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In the fall of 1964 I lectured for one month at the University of Amsterdam.
The nurnose we. +ﬁh"ive an elementary account of the theory of vector bundles
and the cohomologygﬁkéory derived from it. In the lectures I gave the
elementary proof of Atiyah and Bott [5] for BRott'§ periodicity theorem with
all details. This theorem is fundamental for the development of the theory.

The proof is only partially reproduced in these notes.

It is possible and also enjoyable to develon the theory without using ordinary
cohomology theory, keeping it in this way selfcontained and elementary, based
only on the notion of vector bundle. In order to carry through this elementary
method and to reach interesting applications quickly, one has to use the Adams

operation ¥, I had at my disposal private notes of Adams on the splitting of

i
a A-ring wh{ch he worked out during the Bonn Arbeitstagung 196L4. I also used
an unpublished manuscript of Atiyah on the non-existence of elements of Hopf
invariant one.
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A. Vector bqg@}gg

(A.1) Definition

A complex vectorbundle over a topological space X, is a topological space E, with

a continuous map p : E » X (called the projection on X) such that.

=1 ’ . 3 ;

1) p (x) is a complex vectorspace of finite dimension for all xeX.

2) (local triviality) For all xeX, there is a neighborhood U of x, and a natural
number n such that p"1(U) is isomorphic to UxC", that is, there is a homeomorphisr

bs pm1(U) > U x € such that the following diagram commutes.

"' (V) $ U x ¢
?ﬂ
P
U 2 U
while ¢ = ¢|p_1x is an isomorphism of vectorspaces (The left arrow is p|p-1(U)s

the right arrow is the projection U x ¢® > u).
' b
Notation: p (x) = E, .

Remarks: O.p is surjective, because each Ex is a vectorspace and therefore non VQii
1. condition 2 implies that on a connected component of X the dimension of
p_T(X) is constant., This number is called the dimension of the burdie

on this component.

2. We will often write for a vectorbundle E—2> X simply E.

(A.2) Homomorphism, Isomorphisms, Subbundles.

A homomorphism of vectorbundles over X v : E > F is a continuous map such that

the following diagram commutes.

L 7
\PE / 7
;\\\\\ p
X

and such that w!EX is a homomorphism of vectorspaces. We will denote the set of

E

homomorphisms E - F 'by-y[bmx(E,F).

A homomorphism y : E > F 1is an isomorphism if Yy is bijective for all xeX.

The set of isomorphisms E + F will be denoted Iso (E, F). The vectorbundles over
X, with the homomorphisms of vectorbundles constitute a category, which we will
denote by H1x). o
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The proof that the above definition of isomorphism checks with the general
definition of an isomorphism in a category applied to W(YX), is left to the

reader,

(the continuity of the (well-defined) inverse is a local question, so we have only
to consider the inverse of a map X x c” —J-iéX>Xx(En9 where A 1is a ng-matrix dependin
continuously on xeX, then the inverse map A is y o -l:éz>Xx®n, and X > Ax_1 is

a continuous map, being the composition of the maps ¥ -+ Gl(n, C) 2. 6i(n, €©).

gecoedo (inv = taking the inverse)).

A vector bundle E over X is called a subbundle of the vector bundle F over X,

if E ¢ F and the inclusion is a homomorphism of vector bundles. |

(A.3) Sections

The bundle X x C° is called the trivial bundle. If we have a bundle E on X,
amap s : X > E such that ps=id is called a section; it is said to be a nowherc

vanishing sectionif s(x) # 0 for every xeX.

A bundle E is called of dimension n, if p-1(x) is of dimension n for all xeX.

A bundle is called a linebundle, if it has dimension 1. We then have the following
lemma.

Lemma: Let E be a bundle of dimension n, such that there are n everywhere, linearly
independent sections on X. (hence nowhere vanishing), then the bundle E is

isomorphic to the trivial bundle X x ¢,

Proof: The isomorphism ¢ : X X ¢ E is given by ¢, = AX, where Ax is the matris

. 1
8,(x) .v. 8 (x) \
s’j’(x) } /
] . ?' sk
A = /
X ii
n n /
HEY 82 (x)

and Si(x) is the jth component of the vector Sk(x)°

In perticular we have that a linebundle, which has a nowhere vanishing section is

trivial.
(A.4) Lifting of vectorbundles.
Let E be a complexvectorbundle over X, and £ : ¥ » X a continuous map.

& % " ¥
We define the lifted or indu codbundle £ E over Y by (£ E) =

= {(y, v)|(y,v) €Y xE « veEf(y)} with the projection map (y,v)v~ y; the topology



of f E is the topology it . .uits ag a of ¥ x E.

Condition 1) of the definition of a vectorbundle (A.1) is clearly satisfied, and

- . - E -1 . . )
it is easily checﬁvd that 1f U X 1s a neighborhood such that p U 1s 1somorphic
to U x ¢ , then f (U) 1s a neighborhood on Y above which f'E 1s trivial; which

takes care of condition 2.

Remark: 1, £ E is the fibre ~ nroduct (pullback) of the diagram

I
! in the category of topological snaces and
|
Y s X
continuous maps (Top). .

2, If S iz en arbitrarcy subspace of X, then pEm1(S) has a natural structur
of vector bundle over S, the c-'o=--<:&Lller1 restriction of E onto S, notation E|S. There

is a canonical ircrornhism E}q_ 1 E vhere 1 ¢ 8 - X 1is the inclusion.
3. If g+ 2 +>Y and £ : ¥+ X ere maps, then

e g B,

14

( T
el & |

(A.5) (= [12])

Let Wnbe the he cate ex veetorspaces of flnlte di imension and linear naps .

e tumcran: A A A AP 7 bk Sl

. . » , .. Apta N ]
A p-times covariant, g-times con“rvaveriant functor @1 :¥F ¢ —= W7is called

continuous if the rapn g1 in’oed by ot

bl . . o - fn 9 T i 13
o 2 Hom(E E1')x°°cx Tom B ') x Hom(T, ', F1)x°c,xhom(Fo°, )

'19

»
o)

. Hom(LH(E1,500,EniF1sa,n9Po;,&1(31?9,3,53 giF1'su=~=F )

is continuous. The functor is calle? i this map is multilinear.

Examples: 1. The two times covrriant functor €, which associlates to two vectorspaces
X, ¥ the dircct sum X © Y is a continucus, but not bilinear functor.

(To a pair matrices (A, B)eHom{X, X")x Hom(Y,Y') is associated the

. L . ! +AY 0. .
matrix (3'2) ¢Hom(X 9 X', Y © Y') and (g g) + (g g) # (A A g}aj

2., The 1-time contravariant functor Hom(-,C) which associates to a vector

space A, 1ts dual spacec A 1s linear.

Remark: Multilinearity implie= continuity, since we work with vector spaces of

finite dimension,

(A.6) Theorem

Given a continuous functor p=times covariant, q=-times contravariant

¥
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g B T . . .
(1 H =——> , then there exists one and only one function which attaches to any

. v, + P ‘ v
topological space X a functor (ly WP XX), p-times covariant g-times

contravariant, such that

1) (O (Bysee s B | FyyenesF ) = 0U(E ) aeee s (B HF D yaeeeaF o))

4qx

P X
2) For homomorphisms e, Ei~msE'i 1=1,0005D3% fj : ij B Fj J=1,000,Q We have
(GTX(e1’°'°’ep)‘f1’°°°’fq))x =01((e1)x,,°q,(ep)x|(f1)x,.°,,(fq)x) .

3) If Y ¢ X then

(B, |Yseees Ep[Y | Fyl¥seees quy) = (o-tX(E1,..,,EP ] F1,g°°,Fq))|Y .

L) If By, 151,0.0,D3 Fj j=1,000,q9 are trivial bundles, then mX(E1"°°’Ep‘ F1,oaanq
is a trivial bundle.

p Jojokd . .
TIf we have two continuous functors gr, ¢t' & 9 5 77”and a natural transformation

¢ :01—> (' , then ¢ induces a natural transformation oy :cﬂx ——»gﬁX; if ¢

was a natural equivalence, then Oy is a natural equivalence.
Proof: [12 ]

(A7) Examples

Using (A 6) we can construct

E® F the direct sum of two vector bundles (¥Vhitney sum).
E & F The tensor-product of two vectorbundels
Hom (E, F) The bundle which has as fiber at x Hom(E_, T_)o

x® " x
+
E = Hom(E, €).

We have for vectorspaces B, A a natural equivalence
*
Hom(A ,B) —> A" 8 B

. . . *

given by the isomorphism ¢ : A" ® B —> Hom(A, B)
f 8b—g where g(a) = f(a). ®

(this is an isomorphism, since A is of finite dimension, which is essential.)
So by the (A, 6) we also have a natural equivalence of vector bundles

Hom(E, F)——> E 8 F

Remark: If E is vectorbundle over X, we denote by T'E the set of sectiornc
over X,

With this notation we have
r(dom(E, F)) =ZpmlE, F).

For an element of Hom(E,F) is a set of homomorphisms ferom(Ex, Fx) depending
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continuously on xeX. This is exactly an element in THom(E, F) and vice versa.

(A. 8) The exterior powers.

V is a finite dimensional vector space over €. Let V© =V @ ,.. & V (n factors).
Then the group Sn of permutations of n-elements acts on V" in the following manner.,

. _ n
It oesn, v o= v1® coo 8 v, V" then

°

ov = vc<1)@°.°® Vc(n)

Let Qn be the subspace of Ve generated by the elements of the form

n

ov - sign(o)v, vev , 0é8

(sign(o) is the parity of ¢, i.e. sign o= + 1 depending on whether ¢ is an even or

odd permutation.)
Then we definie

A=Vt , %v=c .

The Al are clearly covariant functors from the category of C-vectorspaces to the

category of C-vectorspaces. They are moreover continuous and there is a functorial

isomorphism

(A8,1) W vew) = oz ANV 8 M (W) .
j+i=n
This means that we have analogous functors Al for vector bundles on X by (AUG)O_

If B is a vectorbundle over X then A*(E) is a vector bundle with fiber (AlE)XwA“(E‘

and the above isomorvhism (A8.1) remains true.

(A.9) Topological lemmas

1., (The Tietze extension theorem)

Let X.be a normal topological space, ¥ ¢ X a closed subspace. Let £ : ¥ » [_191]
be a continuous function, then there exists a continuous function g : X » [=1,1 ]
such that glY = £,

(That f is a function to [w1,1] is not essential and may be replaced by for
example f : Y > IR).

2. (Partion of unity)

Let X be a normal space, and {Ua} a locally finitc open covering of X, then therc

exists real valued functions ¢a: X » IR such that

1° $,(2)20  for all o, all xeX
g ¢ (x) =0 forx U&'Outside some closed subset of Uu "
3° 5 ¢ (x) = 1 for all xeX,

Qo
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For simplicity's sake, we will restrict ourselves in the following to compact
Hausdorff spaces (unless otherwise stated) although most of the reasoning can

be adapted to the case where X is paracompact.

(A, 10) Lemma

Let £ : E > F be a homomorphism of vectorbundles on X and suppose the function
X - rank (fX : E > F)

is continuous, then there is for all xeéX a neighborhood U of x and m sections

r1,°°,,rm over U, n sections S1"°°’Sn of F over U such that

(1) for all yeU - r,
(ii) for all yeU s1(y),.,., sn(y) is a basis for F_
(1iii) for all yeU and all (v ‘

(y),o.,,rm(y) is a basis for E

m
1,“,,vm)eOJ

f(v1°r1(y)+,°°+vm.rm(y)) = v1.s1(y)+..,+vk,sk(y)

where k = mnk (f 3E_+~ F ),
¥y y

Proof: [12](2.4)

(A.11) Let £ : E > F be a homomorphism of vectorbundles in X such that the

function

x v rank(f : E > F )
x X b4

is continuous, then there exists exactly one subbundle E' of E such that

(1 : E* > B is the injection)

is exact. (E' = Ker f),

Proof. Let xe¢X, U, T yeee,sT , S,5e0055_ 5 K be as in (A.10) so for all
— 1 m 1 n

n
y)((v] 300 o,Vm)(':U X C

(%) f(v1.r1(y)+.o.+vm.rm(y)) = V1os1(y)+oa.+vk-sy(y)

ni| o P Yy =}
Let Ly be the vectorspace generated by rk+1(y),,..,rm(y).

