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In the book under review, Deligne and Mostow study a number of different

constructions of lattices in PU (1, n), n > 1, a lattice Y being by definition a

discrete subgroup of PU (1, n) with quotient PU (1, n)/Y of finite Haar mea-

sure. Of particular interest are the non-arithmetic lattices in PU (1, n), n > 1.

As pointed out on page 3 of § 1, the approaches used to date to construct pos-

sibly non-arithmetic lattices involve examples of Mostow [Ml] of certain sub-

groups of U(l, n) generated by complex reflections, monodromy groups of

Appell-Lauricella hypergeometric functions, and covering groups of orbifold

ball-quotients coming from line arrangements in the projective plane. The lat-

tices constructed by Mostow in [M1 ] were shown by him [M2] to be close to the

Appell-Lauricella lattices, which in turn are related to the complete quadrilateral

arrangement in the projective plane: the outcome being that many of the lattices

constructed so far are commensurable to the Appell-Lauricella ones. Moreover,

as shown in [BHH], with the construction of a larger class of examples in the

book under review, a number of lattices arising from line arrangements other

than the complete quadrilateral are commensurable to Appell-Lauricella mon-

odromy groups. In all, then, many of the constructions to date are linked to the

theory of hypergeometric functions of several variables.

To recall some of the history of hypergeometric functions, Euler [E] intro-

duced the series

(1) F = F(cF = F(a,b;c;x) = j:ia'(n){b;n)^,

where (a, n) = rfe^ and a, b, c are any complex numbers with c neither

0 nor a negative integer. He had introduced this series as a solution to the

differential equation

(2) x{i-x)^ + {c-{a + b+i)x)^.-aby = 0

and knew that when the real parts of a and c - a are positive, one has the

88
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integral representation

F(a,b-,c-,x) = Y{^_a)j\°-\l-uy-°-\l-ux)->du

du.= r/ If,c)—v r ub-c(u-\y-a-x(u-x)
Y(a)Y(c - a) Jx

By studying transformations which leave the integral representation unchanged,

Euler derived three transformation formulae, for example:

(4) F(a, b; c; x) = (I - x)-aF (a, c - b; c; —?-j J .

Gauss [Ga] dubbed the F (a, b; c; x) "hypergeometric series". This series has

an analytic continuation outside its circle of convergence | x |= 1 to the com-

plex plane minus the segment [1, oo) of the real axis; and this extended func-

tion, also denoted by F (a, b ; c ; x), is called the hypergeometric function of
Gauss. For Re (a), Re (c - a) > 0 the integral representation (3) still remains

valid [J] (and gives the analytic continuation of the series in (1)); and if neither

a nor c - a is a positive integer, one may replace the line integral by an integral

over a Pochhammer cycle around 0 and 1 [Pol, Po2]. In [K] Kummer gave the

complete table of the 24 solutions of (2) obtained by applying the three trans-

formation formulae of Euler to six series solutions. These six series solutions

are given by a certain choice of two solutions, valid for non-integral exponent

differences (that is, for non-integral c, c-a-b, a-b) in a neighbourhood of

each of 0, 1, oo and generating the solution space there. For example, if c is

not an integer, the solution space of (1) is generated in | x |< 1 by F and the

series
xl~cF(a+ l-c, b+l-c;2-c;x).

One can similarly recover Kummer's complete table in terms of the integral rep-

resentation of these six series given (up to constants) for g, h € {0, 1, oo, x}

by the integrals

(5) /   ub-c(u-\y-a-\u-x)-bdu

(Hermite [H], Pochhammer [Pol], Schläfli [S]), of which (3) is a special case.

Just as for F the 24 series of Kummer have a continuation for which their

integral representations remain valid. In their common domain of continuation,

on choosing a branch, between any three of the six integrals of (5) there exists
a linear relation with constant coefficients.

In 1857 Riemann [R] characterised the differential equation (2), which has

singularities only at the regular singular points 0, 1, oo, in terms of the branch-

ing data of its solutions at these points under the assumption that the exponent

differences were not integral (so eliminating logarithmic terms). This problem

of Riemann was also treated by Fuchs [F]. The cases where some of the expo-

nent differences are integral have been studied (see for example [AS, p. 563]).

For example, for c = 1, two independent solutions of (2) are given for | x |< 1
by the series

A (a, n)(b, n)
¿-       (n\)2 '
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( ̂  (a, n)(b, n)   „V    . ,    -^(a,n)(b,n) ,     ,     .   .
(E      („1)2     X") l0^) + E      (w!)2     c(fl.b. ")*"

for constants c(a, b, n) (given, for example, in [AS, p. 564]).

In order to determine for which values of a, b, c the hypergeometric func-

tion is an algebraic function of x (Schwarz's list), Schwarz [Sch] was led to

consider the monodromy group of (2): the required values of a, b, c are those

for which (2) has finite monodromy group. As the monodromy group leaves in-

variant the solution space of (2), this leads naturally to considering its represen-

tation in PGL (2, C). Schwarz also determined criteria for the developing map,

given by the ratio of two linearly independent solutions of (2), to be invertible

to a single-valued function. In this case the monodromy group has a fundamen-

tal domain and is discrete in PGL (2, C) : it is a triangle group generated by

even numbers of reflections in the sides of a spherical, euclidean, or hyperbolic

triangle. (In terms of the parameters a, b, c the angles of this triangle are

n\ l-c\,7i\c-a-b\,n\a-b\.) In the first case the monodromy group is a
finite subgroup of PGL(2, C), in the second case a subgroup of GL(1, C) ix C,

and in the third case a subgroup of PU(1, 1) acting on the 1 -ball or disc.

