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A RIEMANN-ROCH THEOREM FOR DIFFERENTIABLE MANIFOLDS

by Friedrich HIRZEBRUCH

Séminaire BOURBAKI
(Février 1959)

We shall show that the Riemann-Roch-Grothendieck theorem [2] has analogies in the
differentiable case. The theorems are formulated in 3.4, 3.5, 3.7 . In 3.3 their
motivation by the RR-Grothendieck theorem is explained. Further generalizations
of these differentiable RR-theorems are possible (ATIYAH) but we shall not go
into that. Paragraph 4 brings examples how one can apply the differentiable
RR-theorems. In paragraph 5 we indicate the proofs which rely heavily on the Bott
theory [42 , [8] . .

The results reported upon in this exposé are mainly due to ATIYAH and can be
found in his correspondence with the speaker who had conjectured theorem 3.4
and has contributed a little bit to the proof of the differentiable RR-theorems
and to their applications.

1. The groups K(X) and KD (X ) ,
The base spaces X , Y of vector bundles are assumed to be finite dimensional

CW-complexes except otherwise mentioned. This assumption, much too strong for
many of the following definitions and results, is made for convenience.

1.1. - Let F(X) be the free abelian group generated by the set of all isomor-

phy classes of complex vector bundles over X . (It is not assumed that a complex
vector bundle has the same fibre dimension over different connectedness components
of X). An element x of F(X) is thus a formal finite linear combination

x = ni E Z ~ J i complex vector bundles over X .

be an exact sequence of complex vector bundles, (i.e. y is the Whitney sum
J I 0153 :r "). To (E) we attach the element Q(E) = ~ .. y - t~ of F(X) .



DEFINITION. - K(X) is the quotient group of F(X) modulo the subgroup genera-
ted by the elements Q(E) where E runs through all exact sequences with three

terms. In the same way, starting with real vector bundles, one defines the group
(where 0 stands for "orthogonal").

This definition is analogous to that of [2 ], paragraph 4. The group operation
in K(X) and K0(X) respectively is called ’’Whitney sum".

1.2. - A complex vector bundle is called trivial if it is the product bundle over

each connectedness component of X . Two conplex vector bundles ~3
(over X) are called I-equivalent if there exist trivial complex vector bundles

~1 ~ ?2 such that ~~ ~+ ~1 and ~z © ~ z are equivalent. To each complex
vector bundle ~( there exists a complex vector bundle f3 such that is trivial.

This follows from the consideration of the universal bundle over the Grassmannian.

Thus the I-equivalence classes constitute an abelian group K’(X) whose group

operation is induced by the Whitney sum. We have the canonical split exact sequence

where j is the isomorphism of Z) onto the subgroup of K(X) generated

by the trivial bundles. If one attaches to each vector bundle 03BE the element

rk ( J) of H° (X , Z) which as a continuous map X Z attaches to each

p E X the dimension of the fibre of ) over p, one gets the "rank-homomorphism"
rk : K(X) ~ Ho (X , Z) with rk o j = Id .

The tensor product of vector bundles induces a product in .K(X) , but not in

K~(X) ~ which is also called tensor product. K(X) is a ring with respect to

Whitney sum and tensor product.

1.3. - The discussions of 1.2 can also be made for real vector bundles. Wa have

the ring and a canonical ring homomorphism ~ K(X) , the complex

extension. If ’f is a continuous map Y -+ X , then we have ring homomorphisms
fx : K(X) ~ K(Y) and f* : K 0 (X) (Y) which are induced by the lifting

of bundles. 

1.4. - The (total) Chern class c ( ~ ) = 1 + cl ( ~ ) + oz ~ ~ ) + ... is well

defined for This follows from the Whitney multiplication theorem



for every exact sequence (E) , (see 1.1 ) . The Chern character 

is defined as follows

where the Chern class ci(03BE) ~H21(X, Z) is regarded formally as the i-th

elementary symmetric function in the a.. If c.(F)=0 for 0  i  n ,
then ch( ~ ) = + (-1 c~( T )/(n - 1) : + higher terms.

