operates on each of the configurations (7) by interchanging the two 

(-3)-curves. The curve C is pointwise fixed under T. In fact, C is 

the complete fixed point set. This can be seen as follows. The invo- 

lution (z1,z2)~-9(z2,zl) induces an involution on H2/G which has F 1 u F 5 as 

fixed point set ([7], §4.). 

Therefore, the fixed point set of T on H2/F is at most C u D. The inter 

section behaviour of such a component Dj with a configuration (7) shows 

that Dj is carried to itself under T, but is not pointwise fixed. 
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The quotient Y/T is a non-singular algebraic surface. We have 

: ~(e(Y) + e(C)) : ½(is+2) : 9 (13) e(Y/T) 

By example a) in §1, the surface Y/~ has six exceptional curves. If 

we blow them down, we get an algebraic surface Y0 with e(Y 0) : 3 and 

six distinguished points PI'''''P6 resulting from the exceptional 

curves. Since Y is rational, Y/T and Y0 are rational. Thus Y0 is the 

complex projective plane, and the image of C on Y0 is a rational curve 

with a double cusp in each point P. (j = 1,... ,6) and is otherwise non- 
2 

singular. "Double cusp in Pj" means that the curve has two branches 

in Pj, each with a cusp, the two cusps having separate tangents. We 

denote the image of C in Y0 also by C. Each double cusp reduces the 

genus in the Pl~cker formula by 6. Thus the degree n of C in 

YO = P2 (~) satisfies 

(n-l) (n-2) 
6.6 : 0. 

2 

Therefore C is a curve of degree 10 in P2(~), as can also be infered 

from (12). The image of D in Y0 = P2 ({) (also denoted by D) is the 

union of the 15 lines joining P1,...,P6, as can be proved in a similar 

way. 

The involution T operating on Y commutes with each element of G/F ~A 5. 

This follows from the fact that matrices A,A' • SL2(0) are equivalent 

mod ~/~. Therefore, A 5 acts effectively on Y/T and on Y0 = P2 (~)" 

Every action of A 5 on P2(~) can be lifted to a 3-dimensional linear 

representation, because H2(As,%3 ) = 0. 

me a proof that H2(G,Z3 ) = 0 for a non abelian, [I. Naruki has shown 

finite simple group G whose order is not divisible by 9. Such results 

essentially can be found in Schur's papers.] 
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The lifting is unique, because A 5 is simple. The character table shows 

that there are exactly two equivalence classes of non-trivial 3-dimens- 

ional representations of A 5. They are related by an outer automorphism 

of A 5. Hence the action of Ason P2(C) which we have found is essen- 

tially the one whose invariant theory was studied by F. Klein [14]. 

We recall some of Klein's results. 

The group A 5 is isomorphic to the finite group I of those elements of 

S0(3) which carry a given icosahedron centered at the origin of the 

standard Euclidean space ~3 to itself. The group I operates linearly 

on 2 3 (standard coordinates x0,xl,x 2) and thus also on P2(~) and P2(~). 

We are concerned with the action on P2(~). A curve in P2(~) which is 

mapped to itself by all elements of I is given by a homogeneous poly- 

nomial in x0,xl,x 2 which is l-invariant up to constant factors and 

hence l-invariant, because I is a simple group. The graded ring of 

all l-invariant polynomials in x0,xl,x 2 is generated by homogeneous 

polynomials A,B,C,D of degrees 2,6,10,15 with A = x~ + x~ +- x~. The ac- 

tion of I On P2(¢) has exactly one minimal orbit where "minima]" 

means that the number of points in the orbit is minimal. This orbit 

has six points, they are called poles. These are the points of 

P2(~) C p2({) which are represented by the six axes through the ver- 

tices of the icosahedron. Klein uses coordinates 

A 0 = x0, A 1 : x I + ix 2, A 2 : x I - ix 2 

and puts the icosahedron in such a position that the six poles are 

given by 

(A0,A1,A 2) = (~/~/2,0,0) 