Let E' = UE! with the induced topology as a subspace of E, By (A.,3) E' is trivial
above U, Y50 B! is a vectorbundle on X. The exactness of the sequence follows

immedicte 1y out of (%),

Corollary: Let f : E —TF Dbe surjective then Ker f exists and

0> Xer T B F 0

is exact,
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(A, 12) Let &, Fe¢W’, X paracompact, hausdorff and let E%——£—> F —> 0 be an

X’
exact sequence in 1(% =
kS

Then there is a homomorphism of vectorbundles g : F » E such that fg = id.

Proof: By (A.10) there are for every xe¢X, a neighborhood U of x and sections
Tiseeesly of E over U, BysecosS, of F over U such that there Tiseossl 2TC

linearly independent over U, as are the SysecesS, and such that

TV, ot (V) Feootv .rm(y» = v1°s1(y)+.,°+vm,sn(y)

1771 n

(m=dimE >dim F_=n = k)
X = x

For all yeU we define & : p;(u) +E by

kU(V1.ST(Y)+-u.+VnoSn(y)) = v1(r1(y>+°°°+vn°rn(y) .
Then for all vepF—1(u), fokU(v) = v and k; is a homomorphism of F}U in H U.
In this way we find X being paracompact a locally finite covering {Ui}ifI of X such

that there is for all iel a homomorphism k. FIUi > EjUi

-1
foki(v) v for all vepy (Ui) .

Let {¢.}. . be a partition of unity relative to the covering {U.} . Define
171¢l 1

g : F>E by

glv) = z ¢-(x).ki(v) X=D

1¢T * ¥
then g is a homomorphism of vectorbundles and fg=id. Qo2odo
Corollary:
Every exact sequence of vectorbundles over X
0 B! B B" 0

splits, and therefore E=E' @& I",

(4. 13) Proposition

Let X be a compact space, & a vectorbundle over X, Y a closed subset of X, and

s a section of E over Y, then there is an extension of s to X.

Proof: Let xeX be any point and U(x) a neighborhood of x such that E is trivial
above U(%). A section of E|U(x) is just a continuous map U(x) — ¢ (Check! )

Y N"U is closed in Tf, and 3 Hf’/\ﬁ is a continuous map Y Ny — (Dn. U is
compact, hence normal. Applving A.9.1 we get an extension t to U(x) of

s|y AU, Finitely many of the neighborhoods U(x) cover X, (compactness), say X ic

coverd by {Uu}’ with t the extension to U  of . s| ¢ u, - Let{¢a} be a
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partition of unity relative to {Ua}' We define

s (x) =¢ (x) t (x) for xeU

o a a o

s (x) =0 for x4U 5

o o
Then the s, are sections of E over X, and it is easy to check that s = zsa
is an extension of s, Qo€eQe ¥
(A.1h)

Let X be a compact space, B, Fedy, Y 1s closed subspace of X, and teHom(E‘Y, 7 Y) st
that ty is bijective for all yeY. Then t can be extended as an isomorphism to

some neighborhood U of Y.

Proof: teHom(E/Y, F/Y) = T'Hom(E/Y, F/Y) = I'(Hon(E, F)/Y)
(A.7) Applying (A. 13) we sce that there is an extension of t to a homomorphism
s : E > F, Define U to be

U= {x

s : E -+ F_ is bijective}.
b'e X X
Then U > Y if xeU, there is a neighborhood V(x) such that both bundles are

trivial above (V(x), slp;1(V) is essentially a map g : V —Hom(€®, €¢7)

o

UANYV = {z|z¢eV rdet g(z) # 0 1is open in V, hence U is open. qo€odo

(A.15) Let X, Y be compact spaces, Ee'N;, and let f,g : X > ¥ Dbe continuous maps

. ; . * * ; :
such that f is homotonic to g. The lifted bundles f E and g E are then 1somorphic.

Proof:Let F : X x I + Y be a homotopy from f to g and set Ft(x) = F(x, t). Let

m: X x I > X be the canonical nrojection on X, We compare the vectorbundles
W*Ft¥(ﬂ) and F¥(E) over X x I. These vectorbundles are isomorphic on X x{t}.
Applying (A,14) they are isomorphic on an open neighborhood V of X x{t}in X x I,

Now X is compact so there is o neichborhood U of teI such that X x U < V. Therefore
Ft,*(E) = Ft*(E) for all t'«U, In vicw of the fact that I is compact and connected

. * * e
this proves that f*E = FOE > FE = gREo Qe.Cods

1

Let B(X) be the set of isomorphisms classes of vectorbundles over any compact spacc

X, The following is an immediate consequence of the theorem above:
If £ : ¥ > Y is a homotopy equivalence of compact spaces, then the function
# o s .. .
£ : B(Y) » B(X), induced by the lifting of vectorbundles, 1s Dbijective.
Corollary 1: If X is contractible, then

B(X) = B(point) ={non-negative integers} .

Corollary 2: If E is a vectorbundle over X x I (I the unit interval), i ¢ X » X x |
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the natural injection onto Xx{0} , and 7: X x I » X the projection, then

%
T1H =~ E,

(A,16) Hetrics

Let X be a compact space, EE%;' The collection of all bilinear Hermilian forms

on a vectorspace from a vector space. Usingthe construction of (A.6) we get a
vectorbundle\a over X, with ;x = vectorspace of bilinear Hermitian forms on E .
A section s in 5 over X such that s(x) is positive definit for all xe¢X is called a

metric in the complex vectorbundle E.

Pronosition:

There exists a metric in every complexvectorbundle E.

Proof: Let {Ua} be a covering of X such that E|Ua is trivial for all a.
We can find a metric 5, in Ean. Let {¢a}be a partition of unity relative to the
covering {Ua} define
1 = 3
sa(x) sa(x) ¢a(x) era
= 0 xqu, :

Then S; is a section of 5 . and if s&(x) # 0 then s&(x) is a positive definite

Hermitien form . The sum of two positive definite Hermition forms is again positive

definite.
Define s =5 g’
a
a
Then s is a metric, qeCeds

(A17) Clutching of vectorbundles
Let X be a compact space, X1,X2 two compact subsets of X such that X1 U X2 = X, Let

A=X, N X, . Suppose we are given

i) a vectorbundle E; over X, i=1,2
i1) ¢ eIso(E, |4, E|A) IHiom(E, |A, EQIA) ,

Then we construct a new bundle E = E1\/ E2 (clutching E1 and E2 by ¢) as follows:

¢
E =E if x¢E
X 1x 1
Ex = n?x if er2
vhere for xeA E,  and E,, are identified by means of ¢ (v "=" ¢(v)h

E has the topology obtained by considering it as a quotient space of E1(y E2
(the disjoint union of E, and EQ)‘ Using (A.14) we check the local triviality for

points xeéA, (For points x¢A it is immediately clear, A being closed).



o 1
We remork that

1. If ¥ is e bundle over X, then B[X, ‘s E|{, = E .,

ldA

2, If E1, BY are bundles over X1, EQ, E! Dbundles over X,,
o

1 2

¢eIso(E1[As E.[A),6’ eIso(E%!A, E!|A) then there is a natural isomorphism

B, \..32) ) (E; “— E!) :(E1 0 E%) .~ (E. © Eé)
¢

o 2 400"

3. The same remark holds for the tensorproduct.

2

% v 4 ok
L, (E1 uEe) - E1 \*,{1 E2
b (67)

This follows from the following generel property of the clutching operation with

respect to contioiou fanetors) .

(A.17) continued

Let (1 be a continuous functor, say in two variables, covariant in the first,

contravariant in the second one, Ul:?fg———>3fi (The general case is a complete

analoguc.) Given E,, Ty vector bundles over X. (i=1,2), where X, X,s X, compact,
X=X, UX, X, MNX,=A as above, and isomorphisms ¢eIso(E1lA, EzlA),

¥ eIso(F, |A, FQ)A),,

Proposition:

There is a canonical isomorphism of vectorbundles

1, (E., F 1, (E,, T,)= E,vE, F,F,).,
0ty (E,, 1) N er, (E,, F2) WX(L:,] v Ey, 1vr2)
1 Cﬁ ) T2 ¢
Proof': 0%(¢9W—1) is a clutching funection because Uh is a functor.
A bijection of the total spaces of the two vecior bundles which is linear on cach

fibre, is obtained in this way:

07X(E1 VE,, F, wF,)) = fg( (E1 vE2}X1, F, \¢FO|X1) WV d% (E1 uE2|X2, F, \AH, X0),
¢ oo 1 ¢ b 2 ¢ s S
B ' =t (B L. . L e . .
mX (Li, Fi) (%'(£1 “’E2|X1"L1\Jl?“1)’ and two elements alédgg( i Fl),

i i b v 1
i=1,2, have the came image in m&(E1 By, F1‘wa2) under the latter isomorphisme
¢ v
if and only if o, = OTA(cp,w 1) (a1). (Use (A.6).)

As (1 (E,~E,, F,\F,) was representcd as thc union of closed subsets, the so
X1¢21¢2 :

constructed hiis_ timn 15 Dbicoubinnous, g.e.do
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(A,18) Homotopic clutching functions

Let X, X,, X5, E,, E,, 4 be as in (A. 17). Two clutching functions

|

A, JQ,A) are called hcomotopic if the maps ¢go0q 2 A Hom(E1}A, EyfA

IsolE
¢O’¢1é 2 ( 1
are homotopic by a homotopy F such that Ft is clutching for all
t (i.e F elIso(E,|A, 5,|4) < rHon(E,|A, E,|A) for all t).

v sk :
For mutated in an other way:
9oty are called homotopic, if there is & conitinuous sct of clutching functions

{0 1 Le
F ., te|0,1] connceting them.

t,
Proposition:

It 0g2¢4 are homotopic clutching functions, then E1 N E2 = E1 el E2

%y 4
Proof: Lift E1 to X1 x I, E2 to X2 x I, let F be a homotopy between ¢0,¢1, We
can use F to clutch E% and Eé over . x I (Ei = wi Ei’ T is the projection
X The ] ~ Tl P13 ] - v !
X; x I »X;). Then By o E, = B EL|[Xx{0} and E, \ E, = B} E}|Xx{1}.

b 2 F Y F
But the maps X > X x I defined by x > (x,0) and X » X x I defined by x> (x,'

are homotopic. Applying (A.15) gives the de sired result.

Remark: Another way to define homotopy of clutching functions is this

Fo: (E1|A) x I LZIA is a homotopy of clutching functions ¢,, ¢,els0 (E1’A’ By|4),

°

if T, * E1IA - E2|A is a clutching function for every tel and Fy =¢ 4, F, = ¢

B
i

(This definition yields the s~me equivalence reclation as the one given above).

To prove that E1 w E2 = E1 B, 1f ¢O end ¢1 are homoctopic clutching functions,
& &, °

" "1

observe that E x ¥ is a vecherbundle over X x Y for any vectorbundle E over X.

Now define G : (E1]A)><I—-~>~ (E2 L) x I by Gle,t) = (F(e,t),t). It is easy to

prove that G is a vcctorbundle isomorphism. So we can consider the vectorbundle

]

E1 x I E{Eg % I, The maps fo, hil

homotopic. But f?(E

;¢ ¥ > X x I defined by fi(x) = (x,i) are

x I wE, xI)=E, x I\wE, x I| Xx{i} *E. \/E,, and the
2 1 2 1 2

g - B ¢5

1

nroposition follows from (A.15).