Schwarz proved that a triangle group whose defining triangle has angles of the

form n/p, ji/q, n/r for positive (possibly infinite) integers p, q, r always has

a discontinuous action. However, the converse may not hold: examples already

occur in Schwarz's list [CoWo2] in the spherical case. In 1926 Appell and

Kampé de Fériet published a book [AKdF] containing a lengthy study of hy-
pergeometric functions of several variables. To quote the introduction of their

book: "Dans la première partie nous exposons l'ensemble des résultats relatifs

aux fonctions hypergéométriques de plusieurs —et plus spécialement de deux—

variables." This book, which brings under one roof most of what was then

known about hypergeometric functions in several variables, was largely inspired

by an 1882 memoir of Appell [A] in which he defines four series in two variables

generalising the Gauss hypergeometric function. Each one of AppelFs double

series satisfies a system of two linear second-order partial differential equations.

The solution spaces of these systems of partial differential equations have di-

mension (or rank) 4 for three of the systems and 3 for the remaining one (see

[Y2, p. 62]). The extension of the results of Appell to the «-variable case was
done by Lauricella [L], whose results also appear in [AKdF]. Work of Goursat

[Go] and Picard [Pia, Plb] in the early 1880s complemented the work of Appell
and showed that the two-variable analogue of the classical Riemann problem

leads naturally to one of the above functions, namely, the Appell function

Fx = Fx(a, b, b';c;x,y)

^   (q,m + n)(b,m)(b', n)xmyn
/ / \ ■ ■   i \  JÍ     *^    1.11/     *v.   1   ,
^„ (c, m + n) m\ n\ '    '

m,n=0 v '

arising in the rank 3 case. In his 1893 thesis Le Vavasseur [LeV] made a very

explicit study of the integrals of the system of partial differential equations for

Fx and the relations between them. Moreover, Picard [Pia, Plb] characterised

the solutions of the Fx system as the multivalued functions of two variables

with exactly three linearly independent branches and with prescribed ramifica-

tion along the seven lines:   x, y = 0, 1, oo and x = y, of which Fx  is the
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only solution holomorphic and taking the value 1 at the point (x, y) = (0, 0).

Generalising Schwarz's work, Picard [Pia, Plb, P2a, P2b] also found crite-
ria for the monodromy group of the Fx system to be a discrete subgroup of

PGL (3, C). However, from the modern mathematical point of view, there

are inadequacies in Picard's treatment, and one of the contributions of Deligne

and Mostow's monumental 1986 papers [DM, M2] is to correct Picard's proof

using methods from algebraic geometry and to prove an analogous criterion for

arbitrary dimension. Terada had formulated and proved similar results using

function-theoretic techniques in important papers [Tel, Te2], but he did not

obtain all the Deligne-Mostow results and his techniques were not as powerful.

In a valuable and interesting book Yoshida [Y2] develops the theory of Fuchsian

differential equations, most especially that of the hypergeometric ones, empha-

sising the link with orbifolds which is central to the book under review. Using

the work of Hirzebruch and Höfer [BHH], Yoshida [Y2] employs differential
geometry to prove a version of the Deligne-Mostow [DM] results using the con-

nection between hypergeometric functions and the orbifold given by prescribing

ramifications on the complete quadrilateral line arrangement in P2.

The lattice criteria of Deligne and Mostow's 1986 papers are as follows. They

show [DM, Theorem 11.4, p. 66]: For an integer n > 1, let p = (px, ... , Pn+i)

be an (n + 3)-tuple of real numbers with 0 < ps < 1 for s = 1, ... , n.'+ 3

and such that ¿Z"=¡ & = 2 ; call this a ball (n + 3)-tuple. Then, if INT: for

all j ^ t such that ps + pt < 1 we have (1 - ps - pt)~l e Z; then Yß is

a lattice in PU (1, n). Here Yß is the monodromy group in PGL (n + 1, C)

of the Appell-Lauricella system of linear partial differential equations of rank

n + 1 whose solution space V(p) is generated by integrals of the form

Xi)-"' \u-^(u-l)-^du

where g, h e {0, 1, 00, xi, ... , xn}. The Appell function Fx is a constant

multiple of an integral of this form with n = 2 and is given for Re (a),

Re (c - a) > 0 by

Fx(a, b, b';c;x,y)

ub+b'-c(u- I)'-"-1 (u - x)~b(u - y)-b du.
T(c)

Y(a)Y(c

Notice that on setting y = 0, we recover the formula (3) for F. As pointed

out in [DM, §14.2 Case A, p. 82] it is easy to verify that, for n > 2, if p
satisfies INT, then ps + p., < 1 for all s ^ t. One can check directly from

the list of p satisfying INT when n = 2 [DM, p. 86] that for all of them
(I -Ps -ßt)~l £Z, s ^ t, also when ps + pt> 1 • This fact follows easily also

for n = 1 . Hence as it turns out, for n > 1 the condition INT is equivalent to:

for all s^t, (l-ps-pt)-] eZU{oo}. In [M2, §2, Theorem], Mostow deduced

the same result with INT replaced by the weaker I INT: there is a subset Si

of S — {1, ... , n + 3} such that for all s, t £ Sx we have ps = pt ; and for

all s, t e S, s t¿ t, such that ps + ¡u, < 1, we have (1 - ps - pt)~l e (\TL) if

s, t e Sx and (I -ps -p,)~l e Z otherwise. Mostow showed therefore that if p

satisfies I INT, then Yß is a lattice in PU( 1, n). It is easy to check that Z INT
is equivalent to the condition: for all s, t e S, s ^ t such that ps + pt < 1 we
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have (\-ps-pt)-1 6 (\1) if ps = Pt, and (i-ps-fif)rl e Z if ps ¿ p,. In
[M3, pp. 584-586] Mostow gives the list (calculated on computer by Thurston)