1 v,-~) 
(A0'AI'A2) = (7' 

with s : exp(2~i/5) and 0 ~ ~ ~ 4. 
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The invariant curve A = 0 does not pass through the poles. There is 

exactly one invar~ant curve B = 0 of degree 6 which passes through the 

poles, exactly one invariant curve C = 0 of degree 10 which has higher 

multiplicity than the curve B : 0 in the poles and exactly one invariant 

curve D = 0 of degree 15. In fact~ B : 0 has an ordinary double point 

(multiplicity 2) in each pole, C : 0 has a double cusp (multiplicity 4) 

in each pole and D = 0 is the union of the 15 lines connecting the six 

poles. Klein gives formulas for the homogeneous polynomials A,B,C,D 

(determined up to constant factors). They generate the ring of all I- 

invariant polynomials. We list Klein's formulas " 

2 
A = A 0 + AIA 2 

22 2 33 5 5 
B 8A AIA 2 2AoAIA 2 + AIA 2 = _ A0 (AI+A2) 

20 6 2.2 4 3 3 2 4 4 5 5 
C = 3 AoA1}~ 2 - 160AoAIA 2 + 20AoAIA 2 + 6AIA 2 

5 5 2Ao_ 2 2 2 2 10 10 
4A 0 (AI+A 2) (3 - 0AoAiA2+SAIA2 ) + A 1 + A 2 

5 5 @24A10+384OA~AIA1 12D = (A1-A2)(-1 

5 2 2 43 3 
-384@AoAIA2 + 1200AoAIA 2 

244 5 5 
-100AoAIA 2 + AIA 2) 

10 10 2A~=160AoAIA2+ 10AIA2 ) + A0(A 1 -A 2 )(35 2 2 2 

-A15 15 
÷ ( 1-A2 ) 

According to Klein the ring of l-invariant polynomials is given as fol- 

lows 

{[A0,A1,A1 ]I = C[A,B~C,D]/(R(A,B,C,D) : 0) (14) 

The relation R(A,B,C,D) = C is of degree 30. 

We have 

(15) R(A,B,C,D) : 

-144D 2 - 1728B 5 + 720ACB 3 - 80A2C2B 

+64A3(5B2-AC)2 + C 3 
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The equations for B and C show that the two tangents of B = 0 in the 

pole (~/5/2,0,0) are given by A 1 = 0, A 2 = 0. They coincide with the 

tangents of C = @ in that pole. Therefore the curves B = 0 and C = 0 

have in each pole the intersection multiplicity 10. Thus they inter- 

sect only in the poles. 

When we restrict the action of I to the conic A = 0, we get the well- 

known action of I on PI(@) (which can also be obtained via the isomor- 

phism S0(3) ~ PSU(2)). The curves B = 0, C = 0, D = 0 intersect A = 0 

tranversally in 12, 20, 30 points respectively. If one uses a suitable 

conformal map S 2 ~ PI(@) ~ (A = 0) these points correspond to the 12 

vertices, 20 center points of the faces, 30 center points of the edges 

of the icosahedron (always projected from the origin of ~3 to $2). 

Putting A = 0, the relation R(A,B,C,D) = 0 gives a famous icosahedral 

identity. 

We consider the uniquely determined double cover W of P2(¢) branched 

along C = 0. The action of I can be lifted to the double cover. 

The study of the Hilbert modular surface H2/F led to an action of 

G/F (~ A 5) on the complex projective plane. We also found the invari- 

ant curve C = 0. We use an isomorphism G/F ~ I to identify G/F and 

the icosahedral group. Since the action of I on the projective plane 

is essentially unique and the invariant curve C = 0 well determined as 

curve of degree 10 with double cusps in the poleswe have proved the 

following result. 

THEOREM. Let F be the principal congruence subgroup of SL2(0) for the 

ideal (~/~) in the........rin $ 0 of intesers of the field ~(~/5). Then the 

Hilbert modular surface H2/F can be compactified by six points (cusps 

in the sense of modular surfaces) to give a surface H2/F with these 

cusps as the onlx......sinsular points. The surface H2/F admits an action 
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of the icosahedral group I. It is l-equivariantly isomorphic to the 

double cover W of P2({) branched along the Klein curve C = 0. This 

curve has singularities ("double cusps") in t~he six poles of the action 

I and otherwise no singularities. The double cover W has a singular 

point above each double cusp of C and no further singular Btints. 