(A, 19) Collapsing of vectnrbuniies

Let Y ¢ X, both comprct space, E a vectorbundle over X such that E|Y is trivial.

noo. T : .
If as EIY + Y x ¢ is a ‘rivialisation, we define a vectorbundle E(a) over the
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(compact) space X/Y, by the following collapsing operation: Let 7 : Y x C—s ¢

be the projection. We introduce an equivalence relation for the points of I:

en e' <= qale) = qnale') (e,e’ E|Y)
e n el «=> e = ef (

e,e’ E|X-Y)

E(u) is defined to be the quotient space E/n. There is a natural continuous projectic
E(a) -+ X/Y, with respect to which E(u) is a vectorbundle. To prove this we have only
to verify the local triviality at the point Y/Y . But aw1 : Y x ¢" > E/Y can be
extended to an open neighborhood U of Y as an isomorphism of vectorbundles

(apply (A.14)), and U/Y 1is a neighborhood of Y/Y.

(A.20) Homotopic trivialisations

Let X, Y, E be as in (A.19), Ggs Oy E|Y » Y x ¢ two trivialisztions.,

1
A homotopy between oy and a, is 2 continuous map F : (E|Y) x I » Y x ¢” such

that Ft is a trivialisation for each +te¢l and FO = ags F1 =y

Proposition:

If ay and a, are homotopic trivialisations, then

E x I
(o) (

Proof: 4 homotovy F between %y and o, induces a trivialisation

B: (B]Y) xI » ¥ x¢€"x1I by Ble,t) = (Fle,t), t). The natural projection

T (X/Y) x I > X x I/Y xI is continuous and the injections

fgs Ty (X/Y) » (X/Y) x I, defined by fi(x) = (x,1), arc homotopic. Applying
(A.15), we have
) = (nf

- . *
E ) (wfo) (E x I(

(a B) 1

0

Remark; There is another definition of homotopy of trivalisations which is casily
seen to be equivalent to the one given above. The composced man a1a81 Y x ¢ > ¥ x qf
induces a map g : ¥ - Gl(n, €). Wow ay and o, are said to be homotopic, if the
induced map g is homotopic to a constant map. (Realise that GL(n,C) is pathwisec

connected.) As an irmediate conscquence we obtain,

Lerma: If Y is contractible, then any two trivialisations of E|Y are homotopic,

(A.21)
Let X be a compact space, Y a closed subspace of X. The projection m: X - X/Y
induces a mapping

v B(X/Y) > B(X).

(B(X), B(X/Y) is the set of isomorphism rlasses of vectorbundles over X, X/Y

respectively.)
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Now assume that Y is contractible., Then n* is bijective.

Proof: We shall construct a function

¢ : B(X) —> B(X/Y)

e

% ; * .
such that ¢om = 1d and 7 o¢ = id,

If E is a vectorburdle over X, E|Y is trivial by (A.15) Cor. 1. Choose an
arbitrary trivialisation o and define ¢([E]) =EE(Q)], where the brackets [ ]
mean the isomorphism class. By the preceding lemma and proposition ¢ is well-

defined. Let T be a vectorbundle over X/Y.

. : : n . SI ¥ . . * . =
An 1somorphism i : Fy/v > ¢ defines a trivialisation g =id x 1 of m F|Y =Y Xt
We have a commutative dlagramm
# =
mnF X xF
% ]

(r'F) c X/Y x F
(g)

where the arrows denote natural projections. As

(W*F)(B) = {(x,v) ] (x,v)eX/Y x F a pF(v) = x} =F,

* _ ... . e .
¢om = id is proved. If E is a vectorbundle over X and a a trivialisation of

E|Y, define £ : B » X x E( ) by £(v) = (p(v), o({v)). (p : E > E(a) is the projection

o
. g * -
mep) . Clearly f is an isomorphism of E onto w (E(a))C: X x Ela)®

Thus n*o¢=id,

(A. 22)

Let X be a compact space and I the unit interval.

The suspension of X is the following compact space:
£(X) = (X x I/X x{0})|X x{1}

+ s - + = v (v
If C7(X) = X x[0,3]/%x{0}, C (X) = ¥x[3, 1]/ X x{1}, then C(X) VC'(X) = £(x),
4 - + e o
cT(x) N C+(X) = ¥x{3} which we identify with X, C (X) and C (X) are contractible.
Bn(X) will denote the set of isomorphism classes of n-dimensional vectorbundlcs

over X, [X,Y] is the set of homotopy classes of maps X - Y.

Theorem:
There is a natural 1-1-correspondence
B (2(x)) =[X, CL(n, c)].

Proof: A vectorbundle E over 1(X) has trivial restrictions to C (X) and

+ 1. n . n
C(X)e If a,: E : X xC > X x 1

induces a map £ : X > G%(n, C). As n,_ and o_ are determined up to homotopy

t - . - -
¢t > ¢ x ¢ are trivialisations, (a_[X)o(a+iX)

Ls

of trivialisations by E, f is determined up to homotopy by E. We put ¢([E])= [f]n
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On the other hand a map g : X » CL(n, €) defines a clutching function

~r g

n 16 . s + 1
y : £ x € » X x €, vhich can be used to clutch the trivial bundles C  x C°

n
<+

and C x € together, Changing g homotopically does not chenge the isomorphism
C

n - A -
v ¢ x €%, Define w([g]) = |C+ x €0 x @nl
Y .

3 . ° o o . Y
To verify yo¢ = 1d and ¢°¢= id, 1s not difficult. So ¢ and ¥ are bijections. ¢.c.d.

Q

class of C «x

(A.23) Lemma on bundles,

-

Let X be a compact space, E a complex vectorbundle over X, then there exists a

natural number n and a complex vectorbundle F such that E & F = X x o~

Proof: Cover X with a finitc number of open sets U, , above which E is trivial.

Foe . ar i i i . . i
For oll U, sclect sections S7se0035, (1) such that s1(x),°oq,sn(i)(x) form a

basis for Ex for all XéUio

Let {4}, be a partition of unity reletive to {U;}; . We define

55(x) = 0 X:‘%Ui

i
¢i(x) sj(x) xeUs

- . =1, . . g T
Then for every xeX, the s.[¥form a set of generators for the fibre EX° Let U be

X

-1

the number of Sj . e define a hom morphism

3 : Z i -1 "

by sctting olx. z.) = Iz: s.(x)é&E_ .
J J J :

This homomorphism is surjective being surjective in every fibre. By (A.11) the

“ N

kerncl ¥ of 0 exists and by (A.12) is EB F = X xC QeC.eds

Remark: If X is paracompact of finit: dimension, then the lemma 1s still true

(et [12]).
(A, 2k)

We shall establish a classification theorem for Bn(X)’ X an arbltrary compact
space, First some prelinearies:

of n-dimensional vector subspaces of C . Ve can embed

Consider the set Gm
n the uniquely dctermined orthogonal

ity
Gm.n into End (®m+n) by assigning to each geC

1 F)
. ; : a ] Hermitic b1l f shich hac
projection operator (relative to the canonical Hermition metric of Cm+n) wvhich ha

g as its range. We give G, ‘the relative topology. Thus G =~ 1s compact
=9

1, . :
Hausdorff, Let (n, mn g n) be the complex (n, m+n)-matrices of rank n, The rows
of an element of M(n, m+n; n) span an element of Gm - We thus get a projection
9
D : M(n, mn j; n) —G , It is elementary to show that G . has the 1dentification
) myn ’

=

.
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topology relative to p. The spaces Gm , ore called Grassmann manifolds.
s s . A .
G, , s indeed a manifold, but we neither need nor prove this. We refer to |13 |
-9

where real Grassmann manifolds are treated.

We now define the universal bundle Em L over G n°
> ey
The total spacs is E = {{g,c) |g<C rnocel A Cef The projection of this
8L SP “m,n e, )|g n,n’ mn gl prod

bundle is to be the projection onto the first factor. Local triviality is proved

as Tollows:

Consider G 23 a subsnoce of End(C | ). Let xeG . Choose a homomorphism
myn “ m+n m,n
K : Gn*' mp+n such that x & has rank n. Then there is a neighborhood Uof x

such that u.K has rank n for all ue U . The map (u, ¢) + (u, (uok)(c)) defines an

isomorphism of Ux €_ onto B _|U .
n m,n

HWow Let us leave n fixed. The injection j_ : C +> C , defined by
m mn m+n+1
j. (z z = (z s 52 0). induces a continuous map i_ : G + G
Jm( 120000 m+n) ( 190 i )s ol P iy m,n m+1,n
L%
Lenma: 1 E | = 0
—e—— m mrl, n m,n
Proof: Remember that by definition E <& G x € and
e m, m,n m+n
¥ ¥ o
1 E c G X G . x € 3 f: E -~ 1 B , defined by
n mti,n n,n m+l,n m+n+1 m,n nm mtiyn
f(g,c) = (g, i g, j_e), is the recuir 1 iy —orrhisme.
m”® “m & §

(A.25)

Let X be an arbitrary compact space. [X, Gm n] denotes the set of homotopy classes
+9
maps from X to G_ 0" For a fixed n, the sets E:, Gm n] are a direct system, the
m, Ay
maps being induced by the im"s.

Theorem: There is a natural isomorphism

B

7 3 ) 1 ~
lim [X, Gm’nJ 3, (X)
>

Proof:

* 8 .
Amapa : X > Gm o induces a vectorbundle a Em o Over Xo. In view of A.15 this
? gt |
defines a function [X, G ] » B_(X) . If the homotopy classes of a : X + G
< m,n n m,n

and B: X -~ G ropr;:cnb the aame element of lim[X, Gm n], then B and imO o arc
. 9 &

mHl,n %, % ¥ 00
homotopic, hence 8IEm+1,n = a'im‘Em+1.n > Em,n By the preceding lemma.
So we have defined a function ¥: lim [X, Gm,n] + B (X) . Now we define a function
R Bn(X) > 1%3 [X, Gm,n] which will turn out to be the inverse of ¥ . Let E be an
iy

n-dimensional vectorbundle over X. There is a natural number m and a surjective



o
. A
homomorphism of vectorbundle f : X x ®m+n + E by A.23, Putting F(x) = (Ker f_)
the orthogonal complement taken with respect to the canonical Hermitian metric

on € we get a function T : X - Gm n° f is continuous. (Use A.10 and

m+n’
. . 3 ’
orthogonalize the sections) ¢([E]) is to be the element of lim [X, G, n]

oo -
represented by the homotopy class of F.¢ is well-defined : Given two surjectiecve
homonorphisms f.1 X x Emi+n + E (i=0,1), it is sufficient to show that ky o ?O
and K1 0 f1 are homotopic, where the maps K. : G —> G are

- i mi,n mo+m1+n,m
ompositi r the i's. F, : E, T =
compositions of the i's Ft X x mm +n)(mmA+n +> B, Ft(x, v, W)

(1-t) £y (x,v) + t f1(x, w) , defines a homotopy between kqy © fo and a map

F. o [
1 X - Gm S (Note that Ft

0 "1
to ¥ i F = F < H
oK, of,, because K, o f ToF,, vhere T: G . s G m +n,m

92
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is surjective for all teI.) But ?1 is homotopic

is induced by a suitable permutation of the coordinates of

Cm0+m1+n and therefore homotopic to the identiy,

We have to check ¢o¥ = id and Yo¢ = id .

. OE cXxo  xC .
n m

: - %
Let a: X - Gm n be continuous. Y(]m') = El E ,n S

9 m,n] m,

. %
Define f : X x C > o § by f(x,c) = (x,a (x), ( a(x))(c)) vhere a(x)
wm+n m,n
is again considered as an orthogonal projection. £ is continuous and surjective.

L - . .
(Ker fx) = a(x), hence f = o, which proves ¢o¥ = id.

Let £ ¢ X x C i T E bea homomorphism onto an n-dimensional vectorbundle E over
min

X. ¢([E]) =[F]. voo ([E]) = [?*Em.n]u For (x, T(x), c)e?%ﬂm aCXxG oxC

] n+n

s " o . .
define j(x, T(x), ¢) = f(x,c). Clearly j : T E ,> ¥ isan isomorphism,
)

and VYo¢= 1d 1is proved. Qe€ods



o AT e

B, Definition and elementary nroperties of K(X).

(B.1) Definition of the Grothendieck group K(A).