The Pontrjagin classes of an element 03B1 ~ K0(X) are well defined [5.] , para-
graphs 4.5, ch (03B1) is defined as the Chern character of the complex extension

of oc .

1.5. - The theorem of Peterson C 8~ ~ theorem 3 is a consequence of Bott’s
theory. It can be formulated as follows.

THEOREM. - If the torsion coefficients of H_q(X ~ Z) ~ q = 1 ~ 2 ,’..., are
0 or prime to (q - 1 ): , then ch ; K(X) ~ H* (X , Q) is a monomorphism.

Thus, under the above assumptions, K(X) and the subring ch(K(X)) of

H*(X ~ Q) are isomorphic.

1.6 . - For the sphere S n we have = = Z ) . This

follows from Bott’s theorem ([4] and [8] theorem 2 ) that the Chern class c
of a complex vector bundle over S2n is divisible by (n - 1)I and that there
exists a complex vector bundle over ~n with cn equal to (n - 1) 1 times

a generator of see paragraph 26.5 . For a sphere

S~ we have

whereas for the sphere S with m = 8k + 4 we have

lemma on p. 07).



1.7. - Let B~ denote as usual the classifying space of the infinite unitary

group. B,j is the limit of the classifying spaces The "universal" Whitney

sum BU r x BU s induces an H-space structure on HU . Let

o’ 6 BU be a base point. In the following all sets of homotopy classes are taken

with base points. If X is a space, we let X+ be the disjoint union of X with

a point e which plays in X~ the role of a base point. The group ’~’(X+ ~ B )
is canonically isomorphic with K’(X) ~ (see 1.2). 

’*~

Let K be BU x Z with base point o’ x 0 . It is an H-speoe. It follows from

1.2 that K(X) and ~"(X+ ? K) are canonically isomorphic. For an arbitrary space

X we define K(X) to be K) . Chern classes and Chern character for an

element of K(X) are well-defined. For j6 K(X) we have ch( ) EH~*(X , ~) ~
Here H** denotes the direct product of the K(X) can also be made into

a ring.

If Y is a subspace of X ~ we can consider the space X/Y obtained by collap-

sing Y to a point which is then taken as base point of X/Y . We define

For J EK(X , Y) the Chern character ch(~ ) is an element of H**(X , Y;~) .
If the pair (X ~ Y) satisfies the homotopy extension condition, then we have

the exact sequence 

’

The suspension SA of a space A with base point a is the double cone over A

with the generator through a shrunk to a point which is then taken in SA as

base point. The m-fold suspension is the cartesian product X x S
with X x ~b~ shrunk to a point for some the point corresponding to

X x ~ b~ being the base point. We have the split exact sequence

(For (3 ) ~ (4) compare D. This author shows how (3 ) can be imbedded

in an exact sequence unlimited to the left).



Corresponding definitions are possible for real vector bundles. Me define the

H-space KQ = Bo x Z ~ etc. We have the exact sequences
~~ ~~ 

-

1.8. - Let 03C01 ; 03C02 be the projections S_ on its two factors

TT direct summand of K(X x S ) . even. m == 2n ’>’0 . Let

? the element whose Chern character is the canonical generator g

of (see 1.6). It is clear that 03C0*1 K(X) is in the

kernel of the homomorphism j of the exact sequence (4).

THEOREM. - c-~- o( is an additive isomorphism of K(X) and the

kernel of j .

COROLLARY. - K(X = K(X) ~K(~) . Each eiement j of K(X 
can be written uniquely in the form

Sach element x x n)) can be written in the form

We give in the following section an analogous theorem for real vector bundles.
The proofs of the two theorems 1.8 , 1.9 , will be sketched in paragraph 2.

1.9. - We consider (6 ) with m = 8k . Let g be the canonical generator of

PROPOSITION. - There exists an additive isomorphism of K~(X) and the kernel of

 S8k) ~ K0(X) if X is a product of spheres or the suspension of a

space.