of all ball (n + 3)-tuples, n > 2, satisfying ZINT. Using this list, one can
check directly that for n > 2, if p satisfies ZINT, then (1 - ps - pt)~l e Z
for 5 ^ t with ps + pi > 1. This obviously fails for n = 1, and there are even

ball 4-tuples satisfying ZINT but with 0> (1-ft-//,)"1 ^Z and ps ^ pt
(see [M3, Theorem 3.8, p. 570, example D'^ q], p integer, q odd integer]). For

n > 2 the condition Z INT is therefore equivalent to (compare with [CoWo3,

p. 668]): for all s, t e S, s ¿ t, we have (1 - ps - Pt)~l € (jZ) U {oo} if

ps = pt, and (1 - ps - pt)~l eZU{oo} if ps ¿ p,.

In the case n = 1, Schwarz's discreteness condition for a triangle group

defined by a hyperbolic triangle with angles of the form n/p, n/q, n/r is

equivalent to the condition INT for the ball 4-tuples p = (px, p2, /13, /z4) and

p! = ( 1 - px, 1 - p2, 1 - p-i, 1-/^4) where

1 /       1      1      1\ 1 /,      1      1      1\

2\      p     q     r) 2\      p     q     r)

1 /       1      1      1\ 1 /       1      1      1\

In fact Yß and Yßl are conjugate in PU(1, 1) to the above triangle group.

See [DM, 14.3] and [M3, p. 570]. In [M3, Theorem 3.8, p. 570] Mostow gives
the list of all the ball 4-tuples p with Yß discrete in PU(1, 1) where p does
not satisfy INT. He obtains this list from his list [M3, Theorem 3.7, p. 569]
of hyperbolic triangles whose angles are not of the form n/p, n/q, n/r for

p, q, r e ZU{oo} but whose triangle groups are discrete in PU (1, 1). This

list is also to be found in [Kn, p. 297], although Knapp's list apparently has the

additional member 2^/7, n/1, n/3 that is p = (25/42, 31/42, 23/42, 5/42).
For the case n = 2, the apparently stronger condition for a ball 5-tuple that

for all s ^ t one has (I - ps - pt)~l e Zll {00} is Picard's original condition

that T^ be a lattice in PU (1,2). In [LeV] the list of Le Vavasseur contains all

the 27 ball 5-tuples (up to permutation) satisfying Picard's condition. (Picard

actually formulated his discreteness condition without the assumption that p

be a ball 5-tuple, and Le Vavasseur gave a complete list of this larger class

of p ; see [DM, p. 87-88].) From our previous remarks Picard's condition is
equivalent to the INT condition (see also [DM, §15, p. 87]). For n = 2, we

know from Mostow's list [M3, pp. 584-586] that there are 53 ball 5-tuples (up
to permutation) satisfying ZINT, of which 14 correspond to non-arithmetic

rv
In [M3] Mostow determined when the converse of the criterion of [M2] holds

and studied lattices of the family Yß violating Z INT, which occur only for

n < 3. For n = 3 there is only one exceptional Yß up to commensurability,
corresponding to

p = (1/12, 3/12, 5/12, 5/12, 5/12, 5/12).

For n = 2 there are nine 5-tuples p not satisfying ZINT with projective

monodromy group Yß which is discrete (and hence a lattice [M3, Proposition

5.3, p. 580]) in PU(1, 2). Five of these nine exceptions are arithmetic (as is
the exceptional p for n = 3 ): for example, the case

p = (l/l2, 3/12, 5/12, 5/12, 10/12).
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In [Sa, §3, Theorem 3.1; §4, Theorem 4.1] Sauter proved a conjecture of Mostow

[Sa, p. 348] to the effect that for n — 2 the nine exceptional Yß not satisfying

Z INT are commensurable to a Yv where v satisfies Z INT.

In the present book Deligne and Mostow pursue their study of lattices in

PU(1, n) and present the latest developments in a relatively accessible style,

dedicating a number of chapters to orbifolds arising from arrangements of

curves on algebraic surfaces in the spirit of [BHH]. They extract the best as-

pects of the previous techniques of algebraic and differential geometry men-

tioned above together with function theory, giving an overall coherent presen-

tation yielding new results, with an emphasis on identifying when two lattices

in PU (1, n) are commensurable. The commensurability results in the book all

consist of showing that the lattice of interest in PU (1, n) is commensurable

to a certain Yß,H for p a ball (n + 3)-tuple satisfying ZINT, where H is a

subgroup of the symmetric group Z(« + 3) on n + 3 letters leaving p invariant.

Indeed, let Q - {(xx, ... , x„) £ P" | x,■ ¿ x}■■, i' ^ j, x¡ ^ 0, 1, oo}. Then
the solutions of the Appell-Lauricella system of partial differential equations
define multivalued functions on Q. The group Yß>H is the projective mon-

odromy group of a local system of functions, induced by an //-invariant twist

of V(p), on Q'/H where (for n > 2 ) Q' is the open subset of Q where H

acts freely. Such a twist is obtained by multiplying the elements of V(p) by

the same multivalued function and corresponds to assuring the symmetry with

respect to H : compare with the effect of the transformation described in (4).