Let & be o comuutative monoid. (i.e. A is set with an associative and commutative
composition given, wli-h ve 1ill call addition aad denote by +).
Let () be the free sbelian group on A, and R(A) the

subgroup generated by the set {(a+b)-a-bla,b A}, Then K(A):= F(A)/R(A) is
an abelian group, and we a canonical additive morphism o: A —> K(A) obtained

by composing the maps A - F(A) -—7%%%% = K(A).

K(A) together with this map o have the following universal property:

Every additive map A —> G into an abelian group G factorizes uniquely

through o : A + K(A). i.e. every diagram

B s B A )
\ s

7
A 7 4
) 4 /
e

G

can be uniquely filled in with a homomorphism K(A) —> G to become a commutative

diagram,

Procf. Let f : A » G be an arbitrary additive map. Let a: A - K(A) be the 5

canonicel map. Every element in K(A) is represented by a formal finite sum . In.a.
i
ni€Z , a;ch, We define ¥ : K(A) > G by
<
£l zna.) =1 niI(ai)eG s
i i
If 5§ n.a. and I n'a! differ only by a finite sum of elements in R(A), then
A | i | - )
£( © nlal) = £(2 niaw.)o By definition of £ , fa = f.
e | . i
i
Suprose now, there are two factorizations f, f'. By definition of K(A), a(a)

enerators for K(A) . So if f, f' are different, there must be a non

1 T |
T belng additive

is a set of g
zero element a(a)ea(A) < K(A) such that ¥ a(a) # ¥'ala) dut this is clearly

inpossible since fala) = f(a) = T'a(a).
g.e.d.

If in A there is also defined a multiplication, which is associlative, commutative

and distributive with respect to addition, (i.e. if A is a commutative

semiring) then K(A) becomes a commutative ring. If there is a unity for the

multiplication in A, then X(A) becomes a commutative ring with unity.
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(B.2) Let A, A' be two monoids, f : A + A’ an additive map. Then o'f : A » A' » K(1}
is an additive map into an abelian group K(A') and therefore factorizes throush

a: A+ K(A) to yield the following diagram.

f

A T

o [ la'
ic( 4)—ELL) K(A")
So we have associated to f : A+ A' a uniquly determined map X(f) : K(4) > X(A7).

It is easily checked that K(1,) = Tk(a)? K(fg) = K(£) K(g).

If f is a homomorphism of semirings, then X(f) is a homomorphism of rings.

We can now say that we have constructed a covariant functor K from the category
of monoids and additive maps to the category of abelian groups, which when
restricted to the category of semirings and homomorphisms of semirings, has its
values in the category of rings.
(B+3) Definition of K(X)

[}

Let B(X) be the semiring of jsomorphism classes of complex vectorbundles on Z.

(X a compact topological space) (Addition "is" the direct sum of vector bundles,
multiplication the tensorproduct, the zero element is the zcro bundle, the trivial

bundle of dimention 1 is the unity for the multiplication.)
Then by (B.1), (B.2) we can consider the ring K(B(X)) which we will write as K(X).

: *
If £ : X> Y is a continuous map. Then f induces a map © : B(Y) + B(X)
“7/
defined by Ewvv> f*E f*E being the indual bundle over X (A.k),
3 % % ¥ * * .
Moreover T (E& F) =~ £ (E) 6 £ (F) and T (E® F) = £ (E) 8 £ (F), sof isa

homomorphism of semirings. This induces by (B.2) a homomorphism of rings

K(f) : K(Y) —> K(X)

and we have defined a contravariant functor K : comp ~ (ring) (comp is the

category of compact spaces).
* *_ . . .
We have already proved (A.15) that f E = gE if f 1s homotopic to g. Therefore

K(f) = K(g) if f is homotopic to g. In the language of catcgories this means that
the functor K factorizes through the category Htp on (the category of compact

spaces and homotopy classes of maps ) .

(B.4) Line Bundles in K(X).

17

A vectorbundle E on X is called a line bundle if the dimension of E_ is 1 for al

xeX. The tensorproduct of two line bundles is again a line bundle. Morcover i%

L is a line bundle, then
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¥ 8L = Hom(L, L) (cf. (A.T))

and there is a nowhere vanishing section in Hom(L,L) in fact the section 1L’
so by (A.3) Hom(L, L)= 1, The trivial bundle of dimension 1 is the unity for the
tensorproduct. We have shown that the isomorphism classes of line bundles on X

form an abelian group €7(X) c B(X). hov. 2 ¢ L

This group is of course mapped into K(X) and its image therc is a subgroup of

the group of units of X(X),

(B.5) Lemma

Bvery clement  of K(X) can be written in the form [E] - [n.1], where E is a

vector bundle on X, [E] the corresponding element in K(X).)

Proof., Every element £ of X(X) can by definition be written as a finite sum

<o
E = I n, [Ei], whe?e the Ei are v;ctor bundles on X, nic_’Z{-c

By (A. 23) for every Ei which has a negativekcoéfficient, ve can find a
bundle Fi such that
-[Ei]= I_Fi] - [mi. 1] °
So we can write £ in the form
<o

- '1 . 3
£ = § ni([FiJ - [mi.1])w1th n;>0 all i.

>

Taking the direct sum of all the Fi's we get the desired representation of & .
Jee.ed

(B,6) Stable equivalence

Two vectorbundles E,F on X are called stably equivalent, if there exist natural

numbers n,m such that E & n.1 = F & mo1 &

This is an equivalence relation in the set of isomorphism classes of vector bundles

as is easily checked. Let I(X) denote the set of equivalence classes so obtained.

The direct sum of vector bundles induces an addition in I(X) . There is a

zero element, represented by 0, (which is stably equivalent to every trivial

bundle n.1), and (A.23) shows that there is a negative for every element in I(X).

Therefor I(X) is an abelian group.

If f : X+ Y 1is continuous, K(f)
I(f) : 1(Y) » I(X) in the obvious way. Then I is a contravariant functor from

« K(Y) > K(X) is defincd., Define

the catcgory of compact spaces to the category of abelian proups.



(B.7) Lemma

Let X be compact and connected. Let E, F be vectorbundles on X, then [E] = [F]

in K(X) if and only if there exists a natural number n such that
E®n.l= F&®n.,l

Proof: If E & n.1= F & n.1 for some n then [E] + [n.1]= [F] + [ne1] and K(X)
being a group [F] = [E] follows. Now suppose [E] = [F] . There is a map

£ : B(X) » I(X) defined by f(E) = stable equivalence class of E, This map is addit:
I(X) is a group so f factorizes through X(X)

o

B(X) K(X)

\\ \f / }«
Y £

This means that if [F] = [E] then E is stably equivalent to F. Now let x be

™

an arbitrary point of X. There is a map B(X)-=—> Z defined by e(E) = dim E,-

This man is sdditieve and therefore factorizes through K(X) and so if [E) = [F!

then dim E. . =dim F .
2 %

[ 1] = [F] implied E, F stably equivalent, so there are natural numbers mgp
such that E @ nyl ¢ T @m1 sodim(E) +n=aimF +m but dim By = din F,,

SO m=n° QHeado

(B.0)
The foregoing shows that for each xeX there is an isomorphism K(X)

defined by g([E]) = ({E}, din(L)), where {E} denotes the stable equivalence class

Vv
X

£ ,1(x) & Z

of E,
Let * be the space consisting of one point only, choose a basepoint erX°

Then we have maps

i L
* X
P
(i(x) = xo) such that pi = id.
S0 we get the exact sequence
K(*) ——I:;———> 7(X) —> K'(X) —> 0

* '*r
K'(X) is defined as the cokernél of p . We have a map 1 K(X) » K(*)
such that i*p* = id, so p* is injective and the sequence splits, K(*) = Z , so
K(X) = K'(X) 8 Z

K'(X) and I(X) are isomorphic by the homomorphism obtained hy composing the
i i n
injection K'(X) —>K(X) with the map K(X)——>I(X) constructed in (B.T).



- 271 =

If we work in the category of spaces with basepoint we define

R(X) = K(X, x,) = Ker(i® : K(x) —K({x})) .

. " .
The foregoing shows that K(X) = I(X) : not canonically however as the

isomorphism depends on the cholce of basepoint.

C. Some remarks on the proof of Boti's periodicity theorem

This chapter contains the formulation and part of the proof of Bott's periodicity
theorem which is lateron needed to define a cohomology theory based on the functor
K of chapter B. For a complete proof we refer to [5] . We have included some
spectral analysis which is required for the proof of the periodicity theorem.

We treated the case of Banach speces though in the application only finite-
dimensional vector spaces occur., What we assume to be known about Banach spaces
can be found in "J. Dieudonné: Foundations of lModern Analysis (New York and

London 1960)",

Some spectral analysis:

(Ce1) Let pr : @2 - {0} ~» P1@ be the natural projection. We consider C as a

subspace of P1® by assigning pr(z,1) to zeC.

Definition: If E, F are complex Banach spaces, A,B : E~+ F bounded linear

operators, define Svec(d, B) cpP,C by
neeld

nr(z, w) & Spec(A, B) <=> Az + Bw is invertible with bounded inverse.
= 2 g .

(Realise that this makes sense).

Any point of P.C which is not in Spec(A, B) is ralled a regular point (of the

1
pa’ir (A’ B))o

Remark: If E, F are finitc-dimensional vector spaces, every linear map E—F 1is

a bounded operator. Therefore pr(z,w) eSpec(A, B) if and only if the matrix

Az + Bw is singular.

(C.2) Lemma:
Spec(A, B) is a compact subset of P,C.

Proof: It is sufficient to prove that the set of regular points of (A,B) is

be a regular point of (A, B). Without loss of

open in P.C. Let pr(z, v)

generality we may assume w#0 and even w=1.



- -

°

Let C, denote the real number dor | (Az + B)°1|

1 ;
Let z'¢C be such that |z—z'|<E——WKF - We prove that z' is a regular point of
zZ

(A, B). The series

(oo}
1-

S= 1 (a2 +B)7 (z-2')* (a(az + 3)"HH ¥
k=0

is convergent if |z-2"| <6—lmm[, hence a bounded linear operator. (Remember that
z
the space of bounded linear operators from E to F is a Banach spacec.)

It follows by an easy computation that S is the two-sided inverse of Az' + B.

Qoo e

(c 3)

Let k be a 2-disk in C (differentiable) such that for 3 k (the boundary of k )
d k /) Spec(A, B) = ¢ holds.

We define

F T ]
e (A, B) = = 8£1&(Az + B) 'dz .

This integral is well defined, since for every z &3k (Az + B)-1 is well defined
and bounded., For every zedk A(Az + B)-1 is a linear map of F into itself, the
integral is approximated (uniformly) by linear combinations of these linear
maps, and therefore Qi(A, B) is a bounded linear operator in F. (3k 1is compact

|Az + B)_1" <C for a certain C>0).

therefore “i[

Similerly w: define

QCa, B) = == [ (hz+ B)”'a az
K 9k

Enl

QE(A, B) ¢End E is a linear operator on I .
(Co 4) Lemma

If k and k' are two disks such that

9%k N 3k' = ¢
3k /1 Spec(A, B)
0k ’N Spec(A, B) =

il
= =

then the following holds
. E N _E it
a) if kpk' = ¢ QE(A, B) Qk,(A, B) =0 = Qk.(A, B) Q(

E
b)ifkic k  @L(A, B) @y (A, B) = (A, B) = (A, B) A, B).

A, B)
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: E E 1,2 - g
Proof: OX(A, B) ka(Aa B) = (E;T) [(Ag+B) a dg [ (An+B) 1Adn

ok ok?

= (= )° [ (ue+ B)7" A(an+B)™"a ar an .

2l
-1 =
Wow (Ag+B)_1A(An+B)-1A . (Ag+B)” A - (An+B) A
n =g
-1 - - - " .
por  (AE*B)T - (anem)” (A£+8) ™' (An#B) (An+B) ™ ~(ae+B) ™ (A+B) (An+3)
n =g n-g

= (ag+3)"a(an+)™!

ff Ag+B) A - (An+B) 1A

So the integral becomes (
n =&

This integral is well defined for |n-g| stays larger than a certain e¢>0 since

3 k and 3k'" are disjoint and comnact.