Under the isomorphism these singular points correspond to the six 

singular points o~ H2/F. The involution of the double cover W corres- 

, _ _  H 2 ponds to the involution of H2/F i_/nduced by (z I z 2) ~ (z2,z 1) on . 

The surface W is rational. 

We use this theorem to gain information on the modular forms relative 

to F. A modular form of weight k is a holomorphic function f(zl,z 2) 

on H 2 transforming under elements of F as recalled in §2. The form f 

is a cusp form if it vanishes in the cusps. The forms of weight 2r 

correspond bijectively to the holomorphic sections of K r where K is 

the canonical bundle of H2/F. A form is symmetric if 

f(zl,z 2) = f(z2,zl), skew-symmetric if f(zl,z 2) = -f(z2,zl). Let W' 

be the double cover W of P2(~) with the six singular points removed 

and P~({) the projective plane with the six poles removed. Let 

: W' ~ P~(~) be the covering map, ~ the divisor in W' represented by 

the branching locus C = 0 and y the divisor in P~(~) given by C = 0. 

~( If L is a line in P~(~), then ~ + ~ -3L) is a canonical divisor of W'. 

Because ~y = 2~, we conclude that ~(y-6L) is twice a canonical divi- 

sor and also ~(4L) is twice a canonical divisor on W'. Therefore, 

under the isomorphism H2/F ~ W', a homogeneous polynomial of degree 4r 

in A0,A1,A 2 defines a section of K 2r and thus a modular form relative 

to F of weight 4r. It can be proved, that the abelian group F/[F,F] 

has a trivial 2-primary component. This implies that a homogeneous 

polynomial of degree k in A0,A1,A 2 defines a modular form relative to 

F of weight k. In fact, these modular forms are symmetric. There is 

a skew-symmetric form of weight 5, whose divisor is ~ (under the 
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isomorphism H2/F ~ W'). We denote it by e. Thus we have obtained a 

graded subring 

M'(F) : 
k > 0 

M{(F) = {[Ao,A1,A2,e]/(c2=C) 

of the full graded ring M(F) : ~ Mk(F) of modular forms for F. (Here 

C is the Klein polynomial of degree 10.) We have 

= ( 2 ) + ( 2 ) = - 2k + 7 for k ~ 3 dim M~(F) k+2 k 3 k 2 

'(F) = 6 dim M 2 

'(F) : 3 dim M 1 

The arithmetic genus X of the non-singular model Y of H2/F equals 1, 

because Y is rational. The dimension formula (§2 (4)) and §3 (5) im- 

ply that M~(F) = Mk(F) for k ~ 2. We have to use that there exist six 

Eisenstein series of weight k (for k ~ 2) belonging to the six cusps 

which shows dim Mk(F) -dim Sk(F) = 6 for k ~ 2. Because the square of 

a modular form f of weight one belongs to M2(F) = M~(F), the zero 

divisor of f gives a line in P2(~). Thus MI(F) = M~(F). Of course, 

there are no modular forms of negative weight. 

THEOREM. The ring of modular forms for the group F i~s isomorphi c to 

~[A0,A1,A2,c]/(c2=C). 

The ring of symmetric modular forms for F is 

~[A0,A1,A2] 

The vector space of skew-symmetric forms is 

c-~[A0,A1,A 2 ] 

The group G/F = I = icosahedral group operates on these spaces by the 



Hi -23  310 

Klein representatio n of I of degree 3 in terms of the coordinates 

A0,A1,A 2 of {3. 

We now consider the full Hilbert modular group G = SL2(0)/{ ± 1} for 

~(~/[) and obtain in view of (14) and (15). 