THEOREM. - Each element x 6 ch(K..(X x Sg.)) , X arbitrary~ can be written
-

2 . Tbe,££§£ isomorphisms.

2 ,I . - Bott defines in [ 4 ] a map f of G = U(2m)/U(m) x U(m) into

Cl S U (2m ) as follows. Let s (t)be the diagonal matrix with first n entries
-- m .

exp(2 it) and last m entries exp(- 2 fi I%) . For u e U(2m) let gm(u) be %he

loop in S U(2m) with

f is induced by In the limit fm gives rise to a map BU U and

since 03A9U .= 03A9S1 x we get a map

One can check that F preserves the H-space structures of K (Whitney sum)
-

and of © U (loops). F is, according to one of Bott’s main results, a (weak)
-

homotopy equivalence. Since ue have a canonical (weak) homotopy equivalence

U - mBv , we get a (weak) homotopy equivalence"~~ 
-

This is the Bott periodicity (period 2) for the unitary group.

For any space X we have by ( 1 ) a homomorphism ’IT (X* K) ~ 03C0(X+, 03A92 K)

and the isomorphism K ) (X+), K ) . For any finite dimensional

CW-complex X the composition

is an isomorphism. We wish to show that this Bott isomorphism is of the form

given in the theorem of 1.8.



From (I ) ve get a map S2 (K+) - K and a homomorphism
- -

(3 ) H** (K , Q ) -’H** (S~ (K~ ) , Q ) l ’H : cohomology classe s with augmentation 0 ) .
~a~ - - -

There is a canonical isomorphism of ’H**(S2 (K+) , Q) and H**(K , Q) lowering
+a - -

degrees by 2 . (3 ) followed by this isomorphism gives a homomorphism

It was shown in BOTT [4] - modulo certain precautions concerning the 0-dim

classes which we have to take in account here, that (4) is a derivation of

polynomials. which leaves the universal Chern character unchanged. This proves
theorem 1.8 at least if one goes over to Chern characters. But since the complex
Grassmannians are universal base spaces and are free of .torsion, 1.8 follows

now from 1.5 (We have proved 1.8 only for n = 1 .It follows for arbitrary n

by a simple induction argument).

2.2. - The Bott periodicity (period 8) of the orthogonal group means that there
exists a (weak) homotopy equivalence

This proves the proposition 1.9. Quite likely (5) respects the H-space structures

(Whitney sum-loops). If so, the assumption on X in Proposition 1.9 could be

avoided. Bott does not prove the periodicity (5) with the methods of [4] . Instead
he uses for (5) his f-sequences of symmetric spaces (~ 8~ ~ and [3] detailed
version to appear later). Bott constructs a  -sequence M with M = M’

(i = 0 , 1 , ...) for which Mo = and 0(3zn)/0(16n)xo (16n) .
By a detailed investigation of this y-sequence it will probably be possible to
describe explicitly the isomorphism of proposition 1.9 and. to avoid the assumption
on X in this proposition. This was not done so far. It is however possible to

give for the theorem 1.9 a more indirect proof starting from the diagram of
Bott homomorphisms



Since the groups involved are all Z , and the horizontal arrows are isomorphisms,
while the vertical ones are either isomorphisms (n even) or multiplication
by - 2 (n odd) it follows that this diagram is commutative u to sign. Theorem 1.9
can be deduced from 1.8 and proposition 1.9. One uses that the rational Pontrjagin
ring of BO (the H-space structure being given by the Whitney sum) is generated

by the spherical cycles and that theorem 1.9 is true if X is a product of

spheres. For the last fact the diagram has to be applied (This mothod gave theorem
1.9 for k = 1 . It follows for arbitrary k by a simple induction argument).

3. The Riemann-Roch theorems.

3.1. - Let ... , be the multiplicative sequence of polynomials
(~ 5 ~ ~ paragraph 1) belonging to the power series

n

The the (total) U-class ([1], paragraph 23.1 ) of a real vector bundle 03BE (with
base B ) is

where H (H ~ . ~ ~) is the i-th Pontrjagin class. ~l(X) ~ for a diffe-
rentiable manifold X ~ is the ~,1~-class of its tangential bundle.