Let now k /) k' = ¢ o
=1

Then - AEB) A g = s (Ac+ B)7A [ ;—1—5 an = 0
ok n - £ ok’

for every ¢ ¢ 3k, and

1 f An+B) dg = 0 for every nedk’ .

2m1 i -
= -1
X ~ (An+B
So (_;Lr)e ff (A€+B) A -~ (An )A'dndg =0 .
211
n= €
Suppose k'c k .
1 (Ag+B)"1A 1 (An+B)’1A _
Then = =g =0 and = [ dg
2m1 ak_' n - E Bk n - g
£ et An+B) I d_ - . (An+B)_1A for every nedk'
2ori =g
3k
(n lies inside the integration circle).
So
(Ae+B)” "n - (An+B)” 'a 1 / (A+B)_]Ad E (4, B)
- 1 - - n n = 1 D °
(22 ents = x| % (8

n=-£ g.e.d

(C. 5) Proposition

Qi(AaB) is a projection



Aiivel

(i.e (A B) Q1 A, B} = Qk(A BY) ..

Proof:  Spec(A, B)c € 1is closed in €, and 9k is compact and 3k /1 Spec(A,B)

so we can find ¢>0 such that if

U

{z'| Jzesk with |z'-z|<¢}
/]

So we cen find a disk k'<c k such that k' < k°  and k' < U,

then U /1 Spec(A, B)

By the theorem of Cauchy then

[ (Az + B)-1dz = [(az + B)"1 Adz .

ok’ ok

Applying (C.l4) we get the desired result.
One prcves in the same way that QE(A, B) is a projection

(C.6) Lemma

1

-3 = B(Ag+B)” A

Let  geC. If g éSpec(A, B), then A(Ag +B)

Proof if g= 0 trivial, suppose £ # 0
tA(Ag+ B)
+ B(Az+ B)“1B = B-B =0 , g.e.d.

(C. 7) Proposition

The Banach space E splits as a direct sum of the linear space

E, = Q}?(As B)(E) and E = (I- Qi(A, B))(E), T splits in the same way. Now

- -1
-1z - B(AE+ B)"'ag=  (B+EA)(AL+ B) '8 - B(ag+ B)”'B - B(Ac+

B -1(Ag+B) ¥

(Az + Bv)(E,) = T, and (Az + Bw)(E=) =F_, so (Az + Bw) splits into a direct

sum of two linear meps (Az + Bw), : E +F_, (Az + Bw)_

(Az + Bw) = (Az + Bw)+ ® (Az + Bw)_ .
Proof: The following diagram is commutative

Az + Bw > F

Qi(A, B) Qi(A: B)

Az + Bw
B —> I

For A(Ag+ B)™ (Az + Bw) = (Az + Bw)(At+ 8)~'A by (C.6)

-1
0 (ai A(Ag + B)~'ag) (Az + B) = (Az + B) a}{ (Ag + B)™ A dE

s E_ ~—aF_

s
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The Qg(A, B) and Qi(A, B) being projections, the spaces E and F split as
indicated in the proposition., The commutativity of the diagram gives immediately
that (Az + Bw) (E.) € F_ and (Az + Bv)(E_) C F_ and therefore (Az + Bw)
splits into (Az + Bw), ¢ (Az + Bw)_ ((Az + Bw),

to E, analogously (Az + Bw) )

being Az + Bw restricted

(C. 8)

Proposition:

Let z, v be complex numbers, not both zero. If pr(z, w)¢k, then

(az + Bw), is invertibel with bounded inverse .

]
1 [ (At + B) a .

Proof: Consider (Az + Bw) . 5T = 7
ok
3k is compact. So there is an e>0 such that |we - z|>e for all Eedk

| (At + B)wll| is bounded, since ok is compact and Spec(4, B) /1 3k = @, Thus

the integral is well-defined, Now for wg # z

-1
(Az + Bw) (Ag +B)” _ _W 1a - Ala + B
wE= 2
WE - 2
So -~ F . o]
| 14 - Qk(A, B) , if pr(z,w)e¢k
-l |
. 1 (Ag+ B) =
(42 + Bw) 27l ai WE = 2 oz A
I Qi (A, B) , if pr(z,w)gk
)~ L
S0 = = i (A + B ag is a right inverse of
21l -
ok wE =% }+ 1
1 (Ag+ B)”
; - - - a
(Az + Bw), . Similarly one checks that 5T ai = g £ F,
is a left inverse of (Az + Bw)_ ge.eods

. : : 1 1 1 : 1 ded
Remark: Taking w = 0, we see that 1n particular A, 1S invertible with bounded

inverse.

O . . .
Txercise: Prove that if pr(z, w) ek ©, then (Az + Bw)_ is invertible

with bounded inverse.

On the proof of thglgﬁggriodicity theorem,

" 1] over 82 to be the dual of the universal

(C.9) We define the "Hopf bundle

2
one bundle E1 over G1 1 = P1(¢) =5

1 ? 2 2 . s
) 2 >
compact space, ™ . X x 85+ X, ﬂz : X x 8 > 8S the projections. Then the

For definition see A.24 . Let X be a

periodicity theorem says:
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Periodicity Theorem:

The homomorphism

£ : K(X) 8 ,K(5%) —> K(X x §°)
given by X @ ¥y = px()u(y)
is a ring iscmorphism,
(C.10) We deduce this from the following two propositions:

Proposition 1: If x is an arbiitrory element of K(X x SE), then there exist

xic-K(X), i= 1,2, such that

'
EN

X'= 1

1By oF ﬂf X, * ﬂ:( [H]-1).

Horeover X, and X, are uniquely determined by x.

Proposition 2: 1In 1{(32) holds

([H]-1)2 =0,

Proposition 1 states thet K(X x 82) =« K(X) & K(X) as an abelian group. For
X = {point} we sce that K(Se) is the free abelian group with 1 and [H] as
generators, Proposition 2 determines K(SQ) as a ring and thereby the ring
structure of K(X x 82)° Now the theorem is an easy consequence:

I o % . - 2
If x = m ox, + 7, X, Trg([h] - 1), then g : K(X x 8%)—> K(X) 8, K(s )s

defined by g(x) = (x1=x2) 81+ x,8 Dﬂ, is an isomorphism of rings and f is

its inverse.,

(Co11) We shall prove Propositions 1 and 2 except the uniqueness of X5+ The proof

is essentially besed on clutching and the fact that homotopic clutching functions

give rise to iscmorphic vectorbundles.

: : 28 : :
First observe that if peS2 and 1, : X > X x5~ 15 glven by 11(X) = (x, p) , then

i i ; . ¥ R .
M1, =1d and m, i, = const. Hence 1,X =X, , because i, T, ([H]- 1) = o.

Thus we have the unigueness of X It is sufficient to prove the existence of
N 2

X5 X, for x =[E] , vhere E is a vectorbundle over X X S,
[

Consider 82 as the union of the two disks

Dy = {z|zeC A|z|< 1} and D = {z]zeC ~ 2|2 1}U{=} .

Dy ND, = 81° We define the following maps:

=
[}

1
-~ = x 8
ml %% D, =l XD = T
Syt X+ ¥ xg® 54(x) = (x, 0)

w X > X x 52 . Sm(X) = (x,) .

0
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P 0

o End

) P — x, .
Let LO = 8, E = smE° T and m_are homotopy equivalences. Therefore

is
s o < o ° O
isomorphic to E o Ve identify the two bundles and use the notation F for

¥ = wl3 i h .
Moo © E|X x Dos T B.= E|X x D . Since Sy and s_  are homotopic, E

both. It 1s clear that E can be obtained by clutching n;E and

] = “*F
% * i A v . 1
mel - =n_F, the clutching function being the identity of I|X x &', So we have
. 2

e following result: Any vectorbundle over X x S° can be obtained by clutching

# ’
F and n _F, where F is some vectorbundle over X and the clutching function )
s ; ’ * . . .
1s some 1somorphism of m F onto itself, ¢ may be considered as a continuous
map

b+ X x §lis Hom(F, 7

such that ¢(x, z) € Iso(F Fx).

%
For X = {pyint} this means that each line bundle over 52 is given by a map
o: s' > GL(1, €) = € - {0}. A clutching function which gives rise to the
bundle H*, is the map which assigns to zeS1 the isomorphism z. IdC'
We simply denote it by "z", Now we prove H° @ 1~ H @ H which implies
Proposition 2. According to Proposition A. 17, H2 ® 1 and H ® H are given
by the clutching matrices (gz ?] and (g 2), respectively. But these are
ED = @G DG Dl Y-

homotopic in GL(2,C), since 0 1

2
How we return to the general case of a vectorbundle E over X x 57, Let F be a
* * : . .
vectorbundle ovor X such that E =ﬂOF \aznwF, where ¢ 1s some clutching function
as above, Choose a Hermitian metric on F, Thus FX is a finite-dimensional Worred

space for all xeX.

< S 1 X,2
1 st step: The %~-th Fourier-coefficient of ¢ , ak(x)n ST f1 ¢(k11) dz,
Sz
is an endomorphism of F, and depends continuously on x. Define
.S

i
SN(X,Z) = L a.(x)zke End FX" By the theorem of Fejér the sequence

Lk =-0
1
¢N. - 'ﬁ'( SO+. o Q+SN_1 )

converges to ¢ uniformly in z for each xeX. As X is compact, ¢, converges

uniformly even on all of XXS1 . The ¢N need not be clutching functions,

because non-singularity is not guaranteed. But as the clutching functions

form an open set, ¢N is a clutching function homotopic to ¢ for smome N.

o - ° - * o v - - -
So it is sufficient to prove the existence of the xis only for clutching function

which are finite Laurent series in z as i$ ¢N'

z f_(x)zk.

2nd step: Let E be given by a clutching function o(x,2) = ¥
e {==I
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. . %, Hom . g
fhen E € wE(H )" is oltained by ¢. z". lNow assume [E e n;(H*)m =

= 7 Xy oMy X, o o [H]=1)

Then [E] = n? X, WZEH]m + n? X5e HZ(([H]-D[H]m).

Jh:mh 1+m [H]“1 by Propositicn 2, Thus

* m . ’ :
[£]= + ﬁT(mx1+x2) 1,([l] ~1)s But ¢.z° is a polynomial in z. So we may
conflne oulselves to polynomial clutching functions,

n
3rd step: Let p be a polynomial clutching function, p (x,2z) = AR ) (x) 2z,

Clearly it is sufficiert to verify the existence of the xls for gne vectorbundle.

: #
(ﬂgF \,/n:F) & mom F

v 4

vhich is given by the cluvtching matrix .. of m+l1 rows, Ve assert:
1
:‘/?‘, ' fooonoaoaao:fm
<>° l o~ e 1
o ! “e e
TJ -z 1
for 1T Pyoeee,d, fr2 able polynomals, then
( (- )
1 o000 \4 'n f eooe f
! ™ Py ;f1° m: LN 0 1 n
1 i ° “o ° - =7 oa
, o ')D °° o° = 00 . °
i i J "1 ~z 1 2z 1
\

the first and the third factor being homotopic to the identity.

ﬂtg_ste;: Ve only hove to deal with a vectorbundle E coming from a linear
clutching function L{x,z) = A(x) z + B(x), vhere A(x) and B(x) are automorphisms
of Fx depending cortinuously orn ¥, We apply C.T . D0 is our disk ¥k in C. Then
Uk f)opec(A(x), B(x)) = ¢ is satisfied, because A(x)z + B(x) is a clutching
iunetion for zro1, Tor each xeX, ({ﬂn)ECE- {0}, A(x)E + B(x)w splits into a

jirect sum of linear naps

+
:
-+

A+(:)€P B+(x)w: T e Fx and

®x N

A_(x)€+ B_(x)u: F



+ - +
h - =% . . :
such that Fx ® Fx Fx 8 Fx Fx . As Fx 1s the range of a projection

operator depending continuously on x, namely QDX (A( )? B( )), F+ = L) F;
_ g~ A 5 x€X
is a subbundle of F. (Note that for a projection operator rank = trace, and

trace is a continuous function.,) Similarly define the subbundles
- Ak A . - o
F, ¥, ¥. Ten F=F o7 =% 8 1.