Indeed, as Euler had found in dimension 1, when one wishes to take account of

permutations of the parameters p¡, one is forced to consider twists of hyper-

geometric functions, which Deligne and Mostow call hypergeometric-like local

systems. Generally speaking, a local system on a connected analytic variety

X is made up of the constant coefficient linear combinations of the branches

of a multivalued holomorphic function on X whose branches at any point of

X span a finite-dimensional vector space. Sections 2 through 7 of the book

develop a theory of such hypergeometric-like local systems on Q, characteris-

ing them by studying their local properties on a partial compactification Q+ of

Q. In view of the fact that one often wishes to restore the symmetry between

the s e S = {1, ... , n + 3}, it is convenient to describe Q as the quotient

Jl//PGL(2, C) where PGL (2, C) acts diagonally on

M = {(Xi , ...  , Xn+3) € P?+3 | Xi # Xj , i ¿ j}.

Then M+ is defined as the space of (« + 3)-tuples (xx, ... , xn+3) with xs = xt

for at most two elements s, t of S, and Q+ is defined as the quotient Q+ =

M+/PGL (2, C). In §2 of the book various results about divisors on algebraic

varieties over C are explained for use in the remainder of the book. In §3 it is

shown that multivalued functions / = Y[i f°' with a, e C and f invertible

regular functions on Q are uniquely determined by their branching data along

DSJ, the image in Q+ of xs = xt, s ^ t, s, t e S. The determinations of the

multivalued function / are constant multiples of each other and hence span

a local system of rank 1. In §4 local systems of holomorphic functions and in

particular Appell-Lauricella hypergeometric functions on Q are treated, and in

§5 the relation between hypergeometric-like local systems and Gelfand's hyper-

geometric local systems on a Zariski open subset of the (n + 3) x 2 matrices
is described [G]. This leads to an efficient derivation of the Appell-Lauricella
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system of partial differential equations. A local system V on Q of dimension

n + 1 has exponents (aSJ, ßStt), s ^ t, along DSJ if in a neighbourhood of
Ds _, the local system F is a direct sum F = V @ V" with dim V = 1 and

dim V" = « and if, for z a local equation for Dst in a neighbourhood £/(/?)

of p G Di,(, the local systems z~A'F' and z~as-'V" extend across DSy, as

local systems of holomorphic functions (z~^s-'V')uip) and (z~as-'V")rj(P) on

U(p) (see §6.6). Hence there are holomorphic functions g¡, i = 0, ... , n,

defined in U(p) such that locally on U(p) - DSJ the functions eo = z^slgo

and e¡■ = zas-'g¡, i = 1, ... , n , form a basis of F. One always supposes that

(*s,t — ßs,t & Z. The notion of strict (non-degenerate) exponents of an (n + 1)-

dimensional, n — dim ß, local system of holomorphic functions on Q is de-

fined in §6. For (aSyt, ßSyt) to be strict exponents means that neither go nor

any non-trivial constant coefficient linear combination of the g¡, i — \, ... , n ,

vanishes everywhere on Dst. Finally, the result of §7, Theorem 7.1, p. 55 says

that any (étale) local system possessing strict exponents (ai;/, ßs,t) along DSyt

for all s, t G S, 5 ^ t, is necessarily hypergeometric-like: a twist by a rank

1 local system of V(p) for p = (ps)"=¡ where &,, - as>t = (1 -ps-Pt),

s, t e S, s ^ t. One can think of these exponent differences as arising via the

passage from projective to affine coordinates in the developing map, a higher-

dimensional analogue of the expression of the Schwarz triangle map as the quo-

tient of two solutions of (2). In particular, the results in the book generalise the

work of Riemann ( n = 1 ) referred to earlier. This treatment is related to but is

also different from Terada's proof [Tel] using function-theoretic methods of a

uniqueness theorem for the Appell-Lauricella functions, up to a multiplicative

constant, given the exponents. Terada also considers the case of integral ex-

ponent differences where logarithmic terms are introduced, as explained above

for n = 1. Terada's work is an important predecessor of Deligne-Mostow, and

the exact relation between the two approaches is described in §7.13. For some

of this brief overview of §§2-7 we have borrowed from §1, which provides a

succinct introduction to and summary of the book.

The book develops geometric proofs of the type of commensurability result

obtained by Sauter, which most importantly yield the commensurability result

of Mostow's conjecture for the non-arithmetic non- Z INT cases which are [M3,
5.5, p. 582]

(4/18, 5/18, 5/18, 11/18, 11/18),     (4/21, 8/21, 10/21, 10/21, 10/21),

(5/24, 10/24, 11/24, 11/24, 11/24),    (7/30, 13/30, 13/30, 13/30, 14/30).

In these geometric proofs one works with the stable compactification of Q : for

p a ball 5-tuple let Mß = {(xx,...,x5) G F¡ \ \Zx¡=x¡Pi < 1,

j = 1, ... ,5}. Then the stable (partial, in general) compactification of Q

is Qß = Mß/PGL (2, C), and it depends only on the set ¿T of 2-element
subsets {s, t} of S with ps + p¡ > 1. If p is invariant by a subgroup H of

Z(5), and if for ps + pt < 1 we have: (1 - ps - pt)~x G Z if the transposition

(st) g H, and 2(1 - ps - p,)~l g Z if (st) G H , then with YßyH as above

B2/Yß,H~Qß/H

as orbifolds, with Yß  of finite index in YßyH ■   When p  satisfies INT, we

can take H to consist of the identity.   For {s, t} g g~, along the image of
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xs = xt in Qß/H one has the ramification (1 - ps - Pt) ' if (st) £ H and

2(1 - ps - ßt)~l if (st) G H. Let ßi be the compactification corresponding to

g~ = <t>, let Q2 be the compactification corresponding to ^ = {{1,2}}, and

let ß3 be the same for gr = {{1, 2}, {1, 3}, {1, 4}} . Let Hx be generated

by the transpositions (12), (34), and let H2 be generated by (34). Deligne

and Mostow show the isomorphisms of moduli spaces (see §10)

QX¡HX~ Q2/H2,

Q2/Hx ~ Q3/H2.