3.2. - Let Y be a differentiable manifold whose integral Stiefel-Whitney class

W 3 vanishes. Then there exists an element d E whose restriction

mod 2 is the Stiefel-Vhitney class w2 of Y . We have the subring oh(K(Y) ) of

H*(Y , Q) . Multiplication with the element 03B8d/2.03A9(Y), which is inversible
with respect to the cup-product, induces an additive isomorphism of K(Y) onto a

subgroup R(Y) of H*(Y , Q) .

The group R(Y) does not depend on the choice of d . Namely, if d and

Z) have w2 as restriction mod 2 , then d - d’ = 2y with

y ~ Z) . The assertion follows since e . oh (K (Y) ) = ch (K (Y ) ) , The additive
group R(Y)H*(Y , Q) is called the Riemann-Roch group of Y. It. is defined
for arbitrary differentiable manifolds with W3 = 0 . It is isomorphic to oh(K(Y)).



3.3. - The preceding definition is motivated by the RR-theorems of [5] and
[2] . If Y is compact and carries the structure of a projective algebraic

manifold, then we can choose for d in (2) the Chern class c~ of Y . If ? is
a holomorphic complex vector bundle over Y ~ then the element ch(’~ ).e 1 . &#x26;tt(Y)
of H*(Y , Q) plays the following role in the RR-theorem [5] . Its value on
the ori6nted fundamental cycle of Y is the Euler number of Y with respect
to the cohomology with coefficients in the sheaf of holomorphic sections 

(When taking the value on the fundamental cycle all components of dimension less
than the topologioal dimension of Y give 0).

GROTHENDIECK [2] has proved a more general theorem which involves the Gysin
homomorphism f* . If Y and X are compact oriented manifolds and if
f : Y -X is a continuous map, then f is the linear map

obtained by the Poincare isomorphisms H*(Y ~ Q) = H * (Y ~ Q) and

H*(X , Q) ~ H (X , Q) from the homology homomorphism H*(Y, Q) ~ H*(X , Q)
induced by f . GROTHENDIECK shows for projective algebraic manifolds Y , X ,
a holomorphic map f : Y ~ X and a holomorphic complex vector bundle ~ over
Y that

More precisely, he finds an explicit element f~( n) l E K(X) ~ given by the
alternating sum of’the direct images of the sheaf of holomorphic sections 
such that

The RR-theorem of [5] is Grothendieck’s theorem for the map of Y onto a point.
The RR-theorem of [5] gave rise to the question whether for every compact orien-
ted differentiablo manifold Y (with W3(Y) = 0) the value of any element of
R(Y) on the fundamental cycle of Y is an integer. This question was answered
in affirmative (except the prime 2) in [1] , theorem 25.5. The prime 2 was also
settled (see [1] , Part III and ~6 ~)? using new results of MILNOR (compare
THOM’S talk in this seminar). These integrality theorems can be generalized in
a way which parallelizes the Grothendieck generalization of the RR-theorem of
[5] . Needless to say that these generalizations, which we call audaciously



RR-theorems for differentiable manifolds, do not contain the Grothendieck theorem
as a special case.

The old proofs of the integrality theorems and the new proofs of their Grothen-
dieck type generalizations are completely different. Bott’s theory was not used
in the old proofs.

In the remaining sections of this paragraph we shall forraulate the. differentiable-
RR-theorems. In paragraph 4 we will give applications and in paragraph 5 we
shall sketch the proof.

3.4. - THEOREM. - Let Y and X be compact oriented differentiable manifolds
whose integral 3-dimensional Stiefel-Whitney classes vanish. Assume that
dim dim X (mod 2) . Let f : Y -~ X be a continuous map. Then

Fixing elements Z) and Z) whose restrictions mod 2
~ 

are and respectively, (3) means that given E K(Y) , there
exists K(X) such that

This equation is equivalent with

which motivates the following generalization of the preoeding theorem.