THEOREM. The ring of modular forms for the group G is isomorphic to 

{[A,B,c,D]/(144D2=-1728B5+720Ac2B3-80A2c4B 

+ 64A3(SB2-Ac2)2+c 6) 

The ring of symmetric modular forms f°F G is isomorphic to 

(16) ~[A,B,C,D]/(R(A,B,C,D) = 0) 

For the preceding theorems compare the papers of Gund!ach [3~ and 

Resnikoff [16] and also [8] where results on ~(~) where derived 

using the principal congruence subgroup of SL2(0) for the prime ideal 

(2). In [8] the relation R(A,B,C,D) = 0 was obtained in a different 

form connected to the discriminant of a polynomial of degree 5. The 

modular form D occurs in Grundlach's paper [3] as a product of 15 

modular forms for F of weight 1 each cuspidal at 2 cusps and vanishing 

along the "line" between these 2 cusps. The zero divisors of the six 

Eisenstein series for F of weight 2 correspond to the six conics 

passing through 5 of the six poles. (Each Eisenstein series is cuspid- 

al in five cusps.) In H2/G the curve C = 0 becomses F 1 (given by 

z I = z2). The restriction of B to F 1 gives a cusp form of weight 12 

on H/SL2(Z) , therefore must be ~ (up to a factor). The curves B = 0, 

C = 0 intersect only in the six poles of the action of I, in agreement 

with the fact that A does not vanish on H. 

Remark. I. Naruki has given a geometric interpretation of the curve 
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B = 0. Let S(5) be the elliptic modular surface in the sense of 

T. Shioda associated to the principal congruence subgroup F(5) of 

SL2(Z). Choose a "zero section" o of S(5), then each regular fibre 

of S(5) becomes a group (1-dimo complex torus). The binary icosahe- 

dral group I' = SL2(~ 5) is the group of automorphisms of S(5) which 

carry o to itself. The element -1 e I' acts as the involution which 

is x ~ -x on each regular fibre. Dividing S(5) by this involution and 

blowing down 24 exceptional curves which come from the 12 singular 

fibres of S(5) gives PI({) x pl({ ) on which I : I'/{ ± 1} operates. 

Dividing PI(~) x pl({) by the natural involution interchanging compo- 

nents yields P2({) on which I acts by the Klein representation. Under 

th,is procedure B = 0 is the image of the curve in S(5) containing all 

the points of the regular fibres of S(5) which have precisely the order 

4. A paper of Naruki (Qber die Kleinsche Ikosaeder-Kurve sechsten 

grades) will appear in Mathematische Annalen° 

§4. THE FIELD K = ~(V~). 

In this field the ring 0 of integers consists of all linear combi- 

nations a + b~ with a~b e %. The fundamental unit is s0 = 1 + ~/~. 

We consider the principal subgroup ~(2) of SL2(0) for the ideal (2). 

The group ~(2)/{ ± 1} is a subgroup F(2) of the Hilbert modular group 

G = SL2(0)/{ ± 1}. The group G/F(2) is an extension of the symmetric 

group S 4 by a group of order 2 (which is the center of G/F(2)). The 

non-trivial element in the center is represented by the matrix 

0; 1 0 : DSO 
c O 

of SL2(0). Let F be the subgroup of G obtained by extending F(2) by 
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De0. Then G/F - ~ S 4. The group F acts freely on H 2. We shall inves- 

tigate F similarly as we treated the congruence subgroup with respect 

to (~/~) in §3. Often details will be omitted an proofs only skecthed. 

The Hilbert modular surface H2/F(2) has six cusps, each resolved by a 

cycle of type ((4,2,4,2)). The non-singular surface thus obtained will 

be called Y2" The curve F 1 in H2/G is given by z I : z2, the curve F 2 

by Iz 2 l'z I = 0 with I = ~/~'~0" The inverse images of F 1 and F 2 in 

Y2 are also denoted by F 1 and F 2 respectively. F 1 has 8 and F 2 has 6 

components in Y2' The curves F 1 and F 2 in Y2 pass through each of the 

six resolved cusps as follows 

(17) F2 

F2 

-2 

F I 

-4 

-4 

F 
I 

-2 

F 2 

F 2 

The 14 components of F 1 u F 2 are disjoint, non-singular rational curves. 

Each component of F 1 has selfintersection number -1, hence is an 
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exceptional curve. Each component of F 2 has selfintersection number -2. 

Because 2~K(-1) = ~, the Euler number of H2/F(2) is 48/6 = 8, and we 

have (as in §3 (8)) 

e(y 2) : 8 + 6.4 = 32 

In fact, Y2 is a K3-surface with 8 points bl0w ~ uR" This can be shown 

by the methods of [9], see [2]. The involution on Y2 given by D e 
0 

will be denoted by 6. It operates freely on Y2" The non-singular 

model Y for H2/N (obtained by resolving the six cusps) equals Y2/6. 