By matching on both sides of these isomorphisms the divisors corresponding to

the images of xs = xt, {s, /} 0 IF, and also the ramifications induced by certain

//¿-invariant 5-tuples, i = 1, 2, one can show, for example (see §§10-12, where

more general results are also proved), that Yß, Yß>, Yß» are commensurable for

the ball 5-tuples of the form, with a"1 G {5, 6, 7, 8, 9, 10, 12, 18},

^=V2"a,2~~Q'2"a'2"a'4a

-+a, - + a, - -2a, - -2a, 2a

n       (\       -,        1 1 1
p   =lj + 2a,--a,--a,--a,a

For the above values of a the 5-tuples p and p" satisfy Z INT. The 5-tuple

p' is non-ZINT for a = 1/5, 1/7, 1/9. We shall meet these 5-tuples (up to
permutation) again below in the discussion of line arrangements.

Deligne and Mostow are particularly interested in determining which lattices

in PU(1, n) are non-arithmetic. Non-arithmetic lattices in PU(1, n) have
been found only for n < 2, except for one commensurability class in PU (1,3).

This class has representative Yß for p the following ball 6-tuple satisfying
ZINT[M3, p. 585]

p = (3/12, 3/12, 3/12, 3/12, 5/12, 7/12).

They are all commensurable to lattices Y in PU ( 1, n) which act on the complex

n-ball, the quotient being an orbifold given by assigning suitable weights to

the blow-up of a configuration of hypersurfaces on an algebraic variety (as in

[BHH]). We shall return to this point in our discussion of line arrangements

below. In [CoWo3] it was shown that it is possible to construct an embedding

of the discrete not necessarily arithmetic monodromy groups YM where n = 2

into modular groups f acting on a power B£ of the 2-ball together with an

analytic embedding (modular embedding) of B2 into Bf compatible with the

group embedding. The quotient X = B!?/Y was shown to be a Shimura variety

parametrising abelian varieties whose endomorphism algebras contain a subfield

of a cyclotomic field (that is, have "generalised" complex multiplication) and

T is in this sense a modular and hence arithmetic group. By passage to the

quotient, there is a Q-rational morphism of Qß to X. The non-parabolic

isolated fixed points of Yß are mapped by the modular embedding to complex

multiplication points in B™ , and this fact was used in [CoWo3] to deduce some

transcendence results. The analogous construction can in principle be carried
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out also for n > 2, and the case n = 1 was done in detail in [CoWol] and has

applications to the theory of Grothendieck dessins [CoItzWo].

In §§15, 16, and 17 several orbifold constructions (taken from [BHH] and

[Li]) are considered for surfaces and are shown to be quotients of the complex

ball by lattices in PU (1,2) commensurable to a Yß. We therefore report now

on some results of [BHH], which include those of Höfer's dissertation, and their

relevance to those sections of the book under review.

An arrangement of k lines Lx, ... , Lk in the complex projective plane has

ordinary and singular intersection points. Ordinary means that exactly two lines

of the arrangement pass through the point. For each line L, we can consider

the number 07 of singular intersection points lying on it or the number t¡ of

all intersection points on it. We define an endomorphism R of Rk [BHH,

p. 182] by Rjj — 3oj - 4 if i = j and /?,; = 2 if i # j and L, n L¡ is
ordinary. Otherwise R¡j = -1. An arrangement is weighted by attaching

to each line L, a real number a,. The weights are called admissible if the

vector (1 - ax, ... , \ - ak) is in the kernel of R . The dimension of the kernel

is an important invariant of the arrangement; it vanishes if k ^ 3 and the

arrangement has no singular points. For the complete quadrilateral, see Figure

1; the kernel has dimension 4 consisting (using the indicated notation) of all

6-tuples pt + pj where i / j and 1 < / < 4, 1 < j < 4. The singular points

Pj of an arrangement are weighted by real numbers ßj satisfying

2ßj + Z'a, = r - 2

where the sum is over the lines passing through Pj and r is the number of these

lines. For the complete quadrilateral with four singular points these weights ß,

are 1 - (p¡ + p$) where j = 1, ... , 4 and px + p2-\-h p5 = 2. The ker-
nel of R contains the subspace (x, x, ... , x) if and only if 3t, = k + 3

for each line L,. A weighted line arrangement satisfies the condition INT if

Fig. 1
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all weights a,, ßj are reciprocal integers ( l/oo = 0 is admitted). If we blow

up all singular points of the arrangement, we get new lines E¡. We denote the

lines in the blowup over L, again by L¡ and assume that INT is satisfied with

all weights a¡, ßj positive. Then we can consider smooth ramified covers of

the blown-up plane with ramification orders «, = 1/a, and m¡ = 1/ßj respec-

tively. If N denotes the degree of the cover, the Chern numbers c2/N and

c2/N can be calculated; they depend only on the weighted arrangement and are

well defined even if such covers do not exist. If a cover is of general type, then

according to Yoichi Miyaoka [Mi] and Shin-Tung Yau [Ya] we have c\ < 3c2 .