3.5. - THEOREM. - Let Y and X be compact oriented differentiable manifolds

with dim Y i dim X (mod 2) . Let f : Y -~ X be a continuous map satisfying

Let d Z ) have w (Y ) - f* w (X ) as restriction mod 2 . Such a d

exists by (6) . Then for given ~ ~ K(Y) there exists 03BE ~K(X) such that



Let us call f above a c -map if a definite element c (f ) Z) whose

restriction mod 2 is wz (Y ) .- r*w2 (X) has been chosen. Let us further define

We have thus defined a linear map

Theorem 3.5 is then equivalent with

and (7) takes the form

Notice that f 
t 

is only defined for a f . The composition tog of

two Z --~ Y and f : Y --~ X (where Z ~ Y ~ X are dompact orien-
ted differentiable) is in a natural way a One chooses

we obtain the functorial property

Thus, if (10) is proved for the cljnaps g and f ~ it is proved also for
their composition. This fact is, of course, useful for the proof of theorem 3.5,
or equivalently of (10). Since every continuous map is homotopic with a



differentiable one, we need to give the proof only for a differentiable f .

REMARK. - It arises the question whether one can define for a 

f : Y --~ X ~ (dim Y ~ dim X (mod 2 ) ) , a homomorphism f~ : K(Y) -~ K (X )
(such that ? is functorial like 1 in (12)) which satisfies the "Riemann-Roch-
Grothendieck equation"

Since ch : K(X) ~ H*(X , Q ) is a monomorphism if X has no torsion (1.5) ,

f? is canonically defined if X has no torsion. ATIYAH has developped a

RRr-theory for almost-complex manifolds and almost-complex maps with a functorial

f? . He uses essentially the fact that the’ classifying space BU(n) has no

torsion, whereas in the proof of theorem 3.5 the classifying space 

will occur which has torsion.

3.6. - For.an 50(n)-bundle i the Stiefel-Whitney class wz( ~) vanishes if

and only if the structural group can be reduced to Spin(n) with respect to

the covering map Spin(n) ~ SO(n) . This fact motivates the following termino-

logy. f : Y ~ X is called a Spin-map if w2(Y) = f * w2(X) . The Spin-maps

may be identified with the 01 -maps f for which = 0 . For a Spin-map
we have theorem 3.5 with d = 0 . We have moreover the following result for

orthogonal bundles.

3.7. - THEOREM. - Let Y and X be compact oriented differentiable manifolds

with dim Y = dim X (mod 8) . Let f : Y --~ X be a Spin-map. Then for given

~ ~ K0 (Y) there such that

4. Applications.

4.1. - If one applies 3.4 or 3.5 to the case where Y is mapped onto X = point,
one gets the integrality theorems mentioned in 3 .3 . For example, we get the

integrality of the Todd genus of an almost-complex manifold and also the integrality



A

of the paragraph z3 ,1 of a compact oriented differentiable manifold

whose second Stiefel-Whitney class vanishes. This last fact means for a

4-dimensional manifold X with w~ (X ) = 0 that P1 (X) = 0 (mod 24) , whereas
ROHLIN has shown in this case that = 0 (mod 48). This factor 2 could not

be obtained by the old methods. But Rohlin’s theorem will follow from 3.7

(as special case of 4.2).

Let Y be a manifold with dim Y ~. 4 (mod 8) . It is assumed to be compact
oriented differentiable. Assume moreover that W~(Y) = 0 . Let f be the map

Y ~ S4 which sends Y onto a single point of S4 . Then f is a Spin-map

satisfying the assumptions of 3.7. Let 1 6 It follows that the value

of ch(~).03A9(Y) on the fundamental cycle of Y is an even integer. In fact,
this value which was denoted in [1 , paragraph 25.5] by A(Y ~ 0 ~ ~ ) equals the

value of ch~ ~’ ) on the fundamental cycle of 84 since = 1 . Here J
has the meaning of 3.7. Since Pi~)~~(~) =0 mod 2 and since ch ( f )
equals its 0-dim term plus p~ (’~ ) ~ we have that ch ( ~ ) is even. We

have proved the following theorem which was conjectured in [~l] ~ paragraph 25.6.