Therefore, Y has Euler number 16, it is an E nriques surface with 4 

points blown up. (An Enrique surface can be defined as a surface with 

fundamental group of order 2 whose universal covering is a K3-surface.) 

Each cusp of H2/F is resolved by a cycle of type ((4,2)) (type ((4,2,4,2)) 

divided by 6). The inverse image of F 1 and F 2 in Y are also called 

F1,F 2. They have 4 or 3 components respectively, the four components 

of F 1 being exceptional curves. The curves F 1 and F 2 in Y pass through 

each of the six resolved cusps as follows 

(18) 

F I F I 

F2 

The involution T : (Zl,Z 2) ~ (z2,z 1) on H 2 induces an involution T on 

Y, because A e F ~ A' • F. It commutes with the action of every ele- 

ment of G/F ~ S 4 on Y, because A,A' are equivalent mod 2. The fixed 

point set of T on Y is F 1 u F 2. We have e(F 1) = 8 and e(F 2) = 6. 



Hi-27 314 

Therefore 

e(Y/T) = (e(Y) + e(F~) + e(F2)) = 7(16+8+6) = 15 

We now look at example b) of §1 and see that, from each cusp, Y/T has 

2 curves to blow down successively. We blow down these 12 curves and 

obtain a surface Y0 with e(Y 0) = 3. If A is a component of F 1 on Y0 

and B a component of F 2 on Y0~ then a simple calculation shows 

Cl(A) = 3 and Cl(B) = 6 where c I is the first Chern class of Y0" There- 

fore Y0 is rational and is in fact the projective plane P2({), on which 

F 1 becomes a union of 4 lines intersecting in 6 points arld F 2 a union of 

3 conics with a contact point in each of the six points (compare 

example b) in ~1). The group G/F ~ S 4 operates on Y0 : P2(C) with 

F 1 u F 2 as an invariant curve of degree 10. The isomorphism G/F ~ S 4 

is established by the permutation of the four components of F 1. There 

is up to projective equivalence only one projective representation of 

S 4 permuting four lines in general position. It can be lifted in 2 

ways to a linear representation : 

Embed {3 in £4 by 

(19) x I + x 2 + x 3 + x 4 = 0 

Take the permutations of xl,x2,x3,x 4 (representation Pl of S 4) or 

the permutations followed by multiplication with their signs (represen- 

tation Pl of $4). 

Consider the projective plane with homogeneous coordinates Xl,X2,X3,X 4 

subject to (19). Then 

F 1 is given by Xl.X2.X3.X 4 = 0, 

because this is the only invariant curve of degree 4 which has 4 lines 

as components. The six cusps of H/F correspond to the six intersection 

points (0,0,1,-1) (and permutations) of the 4 lines. Furthermore, 
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F 2 is given by (XlX2+X3X4)(XlX3+X2X4)(XlX4+X2X3) = 0 

because this is the only invariant curve of degree 6 passing through 

(0,0,1,-1) with 3 irreducible conics as components. Let o k be the k th 

elementary symmetric function of Xl,X2,X3,X 4 (~1=0). The polynomial 

(20) C = XlX2X3X4(XlX2+X3X4)(XlX3+X2X4)(XlX4+X2X3 ) 

2 
= a4(a3-4a2a 4) 

of degree 10 describes the branch locus F 1 u F 2. 

THEOREM. Let F b_e the extended principal congruence sub~oup of 

G : SL2(0)/{ ± 1} for the ideal (2) in the ring 0 of intesers of the 

field ~(~/~). Then H2/F is isomorphic to the double cove F W of P2({) 

along the curve C = 0 of degree 10. This curve has exactly 6 singular 

points which give si:ngular points of W corresponding to the s~x cusps 

of H2/F. Desinsularizing W in the canonical way gives a surface Y 

which is an Enriques surface with 4 points blown up. (~he exceptiona~ 

points in Y come from the 4 linear components of C = 0.) 