By C.5 AE +Buw and A g+ B w are bijective (hence clutching functions) for

pr(&,w) e D and pr(g,w)eDo respectively. (pr: c, - {0} » Fitos s° the

canonical projection.) Especially A _ is bijective ( w= 0), and so is B_(£=0).
Therefore A,z + B, is homotopic (as a clutching function!) to A,z and
Az + B_ to B_. Homotopies are given by Az + tB, and tA_ z+ B_ respectively
So it does not matter whether we clutch
A+z 0

0 B !

by L or by

E :(n;F" et % e (n;F- \B/n:F“')
e -

=(n:‘(F+ w ) 8 nZH*) ) nT(F’ w ¥)
A B

+ .

Hence in X(X x 82)
[E] = nf[F*T ¥l my (6] + nT[F_\B_/ F)

+ -

low it is easy to determine X1s X, such that

[E] = ] x, + 77 x,0 ma([H] =1). ke Y )

Remark: The uniqueness of X, is obtained by a thorougher investigation of the

process of simplifying the clutching function,
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D. Exact Sequences in X-Theory

(Do1) We recall the definition of K' : If £ : X —» point is the projection of =
tonological space X onto the spece "point" consisting of one point, then by definitio

X'(X) = Coker K(f). Thus we have an exact sequence

0 = K{point y=*= (%) K X)——* 0

vhich snlits by B.0. It is clear that for a continuous map gt ¥ * Y, K(g) induces
a homomorphism K'(g) : K'(Y) > K'(X). So K' is & contravariant functor from the
category of topological spaces and continuous maps to the category of abelian grouns

and homomorphisms.

(D.2) Let (Y, X) be a compact pair. As Y/X has a distinguished base-point,

K(Y/X) and K'(Y/X) are canonically isomorphic.

Proposition: Let i : X > Y be the inclusion, p : ¥ > Y/X the projection. Then the

sequence

Rom K@ gy HL

is exact.,
"
(Remember that X(Y/X) < K(Y/X), if B.8).

Proof, If s e.%(Y/X) , then by B.5 a = [EJ =N, [1] for some vector bundle E
over Y/X and some natural number n. K(i) K(p)a = K(pi)a = [(pi)*E]- n.[1)= (d-n)[1]
where d = dim (E| base-point). But 4 = n because a ¢ Ker(K(Y/X) * K(base-point)).
Thus the composition of the two homomorphisms of the sequence 1s zero.

o let [F] - m. |1YI e K(¥) such that X(1)([F] - nl1.]) =0, i.e. [Flx] = n[1 ]

in X(X). By 3.7, F C 1y ® (m+k) . .1y for some natural number k, whence

dim F'X = m, So there exists a trivialisation @ of G = F 61{.1Y over X,

*
As G = p G( s (r] - nl ] K(p)( C’a) - (k+m) [1] ). Ve have to show:
[c ] - (eem) [1] € K(Y/%) = Ker(X(Y/¥X) —X(base-noint)).
This is clear, since dim Fl% = m. q.e.d.

T

We now extend the definition of the function K to the category of compact nairs. I
(Y, X) is a comnact pair, let K(Y, X) = K'(Y/X). For maps of compa ct pairs, K I
defined in the obvious way. If we put Y/§ = Y v point (disjoint union ), this
extends the former definition of X, because K(Y, #) = K'(Y U point) = K(Y).

Define K(#) = 0. Then for every compact pair (Y, X), we have an exact sequence

of abelian groups
K(Y, X) —> K(Y) — K(X).



Y

(D.3) Mapping Cylinder, lMavping Coue.

Until D.6 we shall assumg_all spaces occurring nonenpty.

Let X, Y be compact spmaces, £ : X > Y continuous. The mapping cylinder Zp of f is
defined to be a certain quotient space of the disjoint union X x I U Y. If

g : X x {0} » Y is the map gl-, 0) = f(x), define Zp =X x1 \‘é'Y . There is 2
natural continuous inclusion 1 : Y - Zf induced by the nrojection p : X x I WY » 1
The natural injection jJ ¢ X=> X % {1} yields an injection p ° j : X > Zg
which is also continuous. So we may consider X and Y as subspaces of Zf. The

napping cu.2 C, of £ is defined as Zf/X, Both Zf and Cf are compact. The mappin-

51}
cone of idy is also called 'the cone over X", notation CX. If f is injective, then
CX ¢ Cfo
(D)
map

If X and Y are compact spaces, a/f : ¥ > Y gives rise to the following sequencc

of spaces and maps (the so-called Puppe sequence):

£ £ £ 11t
X L o Ot Gy —b B

Proposition: The sequence obtained by applying K' to the Puppe sequence is exact,

Proof: Consider three consc - “ive  spaces of the Puppe sequence. The third spacc

& %

is the mapping ccme of the map from the first one to the second onc. Therefore 1%
is sufficient to prove exactness of the sequence

K'(Cf)——-> K (Y) —- K'(X).

The diagrarm

is commutative up to homotony. So it induces a commutative one for K'. As the

inclusion Y < Zf is o homotovy equivalence, we only need to show that

K1 (C,) —> K (3)—> K (%)

is cxact. This is clear by D.2 and B.0 (choose a base-point in X). P

(D.5)

The suspension X of a comnact space Y. is the quotient of X x I by the followinr
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equivalence relation n
€ X x {0}

Xy, ¥ or X,v ¢X x {1} « Then X=X »I/n,

The suspension of amap f : X > Y is the function If :

following diagram commutative:

fx id

X x1I

Proj.

X

If x, vy € X x I, define X } if and only if

IX > Y which makes the

£f 1is continuous. Thus I is a functor from the compact category to itself, If f

and g are homotopic maps, then If and Ig are homotopic.

We eare now in a position to define a diagram which will turn out to be commutative

up to homotopy. Let (Y, X) be a compact pair, f the inclusion

L) (5)
- b £ £ £ f( £
Fay Y Cf > CfV Cf" > Cf"‘ S Cf(h)
h \ o ot gn {:""'
N »
X LY > ZCf > ZCf,
b
N
Zh \\ rg
(%) \

EF i

The upper row is the Puppe sequence of f,

2

(n=1)=th row, suitably shifted. g is defined as follows: In the diagram

Y — C Lo
£ £t

s

cx/)"—f’i»c el Y ¢ -

Y——+ 000

The n-th row is the suspension of tlic

the vertical arrows stand for natural projections, the upver horizontal arrows for

inclusion maps, and ¢,y are defined as functions such that the diasgram is comruta-

tive. ¢ and ¥ arc bijective. ¢ and ¥ are continuous, because the vertical maps are

onto and all spaces occurring in the diagram arc compact.
=1 =1

Thus ¢ and Y are homeomorphisms. Define g = ¢ ¢ 7.
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//CX cx\\
<

/
X S ~ .
Y p
\\\\\ cY

(n) ki i

n) . ; :
& 1s defined in the same way as g, namely as the comnosition of the maps
C —C B . IRy

A1) T Garry C.(n) L (n-2) *

¢(Co(n-1)) £ C £
¢ n-1)

(Put Cp = Cf(o) , Y= cf(_1) )

Finally put h = gf", Wow the diegram (#) is well-defined.

(D.6)
Proposition: The diagram (%) is commutative up to homotopy.
Proof: Clearly, it is sufficient to verify that g'o f™and gfo g arc

homotopic,

f"q

Cf' Cfn

g g’

X - LY
g

Consider the smace T = X X [0,1] VY x [-1,0] as a subspace of Y x [-1, 1] .
Ce is a quotient smace of T : Take X x{1} and Y x { =1} into one point ecch.

Let p : T » C,, be the natural nrojection, Define F : T xI +Y xI hy
4

(z, 1) if 1-sgt
F(z, t, s) = (z, t+s) if -s<tgl-s
(z,0) if  t<-s
F is continuous and induces a function C : Gpyx I » 1Y which is defined by

requiring commutativity of the diagram
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T % I > Y x T

p x id nat.nroj.

C,.,xI > Y

i c

The usual compactness argunent shows that G is continuous. Now check GO =%If og

and G, = g' o - S Qeceds

(D7)
The Puppe diagram is the following diagram induced by (%):
L)

- £ f' f" N f"’ f(

s — Cf — Cf' Cfn > Cf"v cf(h) T
(e ) ; . .

1d 1d 1d g g’

> > > LY - > 2 o
i gk Lt Do W T B 30, e N e

The vertical maps are comnositions of vertical maps of (*). So to prove that the
vertical maps of (*x) induce isomorphisms for X', it is sufficient to show thet
K'(z"¢) is an isomorphism for all n=0,1,.4s &

This follows from

Lerma: Let (A, Z) be a compact pair, Z contractible to @ point, p : A + A/Z the

projection map. Then X'(z'n) is bijective.

Proof: Consider the diagram

I’l

> 1%(a/2)
N
"A/5"z

. . . . . . « o n
q is the naturel projection, v 1s uniguely cefined by requiring vol p Q.

Then v is continuous, because A and Z arc cornact. 3(:"2) = 1 (noint). By
A.21 q and v induce isomorrhisms for K'. Hence the vronosition.
-1 =1
Jov remember the definition of ¢ in D6: o= ¢ ¢ 1
As CY is contractible, 71(g"r) is an isomorrhism by our lerma. Therefore g (gh)

is bijective. As the Punne diagram (##) is cormutative up to homotony, we get a

commutative diepram, if we apply K' to it. Using D.l, we have the result:
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Theorem: The lower row of (%%) induces an exact sequence for K':

K (22X)e— oo

K (X)e— K'(Y) e=— K'(ka———- K'(zX)< K'(2Y)<— x'(ch)<

(0.8)
We vant to establish an exact sequence, replacing Cp by Y/X. Define ¢ : Y/X » CI/CL
such that the diagram

Proj Proj.

4 p QRN BTN S v
/ 3 cf/c_

is commutative. Then ¢ is a homeomorphism (cf, D.5). So we have a map v : Co—> Y/X
AR T T L
such that K'(I"v) is bijective (apply D.7. Lemma). Using v we mey replace Cp by

Y/X in the sequence of the last theorem to get an exact sequence
K'(X) « K'(Y) « K'(¥/X) « K'(2X) « K'(2Y) « K'(2(¥/X)) « K'(£2X)« ooo

Remark 1: The homomorphisms K'(z™(Y/X)) » K'(z"Y) are induced by the natural

projection Y » Y/X.

Remark 2: The above sequence is natural with respect to a continuous map of

compact pairs (Y, X) — (B, A).

(D.9) Definition and Properties of K-Theory.

From now on we admit the empty space again.

For a topological space Y let v¥ denote the disjoint union of Y and a point. A nmar
g : X > Y induces a map g+ o X Y+, homotopic maps from X to Y induce homotonic
maps from X" to Y. If X c Y, it is convenient to define Y/X = Y7X+. Then a

quotient space Y/X is never emnty and has always a distinguished base-point.

Using the functor K', we now define a cohomology theory - the so-called K-theory -
on the category of compact pairs and their maps which satisfies all the axioms of
Eilenberg and Steenrod cxcept the dimension axiom. The latter does not hold becausc

it is not compatible with the 3ott periodicity, as is seen lateron.
Definition: For I = 0,1,2,... and any compact pair (Y, X), put
Ky, %) = K (Z(¥/X)).

Remark: The righthand side is isomorphic to ®(R(y/x)). For K°(Y, @) we write
v (y). x°(y) = K'(Y+/¢+ ) = k' (Y") = X(Y). Clearly K™® is a contravariant functor,

if we define K" for maps in the obvious way. We define the exact sequence.