4.2. - THEOREM. - Let Y be a compact oriented differentiable manifold with

dim Y ~ 4 (mo d 8) and = 0 . Let j be an element o f Then

A (Y , 0 , 5 ) is an even integer ; in articular the A-genus of Y is an even

integer which for dim Y = 4 is Rohlin’s theorem : (Y) ~ 0 (mod 48).

The integrality of the A-genus (if 0) together with the sharpened
result of 4.2 on this genus implies by MILNOR-KERVAIRE ~ 8 ~ ~ ~ 9 ~ that, in the
stable range, the imago of J : 1T 4k-l (SO(n) ) ~ 03C0n+4k-1 (S ) is cyclic of

an order divisible by the denominator of the rational number Here Bk
is 1~4z ~ ,.. ) . We
shall give later a different proof of this result using homotopy invariance

properties of Pontrjagin classes.

4.3. - REMARK. - It is not astonishing that 4.2 contains Bott’s theorem (1.6)
that the Pontrjagin class P2 1 of an orthogonal bundle over S is divi-
sible by (4r + 1 ) :.z . If one maps S~ onto a point, 3.7 gives that the

Pontrjagin class P2k of an orthogonal bundle over is divisible by
(4k - I): . 

""



4.4. Homotopy invariance properties of Pontrjagin classes. - As always we
consider compact oriented differentiable manifolds. Let f : Y --~ X be a

homotopy equivalence and g : X -+ Y its homotopy inverse. We can use 3.7
for the map f and put ch( l) = 1 . This yields

Using 3.7 for the map g yields

Equations (1), (2) imply for manifolds with vanishing third Stiefek-Whitney class
that the Riemann-Roch subgroup of the rational cohomology group is a homotopy
type invariant, (see 3 .2 , 3.4).

To be more precise, let us denote by pi the image of Pi in the quotient of
modulo its torsion subgroup. Actually in all RR-theorems only the

pi are relevant. (1) , (2) contain information on the behaviour of the Pontrjagin
classes pi under homotopy equivalences. We give only an example :

4.5. - THEOREM. - The first Pontrjagin class pI of a compact orient6d di.fferen-
tiable manifold X is a homotopy type invariant mod 24. If H2(X , Z2) = 0
then it is a homotopy type invariant mod 48.

Proof : Under a homotopy equivalence g of X ~ we have according to (1) using
the notations of 4.4

which proves the first assertion. If = 0 , then Pl (3 ) = w ( = ~
mod 2 . This proves the second assertion.

REMARK. - 4.4 and 4.5 are also true for non-orientable manifolds because the

RR-theorems 3.5 ~ 3.7 are true (also if the manifolds are non-orientable) if

the map f : t Y -~- X is orientable (f* yl (X) = W (Y)) . But we do not consider
these generalizations of RR .



4.6. -We consider the stable groups and 

(q ~ 4k + 1) . Every element c of the first group may be identified with a

principal S0(q)-bundlo over S.. to which a sphere bundle (fibre S_ .) is~~ 

associated. Wo denote the total space of this sphere bundle by B(~C) . Let

-YT : B(c) ’~’S., be the projection. Tf is a monomorphism. It is easy to
~~t~

show that the total Pontrjagin class of the manifold B(c() is given by

Next we consider the homomorphism J : ~ 03C04k-1+q (S ) . let 03B1 be

an ..eleman.t of the first group and assume = 0 . Then B(03B1) and the product
S /T~ ~ ~ 1 = B(0) are of the same homotopy type. ([7] ~ who proves also that~s~4*c .