This inequality can be used to prove combinatorial results about line arrange-

ments. According to Yau [Ya] a surface of general type satisfying c2 = 1c2 is

a ball quotient, so its fundamental group is a lattice in PU (1,2). Therefore,

we are interested in weighted arrangements satisfying c\/N = 3c2/N. This

formula holds if the weights are admissible. If suitable finite covers exist, for

such an arrangement satisfying INT, and if some general type condition holds,

then a lattice in PU (1,2) is well defined up to commensurability. The general

type condition is satisfied for the complete quadrilateral if 0 < p¡ < 1 (for

i = 1, ... , 5 ). A smooth curve D in a smooth compact ball quotient comes

from a 1-dimensional subball if and only if the proportionality 2D • D = e (D)

holds where D • D is the self-intersection and e (D) the Euler number. The

formula for defining the weights ßj is equivalent to the proportionality for the

curves over E¡. The admissibility of the weights a¡ gives the proportionality

for all curves over the lines of the given arrangement. There are 286 possibilities

satisfying
r

2/m + Y^ I/«/ = r-2
;=1

in positive integers. Still requiring admissibility and condition INT, we now

do not assume anymore that all weights are positive, but in the blown-up plane

the lines with non-positive weights should be disjoint. For a negative m¡ or

«/ we take \m¡\ or |«,| as the ramification index and obtain over E¡ or L¡

exceptional curves which can be blown down. If there are no zero weights,

then c\ = 2>c2 holds after blowing down. For weight 0 we take an arbitrary

ramification index and obtain over Ej or L¡ elliptic curves with negative self-

intersection number. Then 2>c2 - c2 equals the sum of all these self-intersection

numbers (multiplied by -1 ). After removing the elliptic curves we get a non-

compact ball quotient if some general type condition holds. In all cases we

have to use results in [ChY] and [KNS] (compare [BHH, p. 266-268]) to ensure

that suitable finite covers exist which are quotients of the ball by a group of

automorphisms operating freely. The general type condition can be formulated

entirely in terms of the weighted arrangement. We speak of hyperbolic weights

and know now that they define lattices in PU (1,2). For admissible weights

satisfying INT, we may get, in the non-hyperbolic case, the projective plane, or

C2, or the product of C and a projective line instead of the ball. For example,

the trivial weights a,■■ = 1, ßj = — 1 give the projective plane. The projective

plane cases are 2-dimensional analogues of the 1-dimensional cases listed by
H.A. Schwarz [CoWo2] (see also [Sas]).

The mirrors of a finite complex reflection group contained in GL (3, C) de-

fine a line arrangement in the complex projective plane. In this way the Ceva
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arrangement Ceva (q) of 3q lines can be obtained.  In homogeneous coordi-

nates it can be written as

(x? - x\) (xf - x?) (x\ - x\) = 0.

The extended Ceva arrangement Ceva(<?) is

X1X2X3 (•*? - x2) {x2 - xl) {xl - xi) — 0-

These arrangements are named after Giovanni Ceva (1647-1734) because of

his theorem which gives the necessary and sufficient condition for three lines,

each through one vertex of a triangle, to meet in one point. Both Ceva(2) and

Ceva ( 1 ) are complete quadrilaterals. This remark has a nice application [BHH,

p. 209]. We weigh each of the six lines of Ceva(2) by 2a e R corresponding to
the expression

( 1      i\2a ( 1      i\la ( 1      i\2a
Xt X2Xt¡ I Xi  — X2 I       I X2 — X3 1       I X3 — Xi   I

Introducing the three additional lines with weight 1 makes no difference. Under

the map y¡ = xf of the x-plane to the y-plane the arrangement descends to

y\'V2'2y\12 (yi - yi)2a (yi - y3)2a to - yi)2a ■

The corresponding quintuples p for the two expressions (weighted quadrilat-
erals) are

fl 1 ! ! a  N
\2~ a'   2~a'   2~ a'   2~ a'

and

G_a' l_a' I-0'a' l2+2a

Our argument shows that we get commensurable monodromy groups if both

quintuples satisfy INT. This (in the hyperbolic case) is true if and only if a -

\/p with p = 6, 8, 10, 12, 18. For p = 5, 7, 9 condition ZINT holds. The
commensurability is true also in this case (Sauter, see p. 82 of the book under

review). In fact, as we said in our above discussion of §§10-12, Deligne and

Mostow show that for these eight values of a, the quintuples

x + a,   2+a'   2~^a'   ö~2a'  2a

give lattices commensurable to those above, obtaining for a = 1/5, 1/7 two

arithmetic non-ZINT cases and for a = 1/9 a non-arithmetic non-ZINT case

[M3, 5.5, p. 582]. In this connection let us mention the geometric interpretation

in the book of the ZINT cases with exactly three equal p 's, and suppose px =
p2 = Pi. They correspond to

(*) (X!X2X3)^ [(Xi - X2) (X2 - X3) (X3 - X0]2a .