- - =1 =20y
z O(x) « kK°(Y) « K°(Y, %) « K N(x) « x "(y) « x (Y, X) « K °(X) « oo
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=1 . . . . - . .
Clearly X = is a contravariant functor, if we define K % for maps 1n the obvious
way. We define the exact sequence
_2(

X) 4 000

o - -
KO(X) « K(¥) « K2Y, X) « K"H(X) « K1 (¥) « k°'(y, X) « K

of the pair (Y, X) as the exact sequence of D.8 for (Y+ X+) instead of (Y, X).
(Note that K™2(Y) = K'(g (Y'/¢ )) = K (zHYT)).) Thereby we have already defined
the boundary operator § : K i 1( () —K"(Y, X). By remark 2 of D.8, §is compatiblec
vith meps. The homotopy axiom is satisfied, because two homotopic maps induce the
same homomorphism for K as well as for K'. The excision axiom holds in this

formulation:

Proposition: Let (Y, X) be a compact pair, A< X, A open in Y. Then the inclusion

it (Y=A, X-A) > (Y, X) induces isomorphisms for K,

Remark: Realisec that Y-A and X-A arc compact if and only if A is open in Y.
Furthermore kn(Y X) and K (Y/¥, point) are isomorphic by definition and an
isomorphism is induced by the natural map (Y, ¥X) » (Y/X, point).

Proof of the proposition: X = @ is trivial. So let X # @. Assume A # X. In the

conmutative diagram

(Yul, Z-h) . > (Y, X)

i
Proj. Proj.
(Y~A/¥-p, point ——%————————> (Y /%, point)

. . . . . .l . I
The two projection maps induce isomorphisms for K =, so does J, because J 1s 2

. =1/ . . § % o
homeomorphism. Thus ¥ (i) is bijective.

~~I

In cese that A = ¥, Y/X = (¥-x)*. So K™™(¥-a, @) = K™(Y - X, #) = K (Y, X).

Remark: The ebove excision axiom implies the one given by Lilenberg and Stecenrod.

(D.10)

We introduce some operations in the category of compact spaces with basc-point and
basc-point nreserving maps. The base-point of o space is often denoted #. Let
X, Y, Z be compact specces with base-points Xgs Yo 2 respectively.

Definition: The join X v Y of X and Y is a subspace of X x Y:

(%, ¥) e XxY and (x =y5orys= yo)} .

Xvys= {(./:1 3')

The smash product X AY of X and Y is a quotient space of X x Y:



Properties of V and A :

T« X VY and X AY are compact spaces with base-point.
2. Aand Vv are commutative and associative.

3. Alis distributive over v , i.e. XA (Y VZ) = (X vY)A (X vZ).

Only the following two properties are non-trivial:

The smash product is associative for compact spaces.

Proof: Let (X, xo), (Y, yo), (Z, zo) be three spaces with base-points. We define
X AY AZ (without brackets) as the product space X x Y x Z with all points

(x, ¥, 2z) with either x = Xgs ¥ = ¥y OF 2 = 24 identified to onc point, the basec-

point of X A Y A Z, We consider the following sequence of maps
ExYxZ>(XxY)xZ +(XxYxv )xg ->(XXY/YVY)XZ/(XXY/XVZ) g/

(X A Y) A Z,
Then a point with either x = Xgs ¥ = Yo OF 2 = 2 will be mapned into the base-poiut
of (X.A Y) A Z. Therefore we have a continuous surjective map X A Y A Z > (X ANY) AL,
This map is bijective, for if the point (x, v, z) is mapped into the base-point of
(X AY) A Z, then either (x, y) = *eX A Yorz = Zgs Whence X = X;, ¥ =y, OF 2 = 2,
The spacc X AY A Z and (X AY) A Z are compact (because A /B is compact for any

compact peir (A, B)), so they are homeomorphic. g.eedo

The smash product A is distributive over thc join v for commact spaces.
Proof: Let (X, xo) (v, yo), (Z,z.) be compact spaces with base-noint. Consider the
composite map

X x (Y vz) —E25(x x ) x (Y x2) ~(Xx¥) x (Xx2) > (XAY)x (XAZ),

(@ is the disgonal map.) This is a continuous map. The image of this nap is contained
in (X AY) v (X /\Z), for if in (X’ y, Z) & ¥ ox (Y AV Z) y — YO’ then (X, yo) = ¥eXa Y

) = % € X A Z. Thereforc we have a centinuous map

and if z = z., then (x, z

0? 0
f:Xx(Yvz)— (XAY) Vv (XAZ), This map is surjective; e.g. let

(*,(x, 2)) € (XAY)V (XAZ), then f(x, Yo» z) = (%, (x2)). low let

(x, ¥, z)é-m x(YyZ) and suppose that f£(x, y, z) =% ¢ (X AY) v (X A Z), then

(x, v) =% €¢X AY and (x, z) = % € ¥ A~ Z, hence x = Xy OFy if x # Xps ¥ =¥ and
z

= ZO' So we have:

£lx, ¥, 2) =% <= (x=x,) or ({yy, z9) = (v, 2)) .

That means that f factorises through ¥ A (Y v 2) such that the induced continuous

nap ¥ox.o(xvz)>(XAaY)V (XAZ)is injective, So vwe have 2 bijective
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continuous map X A (Y v Z) + (X AY) V(X A Z). Both the spaces are compact,

so they are homeomorphic. g.€.d.

Lemma 1: S A s™ = Sn+m o
° n M

Proof: Clear, because both S A s™  and Sm+n are the one-point=compactificatior
n+nm

of IR °

Definition: We define the "reduced suspension” XX of a space X as IX/{x. } x L.

Lemma 2: ¥Y¥ = 8'A X

The proof is easy.

: 1 5 . : : ! .
Corollary: If p : X+ S A X 1is the canonical projection, then K'(Epp) 18
bijective (n = 0,1,2,...). The same is true, if p is the canonical map

n: P x> sA X,

For a space X with base-point we define the point [X x {0}] as the base-point of

X, Consider the following commutative diagram:

3 T 4 T MEE T S

i

N /
N
T\ /r
\.\l
¥(x v Y)

D, 9, rare canonical projections. By Lemma D.T, K'(z"q) and K'(z"r) are bijective.

Hence K'(£™p) is an isororphism. By induction we have the result:

Lemma 3: There is a canonical nrojection

Tt vy —1®(x v Y),

and K'(n) is an isomorvhism.

Note that the diagram

%% v oy L > (X v Y)

incl. £ i,

2™

where i1 : X+ X vY is the inclusion, is commutative.

Lemma 4: If i, : X>XvY, i, : Y+ X vY are the inclusion maps, then

: . L% . . .
Ji KX vY) > K'(X) 8 X'(Y), defined by jla) = (11a, 120), is an isomorphism.

Proof: Let a e€K'(X), B € X'(Y). Represent a,RB by vector bundles E, F over X, Y
respectively, which have the same dimension over the base-noints. That is vossiblc
because of B.5 and the definition of K'. By clutching E and F together over the

base-point of X Vv Y, we get a vector bundle G over X v Y. Put k(a,8) = [d; then
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ko E(X) 8 K'(Y) — X' (X v Y) is well-defined and the inverse of la

Proposition: Let p : X x Y —> X A Y Dbe the projection, i : X v Y —> X x ¥ the
inclusion. Then the following sequence is exact and splits for n = 051525000

(z"i)*

N (%
(z"p) XxY)) —=2 5 k(s (X vY)) —> 0

0 — B (X A ¥))—E2L o x5
Proof: Consider the exact sequence of D.8 for the pair (X x Y, X vY). In view of
that sequence it is sufficient to construct a homomornhism
n . A
bt KX vY)— K'(z™(X x ¥)) for n = 0,1,2,... such that (z*1)* n = ia.
hn is defined as the composition of the homomorphisms
*
e foll " j -
K (22X v Y)) —=— 21 (2% v Y) —ds kr (3%X) 0 K (20Y)—Es k' (2®(X x Y)),
* " . 2
vhere m and j are defined according to the last two lemmas, and g(a,B) =
n * * 5 E . > :
= (z n1) o + (Znng) Bo (ni is the i-th nrojection of X x Y,) An casy calculation
L K, nS * . * . . )
shows that jm (an) g = 1C., But m and ] arc 1sonorphlsns, Qe€od.
(Do M

In B. 8 we defineda ¥ for spaces with base-point. A base-point preserving map

~

o =r : L] ,\¢ T 2 P
f:%-+>Y induces a homomorphism ¥(r) : B(Y) > ¥(X). Now ¥ is a functor on the
caterory of compact snaces with base-point and base-point preserving meps. Clearly,

the restriction of X' to this category is naturally equivalent to ¥,

g

X xY

Let ¥, Y be compact spaces with base-points, . the i-th projection of

PD:¥XxY+>XAY,1i:XVvY>ZXxY the natural maps. Define

9 =
6+ w(x) 8 K(Y) » K(X x Y) by ¢(a 8 B) = nTa. nig . The image of ¢ X(x) @ (V)
is in H¥ x Y) as is casilv seen. So ¢ induces a homomorphism $ s %(x) @ B(Y) - kKXX‘

7

Assertion: 1(i)o § = 0.
. S . oY .
Because of D,10 Lerma L4, it is sufficient to prove j o ®(i)o § = 0. This is clear,
N s 5 . ®
becuac K(w2111) and k(n1110) are zero.
. nc T 3
By D.10 Proposition, ¢ factorises through (X A Y),
We now specialise Y = 52, By Bott's periodicitv thecorem C.10 we know: For any
x e K(X A 52) there are x, and X, e K(X), both uniquely determined, such that

X = n: x, * n? Xpe nZ([H] - 1), Here H denotes the Hopf hundle over Sa. [#] - 1

is a generator of %(Se)

Theoreri: The homomorphisn

b2 R(X)—> ¥ A 82),
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defined by yl(g) = n g,n ([E]=1), is an isomorphism.
Proof: For the sake of convenience we write

®(x A 5°) e (X x 8°) € K(X x §9).

_ * #* * 2 -
Let ¥ = L T Xge ne([H] -1) &€ B(X A 5%). Then X,

x, € K(X) hecause i"x = 0. So x e image (y), and y is surjective, p is a
(A8

4 e
= 0 because x ¢ K(Xrx 87),

monomorphism because of the Bott periodicity. g.€.d,

Remark: ¢ 1s natural with respect to rontinuous maps preserving the base~point.

This is a consequence of the naturality of the homomorphism ¢ defincd above.

Corollary: K(X) = K(X A 82)

We are now able to determine K and k for spheres, k(SO) = Z , so by D.10 Lemma 1:

%(Sgn) = 7, £(s°) = 81, and GL(m, €) is pathwise connected, therefore by A.22

we have %(31) = 0, %(san*1) = 0 follows. For cach n holds K(S") = ®(s™ ) & Z .

(D.12)
Using the theorem of D.11 and the corollary of Lerma 2 (D. 10), we have an
isomorphism x : K (Y, X) » K-n"Q(Y, X) for any pair (Y, X) of compact spaces.

As ¥, the above isomorrhism is compatible with maps. The following diagram 1is

commutative:
- -n+1
My, X)) —— ENY)— o g DL (Y, x)
0=y K)ot KR P =23} g PY(y, %)

To see that for the rightmost square, remember that § is induced by a map

h : Cf —> X (cf. D.5). Then commutativity follows from the naturality of x .

Consequence: For any compact pair (Y, X) we have an exact hexagon

x°(Y, X)

which is natural with respect to maps.
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Bs A _-rings; the operations v

(Ee1) Definition

A commutative ring A with unity is called a ) -ring if there are given maps
A :A—'->A i=0,1,2,ooo

such that for all x,y ¢ A

2%(x) =1
(1) A1(x) = x
AB(xY = T i x) A () i,j>0 .
i+j=n

* AT N . .
Let 1 + A[[t]]  c@enote the multiplicative group of formal wover series in t
with coefficients in A, starting with 1.
+
. P A 1+ Af[t]] by Ay
(1) on the A~ imply that Ay is a non-trivial homomorphism of the additive group

Ainto 1+ A [[t]]%.

e define A (x) = E; At(x)tt. Then the requiremcnts

(£.2) Example

Let A be an arbitrary commutative ring with unity. We define a canonical A=-ring
structurec on X = 1 + 4 [[t]]¥.