Jo = 0 implies the homotopy equivalence of B(o() and B(0)) .We shall now
apply (~-) ~ Let g be the homotopy equivalence B(0) 2014~B( observe

that S~B(0)) equals i and that

(Here we use the sxplicit formula for the coefficient of pk in the polynomial

compare ~ 5 ~ ~ paragraph 1). By (1 ) there exists an element such

that 

We multiply this equation with (2k - 1)1 and get by (4)

We restrict ~ to point ) x Sq-1 = B(0) . This gives a stable element
say 03B2 ~ 03C04k-1 (SO(q)) . It follows easily that the restriction of g 03C0*(03B1) to

point is ± o( . If B./4k is expressed in lowest terms as a quotient
of integers, (Bk/4k = then (6) yields

~.k-l~R~~ "~~ ~k ~~ is a homomorphism of two infinite cyclic

group which has kernel 0 , (in fact it is known (1.6) to be multipldcation by



(2k - 1)1 or (2k - 1)1.2 resp., depending whether k is even or odd). Thus
(7) implies that $( is divisible by K which is exactly the result of
MILNOR-KERVAIRE [8], [9] that the image of J in 

+ 
(S ) has an order

divisible by the denominator of Bk/4k. (This is actually a little improvement
of [9] ; compare 4.2 ) .

REMARK. - The second statement of theorsm 4.5 is best possible : Take in
the above discussions k = 1 and 03B1 to be 24 times a generator of 03C03(SO(q)) .
Then B(0) and B(c() are homotopy equivalent, but the first Pontrjagin class
is 0 resp. 48 times a generator of H4(B(0) , Z) resp. Z) . This
type of examples is due to THOM.

5. The proof of the RR-theorems.

5.1. - We are going to prove the RR-theorem 3.5 for a differentiable c1-map
f : Y -~- X , i.e. we have to prove (10) of 3.5.Imbed Y in X x Y by its

graph :

Let i be an imbedding of Y into a sphere of even dimension say 2n . Then

f x i is an imbedding j of Y in 

We can make j to a by letting c1 (j) equal c1 (f ) . If TT is the

projection of X on X ~ we have f = 1T1 o j . The projection. BB1
becomes a c1-map by putting = 0 . Then the c1-map f is the composi-
tion of the cl-maps j and Tfl. Thus we have to prove (10) of 3.5 only for the
case of an imbedding and for the projection Til .

5.2. - Riemann-Roch f or with cl (iT. ) = 0 . We wish to
prove (10) of 3.5 for this projection. Since ~( ~1 ) = 1 ~ we have only to
prove maps in ch(K(X)) . But this is an immediate
consequence of (7) in 1.8.

We remark here already.that theorem 3.7 follows in the case of the projection
X x !8k --~ X from the theorem in 1.9.



5.3. - We still have to prove (10) of 3.5 for the case where Y is a differon-

taible submanifold of X and f : Y ~ X is the injection. Let 03BD be the
~ ~ 20141

normal bundle of Y in X . Then = ~(~) ~ and c.(f) is an element

of H (Y . Z)’ whose restriction mod 2 is w~( ~)B Let A be a closed tubular
A~ ~ ’

neighborhood of Y whose boundary E is a sphere bundle over Y associated

Let

be the Gysin-Thom isomorphism ([11]). Assume that we have found E)
such that

Then (10) of 3.5 is proved for f . Namely let ,E. K(Y) . Since K(Y) and

K (A ) are canoniually isomorphic, we have an element Via tensor

product, K(A , E ) is a K an element of K (A ~ E) with

Chern character E H* (A ~ E ; Q ) . Standard rules (~ 11 ~ ~ theoreme
1.4) and (1) yield 

Since get by the canonical homomorphism

from ~.’ ~ ~ .an element Y of K(X) and (2) implies

which was to be proved. It remains to find an element 03B2 satisfying (1).

This is done by a universal contruction in the next section.