The quintuple is

\2~a'   2_a'   2~a,   2+a~ß' ß + 2a)

which satisfies ZINT if and only if a and ß and also \ - a - ß and

A - 3a are reciprocal integers.  The condition INT is true if in addition 2a
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is a reciprocal integer. Then we have orbifold covers of the complete quadri-

lateral in the projective plane. If Z INT holds, we study the covering of the

plane over the weighted projective plane P(l, 2, 3) (with Galois group Z3 =

symmetric group) given by (xx, x2, X3) —> (ax, a2, «73) where the at are the

elementary symmetric functions. Then (*) becomes

(**) al Aa

where A is the discriminant, a polynomial of weight 6 in ox, a2, 03. The equa-

tion A = 0 gives in the affine plane defined by ax = 1, a2 = x, a3 = y a cuspi-

dal cubic C which has y = 0 as non-cuspidal tangent L (see p. 148 and Figure

2), and (**) makes geometric sense in the Z INT-case where a is a reciprocal

integer but where 2a is not necessarily a reciprocal integer (ramification index

l/ß over L and \/a over C). The ZINT-case a = 1/2, ß = 1 leads back
to the projective plane with the complete quadrilateral. Also a = 1/3, ß = 1/2

is not hyperbolic. The "universal covering" of P ( 1, 2, 3) with ramification

indices 2 and 3 along L and C respectively is the projective plane, where C

corresponds to 12 and L to 9 lines, making together the (extended) Hesse

arrangement which can be defined by the Hesse reflection group H of or-

der 1296 with twelve mirrors of order 3 and nine mirrors of order 2. Ob-

serve that the quintuple for the Z INT-case with a = 1/3 and ß = 1/2

is (1/6, 1/6, 1/6, 1/3, 7/6) and the corresponding monodromy group is H
(compare [CoWo2, Theorem 1], see also [Sas]). The projective group of H is

of order 216. It is the automorphism group of the Hesse pencil of elliptic curves
which in special coordinates can be written as

À (xf + xf + xf j + /ÍX1X2X3 = 0.

Z.:O\=0

Fig. 2
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The nine base points are the inflection points of all curves in the pencil. Let

,31
£l2 — X1X2X3 27 xfxfxf - (xf + xf + xf )'

Then €x2 = 0 is the equation for the four singular elliptic curves of the pencil

(4 triangles = 12 lines). The polynomial

<£9 = (xf - xf) (xf - xf) (xf - X?)

defines the Ceva(3) arrangement which has its twelve triple-points in the vertices

of the four triangles. Then <tx2 • €9 — 0 is the equation of the Hesse arrange-
ment. There are fundamental invariant polynomials C6, Cx2, Cx$ for H. The

polynomials £9, €x2 are invariant up to factors which are roots of unity of

order 2 or 3. The equations C12 = 0 and Cx% = 0 give the elliptic curves

in the pencil with g2 = 0 or g3 = 0 in the Weierstraß normal form. The

map (xi, X2, X3) i-> (Co, C12, Cig) from the projective plane to P(l, 2, 3)

has degree 216, the equation

1728 £f2 = C28-Cf2

and a similar equation for €\ show that we have come to a situation in

P(l, 2, 3) equivalent to Figure 2. (All this invariant theory is taken from

[Ma].) For the extended Hesse arrangement the kernel of the matrix R has

rank 2 and the admissible weights are given by expressions which we can write

as
rt*3a rt*2£c12 S   •

The INT-condition for the extended Hesse arrangement is that 3a, 2ß are

reciprocal integers and

^(3-6a-6ß) ,   I-6a

are reciprocal integers l/m¡ and 1/^4 respectively where m$ and m^ are

the ramification indices in the twelve blown-up 5-fold and in the nine blown-

up 4-fold points of the Hesse arrangement. The INT-condition for the Hesse

arrangement is stronger than the ZINT-condition for (a, ß), and, as Deligne

and Mostow show, the lattices constructed in [BHH] from the extended Hesse

arrangement are therefore commensurable to special Z INT-cases. (See also
[Yl].)

It was pointed out earlier that a line arrangement of k lines has admissible

weights which are given by an arbitrary number a for all lines, if and only if k

is divisible by 3 and, for each line L, the number t of intersection points on L

equals k/3+1. The arrangements Ceva(ö) , Ceva(^), the Hesse arrangement

of 12 lines, and the extended Hesse arrangement of 21 lines satisfy this. In

[BHH] the icosahedral arrangement, the Klein arrangement, and the Valentiner

arrangement are studied. They also satisfy this condition. For them the rank of

R equals 1 ; thus the constant weights a on all lines are the only admissible

weights. The arrangements mentioned are the only ones we know that satisfy
3t = k + 3 for all lines.

The icosahedral arrangement comes from the reflection group / contained

in O (3) of the symmetries of the icosahedron. There are only mirrors of order

2, namely, the 15 planes containing two opposite edges of the icosahedron.
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The number r equals 6; indeed on each of the 15 lines are two 2-fold, two

3-fold, and two 5-fold points of the arrangement. The order of / is 120. The

fundamental invariants A, B, C of I have degrees 2, 6, 10 (see [Kll]). There

is a polynomial D of degree 15 such that D — 0 is the icosahedral arrangement

of 15 lines and D2 is a polynomial of weight 30 in A, B, C (see [Kll]). A
weighted icosahedral arrangement can be given by

D2a.

The icosahedral INT-condition is that

-,       ,        !     c       3
2a,  3a- -z,  5a - -

are reciprocal integers and for a = ^, ^ we get lattices in PU (1,2) . The

methods of Deligne and Mostow admit also a = ^, j as ramification over

the curve D2 = 0 in the weighted projective plane P(2, 6, 10) . The authors

announce that one gets only arithmetic lattices from the icosahedron. In a sim-

ilar way we can study the simple group of order 168 acting on the projective

plane. It has 21 involutions whose fixed lines are the lines of the Klein ar-

rangement. They correspond to the 21 mirrors of a complex reflection group

of order 336. The number t equals 8. On each line there are four 3-fold and

four 4-fold points of the arrangement. A polynomial K of degree 21 gives the

Klein arrangement. A weighted arrangement can be expressed by K2a , and the

condition INT requires that 2a, 3a-j, 4a- 1 are reciprocal integers. Indeed

01 = ï ' I ' B" ' 0 give lattices. Moreover, K2 is a polynomial in the fundamental

invariants f, A, C of degrees 4, 6, 14 (see [W, p. 529]). The INT-condition

can be relaxed to a, 3a- j, 2a - \ being reciprocal integers. This gives in

addition a = %, |, yj . According to Deligne and Mostow only a = ^ , 0 give

arithmetic lattices.