To gain information for the modular forms relative to F, one has to 

deal with difficulties arising from the fact that F has a non-trivial 

character £ ~ {1,-1}. If one compares with the result of Gundlach [4] 

where these "sign questions" were treated, one can prove as in §3 that 

the ring of modular forms for the group F is isormorphic to 

(21) ~[Xl,X2,X3,Xq,C]/(al=O,c2=C) 

This checks with the dimension formula (§2 (4)), because as in §3 we 

have e(H2/F) = 4 and X = 1 (since Y is an Enriques surface). Compar- 

ing with Gundlach [4] shows in addition that G/F ~ S 4 operates on the 

ring (21) by the representation p2 o The ring of invariant polynomials 
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2 
for this representation is generated by ~2,~4,o3,~3A where A = H (xi-x j) 

i<j 
2,o3A) = 0 for these is the discriminant. We have a relation R(o2,~4,o 3 

generators, namely 

(22) R(o2,o4,o~,o3A) : 2 7 ( ~ 3 A ) 2  + 

[-4(~+12o4)3 + (270~+2~$-72o2o4)21023 

which can be taken from the formula for the discriminant of a polynomial 

of degree 4. It follows 

THEOREM. The ring of symmetric modular forms for the Hilbert modular 

group G = SL2(0)/{ ± 1} of the field ~(~/7) is isomorphic to 

2 2 
~[02,04,03,o3&]/(R(o2,o4,o3,o3A) : 0). 

This agrees with Gundlach [4], Satz 1. But there the relation was not 

determined. The ring of modular forms for G is obtained attaching 

the skew-symmetric form c of weight 5 satisfying 

2 2 
c : C = ~4(o3-4~2o4) 

The modular forms G,H,H,0 (belonging to various characters of SL2(0)/{± 1}) 

which Gundlach [4] mentions in his Theorem 1 find the following de- 

scription in our set up (up to a factor). We also give the zero divi- 

sors. 

G : fX 

= 03 

H = x/723- 4~2~ 4 

e : ~foo 4 

(six lines) 

(three lines) 

(part of the branching locus; three 
conics) 
(part of the branching locus; four 
lines) 
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The theory we have developed for ~(~/~) involves the symmetry group S 4 

of a cube. Similar considerations for Q(~/3) are possible, but more 

complicated. Here the group A 4 (symmetry group of a tetrahedron) enters. 

Gundlach [4] has also investigated ~(~), but the translation into our 

geometric method must be done at some other occasion. 

§5. ON THE FIELDS ~(VT) AND ~(~/i-3). 

In Q(w~) there is no unit of negative norm. Therefore, we consider 

the extended group GL~(O) of all matrices (~ ~] with ~,B,y,6 @ 0 and 

determinant a totally positive unit. For the prime ideal (~/7) let 

F+(v~) consist of all matrices of GL~(0) which are congruent to 

01 with ± (~ ~] rood (~/~). Let D be the group of diagonal matrices (~ c 

s a unit. Since the fundamental unit ~0 equals 8 + 3~/7, this diagonal 

group is contained in F+(~). The groups GL~(0)/D and F+(~]7)/D operate 

effectively on H 2. We denote them by G + and F respectively. G + is the 

extended Hilbert modular group with [G + : G] = 2 where G = SL2(0)/{ ± 1}. 

We have 

G+/F ~ PSL2(~ 7) -- G168 

This is the famous simple group of order 168. The group F operates 

freely on H 2. The surface H2/F is compactified by 24 points (cusps). 

Each cusp is resolved as in 51 (example c)). This gives a non-singular 

2 
surface Y. Because ~Q(~)(-1) = 7' we have 

2 
e(Y) = T.168 + 5.24 = 232 

We consider the curves F1,F2,F 4 in H2/G +. They are given by z I = z 2, 

(3+~)z 2 - (3-~/T)z I = 0 and z I - z 2 = ~/7 respectively. Their inverse 

images in Y will also be denoted by F1,F2,F4. These are non-s~ngular 

disjoint curves in Y. They pass through each of the 24 cusps as 
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follows 

(23) 

-2 

-2 

-2 

J 

The Euler numbers of F1,F4,F2in Y are given by 

1 
e(F 1) : -~.168 + 24 : -,4 

1 
e(F 4) : -~.168 + 24 : -18 

1 
e ( F  2)  = - ~ , 1 6 8  + 24 = - 1 . 8 ,  

because 1 1 1 are the normalized Euler volumes of the curves 
6' 4' 4 

F1,F4,F 2 in H2/G +. 