5.4. - A general reference for the terminology of this section is 

Let n be the covering map Spin(q + 2) ~-~. + 2) . Put

G (SO(2) x SO(q) ) . It is connected and a twofold covering of

S0(2) x SO(q) . We have



Let B be the classifying space for G . Then ve have a fibration
q q

which is associated to the universal principal G2q-bundle 03BE over Bz . Let
T be the standard maximal torus of S0(2) x S0 (2q ) and y , x1 , ... , x the

standard base of H (T , Z ) . Put T1 = T1’z q (T ) . It is a maximal torus of
G2q and covers T twofold. 03C02q|T’)* : Hl (T , Z ) ~ H1 (T1 , Z ) is a monomori-

phism. We regard H (T , Z) as subgroup of H (T’ , Z) . We hava

Let (~++ ~ resp. A~~ ~ be the right, resp. left, spinor representation
of Spin(2q + 2) . If one restricts these representations to . G2 they split into
*~+ q

irreducible components. Let A+ q be the component of the restricted A
which has highest weight (y + xl + ... + x )/2 , Correspondingly let 

~t~"

~ 2014 q
/B be the component of the restricted d *1 which has highest weight
(y + x1 + ... + xq-1 - x )/2 . The characters of K q and A- q (in the sense
of ~1~ ~ paragraph 10.2) can easily be computed. We obtain 

q

N N

The universal Gz -bundle. ~‘ can be extended by ,~,+ We get elements
. q 

’ 

q 9

Let A2q be the mapping cylinder of f (see (5)). Then we have the commutative
diagram of exact sequences



~ ~ - is in the kernel of ~* since by (6) the characters of the two

representations are equal when restricted to G~ ~ . Thus there exists a

~ 6 K(A~ , B~) with j( ~~) = ~ ~ - ~ ~ . This ~~ is not unique~

determined, however, by the diagram, ch(03B2) is uniquely determined. Under the

negative transgression H~(T’, Z) is mapped into Q) 3 corresponding
elements are denoted by the same symbol. As usual H (B~ ~ Q) is regarded as

of H**(B,p, ~ Q) . Over B we have principal
03B3q and a principal S. which is an 

Let c. bo its first Chem class. Let W2q bo the Euler class of 03B3q . Then

(6) goes over in 
~ 

We observe that (5) is also associated to yq and that W2 q is the Euler

class of (5) and get by standard rules

where : H**(B2q , Q) ~ H**(A2q , B2q- 1 ; Q) is the Thom-Gysin homomorphism

5.5. - In 5.3 (1) we looked for a certain 03B2~ K(A , E) . This can now be
found as follows. Let $ be a principal S0(2)-bundle with characteristic class

c1 (f) , i.e. c1(f ) is the first Chern class . of $ if % is considered as

U(l)-bundle. The Whitney sum 03B4 ~ 03BD has vanishing second Stiefel-Whitnsy class

and its structure group can therefore be lifted to (where 2q is the

oodimension of Y in X). If we induce this G2q-bundle from the universal one,
we get 03B2 from (i q of 5.4. The proof of the RR-theorem 3.5 is now completed.

5.6. - We still have to prove the RR-theorem 3.7. By the remark in 5.2 it

suffices to prove it for an imbedding f : Y 4 X ~ Y having in X a codimensim



divisible by 8 , say codim = 8k . By assumption the second Stiefel-Whitney class

of the normal bundle of Y vanishes. Its structure group can therefore be

lifted to Spin(8k) . One makes a universal construction similar to that in 5.4.

If x1 , ... , x4k is a standard base of H1(T , Z) , T standard maximal torus

of then we have for the spinor representations the formula
,

By a theorem of E. Cartan-Malcev (compare [l] ~ paragraph 26.5 end) , the two

spinor representations of Spin(8k) in U(24k-1) factor through 
~~M~. - 

Now the procedure is as in 5.4. Let 03BD4k denote hero the canonical S0(8k)-

bundle over ° Let be the mapping cylinder of

Using (9) wo arrive certain element 03B24k ~ K0(A4k , BSpin(8k-1)) whose
Chern character is under the Thom-Gysin homomorphism the image of

~( ~ ,.)" . This completes the proof cf the RR-theorem 3.7.
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