The Valentiner arrangement has 45 lines. They come from the 45 involutions

of the Valentiner group of order 360 (isomorphic to the alternating group of six

letters) acting on the projective plane. Defining the a as before, a = A, \, j

give lattices. Some of the arguments concerning the icosahedral, Klein, and

Valentiner arrangements are heuristic and still have to be checked.

Let us come back to the weighted arrangements a^ Aa in (**). For a—\,

ß = 2, and for a = 5, ß = \ we have Euclidean cases, and suitable finite

covers are abelian surfaces. For a = |, ß = \ and a = \, ß = j we

can construct coverings of abelian surfaces which are ball quotients. Deligne

and Mostow show that these are the ball quotients studied in [BHH, §1.4],

up to commensurability. Also for a = 0, ß = ^ we get coverings of an

abelian surface which are (non-compact) ball quotients, namely, those studied

in §1 of [Hi]. The quintuple is (^ , ± , ¿ , g , AJ . In [CoWo2] the complete list
of the discontinuous Euclidean Appell-Lauricella monodromy groups is given

(completing those found in [BHH] and in this book), that is, the discontinuous

T^ with p an (« + 3)-tuple (px, ... , pn+3) of rational numbers with ¿Z"=x Pi —
2 with just one of the p¡ an integer.

In § 16 Deligne and Mostow relate Livne's construction of lattices in PU (1,2)

to groups Yßjj. For an integer n > 3 and d an integer satisfying d\n if n

is odd and úf|| if n is even, certain cyclic covers E¿(n) of the Shioda el-

liptic modular surface E(n) of level n can be constructed. The cyclic cover
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Ed(n) -* E(n) has order d and is ramified over the «-division point sections of

the elliptic fibration E(n) —► X(n). When « = 7,8,9, 12 and d — -^ , Livne

[Li] and Inoue (see Acknowledgments) showed independently that cx(S)2 =

3c2(S) for S = Ëd(n), so that the surface Ëd(n) is a compact ball-quotient.

Let A be the automorphism group of Ëd(n). In §16 Deligne and Mostow

show that for « > 3, the quotient Ëd(n)/A is the moduli space of a projective

line, a marked point 0, and an unordered set s/ of three points A', A", A'"

and an additional point x, where one allows coincidences between two ele-

ments of s/ , between x and 0, and between_x and any one or two elements

of sé'. Hence as a moduli space Ëd(n)/A = ß^/Z where p = (\ - -,, 2 - ¿,

I~n> n ' h + n ) ' ^ = S{1 ' 2 ' 3} , the permutation group on {1, 2, 3} , for any

integer « > 6 . Now, p satisfies Z INT for « > 4 if and only if t = -fy G Z,
that is, « G {5, 6, 7, 8, 9, 10, 12, 18}. On the other hand, the ramifica-

tion divisors of Ëd(n)/A with their ramifications are: x = 0, ramification

index 2a" ; x — A', A", A"', ramification index 2; two of the elements of

si coincide, ramification index «. Hence, for « G {7, 8, 9, 12} we have

Ëd(n)/A = ß^/Z = B2/YßtY. as orbifolds. In the remaining cases in which p

satisfies ZINT, Deligne and Mostow show how the quotient Ëd(n)/A may be

modified to arrive at an orbifold isomorphic to ß^/Z, and they treat also the

non-hyperbolic cases « = 3,4.
The moduli space mentioned above is related to P( 1, 2, 3) ; see Figure 2.

This is induced by the map E(n) -> P(l, 2, 3) given by p(nz) : g2 : g3 (Jacobi
forms of weights 2,4,6 respectively). The equation

p'(nz)2 = 4p(«z)3 - g2p(nz) - g3 = 0

corresponds to the line L in Figure 2 and gf - 27g2 = 0 to the cubic curve C

(discriminant). The fibres of E(n) go to the pencil ag\ - ßg2 = 0 of cuspidal

cubic curves; the «2 sections of E(n) (poles of p(nz)) collapse to the point

1 : 0 : 0. The weighted arrangement a^Aa (see (**)) has been mentioned very

often. For a = j¡, ß = \ we get the lattices of the previous paragraph. For

« = 3 the map is given by C0 : C12 : C\%, and E(3) = Ëx(3) is the Hesse pencil
(i.e. the projective plane with the nine base points of the Hesse pencil blown up).

The Shioda modular surface .E(4) is a K3-surface. The ramified cover É2(4)

of degree 2 along the 16 sections (rational curves of self-intersection -2 ) gives

one of the abelian surfaces mentioned earlier (with the 16 two-division points

blown up). By a result of Ishida [I] the surface È$(5) (all 25 sections collapsed)

is a 125-fold covering of the projective plane along the complete quadrilateral

corresponding to the quintuple (§, |, \, \, \). Therefore (§ , |, |, |, |)

and (-fjj, -¡^5, -fa, jQ, |) give commensurable lattices, a fact not occurring in
the book as far as we can see.
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