The involution (Zl,Z 2) ~ (z2,z 1) of H 2 induces an involution T of Y 

commuting with each element of G+/F m G168. The fixed point set of 

in Y is F~ u F 4 u F 2. Therefore, 

( 2 4 )  e(Y/z) = ~(232-4-18-18) = 96. 

The example c) in §1 shows that each cusp gives rise to three curves 

which can be blown down successively. We obtain a surface Y0 with 

e(Y 0) = 96 - 3.24 : 24 

The group G168 actson Y0" One can proof that Y0 is rational. There is 

a famous action of G188 on P2(C), see [18], §88~ §133-140. This action 

has an orbit consisting of 21 points. Up to an equivariant isomorphism 
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Y0 is obtained from P2(~) by blowing up these 21 points. The curves 

F1,F4,F 2 become invariant curves of degrees 4,18,12. 

This result has to be proved in some other paper. It should be used 

to investigate the structure of the ring of Hilbert modular forms rela- 

tive to F and G +. 

Our last example concerns the field ~(~1-3). It is due to van der Geer 

[2] who has proved many interesting results on the Hilbert modular sur- 

faces of principal congruence subgroups. Let 0 be the ring of integers 

in ~(v~). Let ~ be the congruence subgroup of SL2(0) for the prime 

ideal 2 of 0. Then F : ~ /{ ± 1} is a normal subgroup of G = SL2(0)/{ ± 1}. 

The quotient group is SL2(F 4) ~ A 5. We consider the Hilbert modular 

surface H2/F. It has 5 cusps. Each is resolved as in 31, example d). 

Let Y be the non-singular surface obtained in this way. Since 

i 2~ (-i) :- 
( V - f T )  3 , 

we have 

1 
e(Y) : 5.60 + 5.9 : 65. 

image in Y of the curve F 1 on H2/G has 10 disjoint com- The inverse 

ponents which are non-singular rational curves of selfintersection 

number -1. (Proof as in [8]). The inverse image will also be denoted 

by F 1. It passes through each of the five cusps as follows 

- 2  - 2  

(25) -5 -5 

F I F  I 
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Each component of F 1 goes through 3 of the 5 cusps and is determined 

by these three cusps. We blow down the ten components of F 1 and obtain 

1 
a surface Y1 of Euler number 55. It has arithmetic genus 5 =~ e(H2/F), 

see [7]. Therefore pg = 4. The surface Y1 is a minimal surface of 

general type. The space of sections of the canonical bundle K of Y1 

is isomorphic to the space of cusp forms S2(F). The cusp forms define 

a "map" 

~K : Y1 ~ P3 (~)" 

The action of G/r ~ A 5 on S2(F) is the standard action on ~4 represent- 

ed in ~5 by 

x I + x 2 + x 3 + x 4 + x 5 = 0 

It turns out that ~K is holomorphic of degree 1 and %K(Y1) is given in 

P4(~) by 

( 2 6 )  a I : O~ a 2 a  3 2 a  5 : O, 

where a k is the k th elementary symmetric function of Xl,...,x 5. The 

surface (26) has 15 double points which are images under %K of the 15 

configurations ~ ~ ~ _ I ~  on Y~ (see (25)). Otherwise ~K is 

bijective. Because (26) gives a relation between the cusp forms of 

weight 2, it can be used to gain more information on the ring of modu- 

lar forms for F (see [2]). 

The ideal (2) does not divide the discriminant of ~(~3). Therefore, 

we do not have an involution T on Y commuting with G/F. 

Remarks. 

1) The surface Y1 is diffeomorphic to the general quintic hypersurface 

in P3({). 

2) Consider a subgroup of A 5 of order 5. It operates freely on YI" 

The quotient is a minimal surface of general type with arithmetic 

2 
genus 1, Euler number 11 and Chern number c I : 1. We recall that 
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Godeaux has studied free actions of groups of order 5 on quintic 

surfaces and considered the corresponding quotients (L. Godeaux, 

Les surfaces alg6briques non rationelles de genres arithm6tique et 

g6ometrique nuls, Paris 1934). 
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