Let Hyseoos X Tqaeees? be a set of 2n variables, let ok denote the kt‘ elemctbs

symmetric function.
Conside k( y v v )
onsider o7(x ¥y Xq¥pseees Xq¥ps Xo¥qseees XVpauees X ¥oseeesX ¥y

this function is symmetric in XyyeeesX  ond in Vysecesy, and therefore can be
. . k, 1 : k
written as a polynomial v (o (x1,u..,xn),°°°9 o (X1""’Xn)’

k , : o 1 ko1 X
Y (y1’°°°9yn)’°"’ g ("Jr‘l"""’ :'n)) or Sl?".;“'l" u (U‘,‘,co., fj:’., 0?'r,o.a,0);)o

. k. . e )
The polynomial u is independent of n, provided n 2> k.

. . m
ile consider also O (a1,...,ai) vhere @, runs through all products X, X eeeXy

“ 172 1

with i1 < i2<°~°<ir this is again a symmetric function of the XyseoesX,

and therefore can be written as a polynomial

m, 1 ¥
oo k = m.r
vr(ox’ »7 x) "

These nolynomials are also independent of the number n of variables provicded it
is large enough.
e now define a multinlication in K, denoted 0, as follows

¥

i i |4 =
(1+ £ a.t') o (1 + I bett) = 1+ T u(geeestys Dipeneyb )t
i1 * i>1 k> 1
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The associativety of this operation is proved as follows.

n n
Ye observe that if we have two polynomials of the form I (1+ait), m(1+8.t)
i=1 i=1 E
define a compnosition oby
n n
I +a. C . = *
R (+a;t) o T (1+g;t) = T (1+a;8.t)
1=1 1=1 357 e

e Ao
then the coefficient of t~ in the result is exactly

X, 1 k1 k
u (oa"‘°’°u’08"’°’° )

Now this commosition is visibly associative. This givescartain formula's for the

k ; ST i .
u which prove thc associativity of the composition in A.

° o ° ° o . . . ’\J . . °
The distributivity with respect to the eddition in A (= the usual multiplication of

power series) is proved in like manner., /4t = Nowdveles ¢ - “91' g 3
Ve remark that if we have two finite polynomiels in A &= 1+ & aitl b= 1+2 bt
write o n , 0 i=1 i=1 *
then if we formally /e = I (1+uit) g b= T (1+Bit) then
i=1 i=1

dob = T (1+0.B.t) .
Ay i%j
1sJ

We define a A=ring structure on A by setting

A1+ 2 at™) =14 L v(2,,000,2 )tk m= k, r

. 1 r 1 m

1>1 k>1
: A - i - r,n
if we write an element a = 1 + ait = 1 (1+ait) then A~ (a) =

i=1 i=1
= I (1 + a;eea, t). We nrove now by the same kind of trick as for the
i1<°nc<ir 1 r

associativity of othat the AT so defined satisfy the conditions (1) of (L.1)

(E.3) A A-ring A is called a special A-ring if the nap At : A K is a
homomorphism of A=rings; that is At is a r%nghomomo?phism, and if wc denote the
A-operations in X vy capit-1 A's then Xt(kl(a?) = Al(At(a)) nust be true for oll

a € A, e try to find thc conditions on the A* vhich make A into a special A -ring:

A (ab) = (1+ 3 A a)tt) o (1 at(p)th) =
i>1 i>1

I < k,, k
=1+ 5w (A(@),eee s (2), AT(D),00e,y A5(D))t
k>1

I

and ) )
soneccessary / sufficient conditions to make At a ring homomorphisn are

: Kyl k 1 k
)\I{(a,b) = ul()\ (E’.),ooo,k (a)’ A (b)’DOt,A (b)) 1;;1'
In the same way one finds that the commuting of At with the A =operations is

equivalent with
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Tl 1 1
T H2)) = Vi (),eee 2 (2)) k= 7.,
Proposition: If A is an arbitrary commutative ring with unity, then the A -rins
X constructed in (E.2) is a special A-ring.
1 m . n
Proof: If a= j (H-ait), b= 1 (1+8.t), then
i=1 j=1 *
Iy Y]
A (2 oD) =n(1+a: B: a: B: seeq: B. t) and A1(a) = 01(1+u toeeey T+a t)
1,791 3573, 1.7, 1 n

r - ot y /v v r .
000 A. (&) = 0’(1 = 0 t,aoas 1+ant)n NOW l (a [¢] b) =0 (1 o+ a181t’coo’ 1*an8mt)

1
so that the relation asked for is indeed satisfied.
The proof is completed in the same way as in (E.2) The proof that
] Iz .
A (ANE)) = VE(A1(3 seees A (3)) is left to the reader as an casy exercise.

1-

(Z.4) The operations Y~

Let A be any A-ring. We introduce operations

1z

¥ : A > A by setting

(1) Wy

and "

el % w ]
o =2 CH— = e .
ted ¥ . tCon o = -t ggbt}()‘t)

(formal operations on nower series.)

k

(&) %
(x) = 57 ()t

The - = ot A (v =
Then W_t(n#y) t oAy (A.J)/At(x+y)

= <t{ny (O (3) + ap (W (DY /a2 A (y) = v_ (x) + ¥_ (¥)

t

¥ i, s .
from which follows that the ¥ are additive. If it happens that At(x) = 1+xt

: t k k
(i.e A™(x) =0 i>2) then Wt(x) = 1-§t , and VY (x) = x .

£ = is the polynomicl such that
= +...+a§, vhere o> denotes the i >

k .
Sk(ol(al,-ou,a m)’oo., g (al,ouo’am))z 01
elementary symmetric functions (m sufficiently large), then

Wk(x) =g (A1(x),..., Ak(x))

k
for if we equate in the relation (2)

a
+ e =0
LI Yt M

the coefficients of the diverse powers of t we get
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and the ¢ are precisely the formulae linking the eclementary symmetric functions,

with the power sums.

(Eos) Lemra
Let A be a special \-ring, then the Wk are ringhomomorvhism, they commute with

the A* ana vyl = vFL o yhyE

Proof: In the ring X the A" and Wk are given by

n

AT (1+0.t) = i (140, yeeesa; t)
o 1 s . 1 i
i=1 i <oooci 1 ¥

)l

n n

wk( m (1+a.t)) = 1 (1+a¥t)
5 1 . X
1=1 1=1

and therefore the lermma is trivielly true in the ring X . How At : A>X is an

injective ringhomomorphism which cormutes with the M-operations. From the definicic
s c . : 8

of ¥ as Wh(x) = sk(AT(x),.,,,Ak(x)) it follows that A, also commutes with the v~,

and the lemma is proven. d.c.d.
Renark: W1 is the identity

(E.6) Defiriticns
Let A be a A-ring, an elcment x ¢ A 1is called of A-dimension k iff At(x) is a
polynomial of degree k < @ (i,e, if Ak(x) # 0, Al(x) =0 1>k).

We define also

Wi T Fpih (operations on formal series)

An irmediate consequence is that

v, (x+y) = Yt(X)-Yt(Y) :

t
An clement x € A is called of <y-dimension k iff yt(x) is a polynomial of degree k%

Exercise: Let A be a special  A-ring, prove
= ! - & k
At(1) = 14t, yt(1) = e At(L) = (1+t)

¥, SE) = (1-6)"F, v, (=) =(1-t)"
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Lemma: In a special A-ring:
x has A-dimension <k iff x-k has y-dimension <k.

Proof: This follows from the identities

~r = T T8 IS - - - k’
At(a) = A (x-ktk) = At(x—k). At(k) ol O (z=k) (1+t)
1+t
L. -1 5
Yo(ek) = v () y (017 = L () (1)
1=t
h ca . D k
For, if y (x-k) = 0, for n>k, then ¥ 3 (x=k)(14t)" =
1+t
= [+ ok 1 t k < .
= {y (x=k) + y (X-k)'T;E +oeet y (x-k)(ng)P} (1+t)k = polynomial of depgree
<k and vice versa Qeeoedo
For any A-ring
i t . . ° -0 - - o -l
y, = 0=t = oaattt-)™t = mt @ (CY)(-t)®
t 1=t n
n=0
= pigpti 1(i+1)e00(i+n+1) = gl onHey
1.2 n
z)‘ltn+1(l})
i
So Yn+1 = 2(2)11

Exercise., If dimx(x)< © then dimx(x+1)

If dimY(x)< » then dimY(x—1)

g
01ml(x) + 1

dim (x) + 1
Y( )

If dimA(x+n) = m then dimY(x+n-m)<°° .

dimy(x+n—n+1) = dimy(x+n—m—1) = dimy(x+n-m) + 1,
P

In that case Xy = x+n-n  1is called the reduction of x and dimY(x+n-m) = ’ ;

’
= dimy(xo) is called the reduced y-Adimension of x. :
If dimx(g) = 1, then £ is called a linebundle

X k

Then A (£) = 1+ £t, v (=1) = 1+(g-1)t, v (g) = € .

If A is a special A -ring, then 1 € A 1s a linebundle.

(E.T) The splitting nrinciple for special A-rings. Let A be a special A-ring,

let x € A be of finite A-dimension At(x) = 1+a1t+...+antn. Consider the ring

- 1 n
A = A[O..‘,...,Cln]/(o (a1,oao,an) - a],o--, ag (Otl,...,(ln)-an) °

Hn=s

Then we have an injection A > A and in A[t] 1 + a1t+...+antn = (1+ait).

i=1
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n,

= -

Now Xes A. X is a special A-ring.
A is a special \-ring, so Ay P A X is a, ring homomorphism.
So we have embedded A into a special A-ring A in such a way that x, considered

as an element of I, is a sum of linebundles.

(E.8) Proposition (Adams)
Let A be a special A-ring, p € A of finite y-dimension (i.e y (p) = 0

i > n, some n) then the element

k d L. - o
i e YU el B (S Y (R P
‘ g i1 i
can be written as a linear comhination of mcnomials y (p)ee.y ~(p) with i1+.°o+i%

Proof: We check the result for a linebundle ¢ by induction on d. We put & = x+1,
we use expressions in £-1 instead of x, x is the reduction of £ . A is a special

A=ring so the v* are ringhomomorphisms and At(1) = 1+t, and therefore Wk(1) =1,
(¥" -1)(1) = 0, so we will start from the inductive hypothesis (with ¢ instead of

£=1 in the left hand side),

(v = 3R (g = (e-1)7 p(e)

where » is a polynomial, and where ve observe that

£

y (1) = -1, yg-1)=0 i>1 ,

(¢ - k) e (Fa(e) = () [ p(e)] =

(€"-0® p(c") - %=1 p(g) = (e-1)%() .

d

low q(g) = (Zk-1€r)d p(gk) - kdp(E) has o factor £-1 since q(1) = (1+.ee+1) p(1)-

0
x%(1) = o.

The ini*ial case d=0 yields since At(E) = 1+ ¢t and thercfore wk(g) = *

< | =1

(Fa1)(g) = €5 = (£=1) (" 4o 04E) = (£-1) p(E)
and therefore is true.

This completes the inductive proof.

Next we check the result for a sum of linebundles

p = €1+°°°+Er\ L

If we set gr = 1+xr as above, we have
. ': n
(WL.-kd) 200 (\y]_-1)p = Z (x
r=1
where » is a suitable polynomial, the expression (xr)
r=1
polynomial in the xr”s whoce homogeneous components have degree >d, by what we

d+1
r) p(xr)
a+1

no~s

p(xr) is a symmetric

have just proved. Thercfore when we write it as a lincar combination of monomials
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v (0)ees Yl1(p), ip#eee¥i > d will hold.

That it is sufficient to consider finite sums of linebundles follows from the
splitting »nrinciple ~f (E.T) .

Let x € A be of finite A-dimension, A - i such that in A x is a sum of linc

bundles, A is a special A-ring. So we have the diagram of rings and ringhomomorphi

A
o
A L A
k
Y v
A
A L 2
‘ X ;
The element z ¢ A, considered as an element of A, is a sum of lincbundles, Qo€

(E.9) Definition

The special A-ring A is said to be of reduced y-dimension <d if for every

e h . A 1 G . .
o of finite y-dimension the monomial Y (p),eseyy “(p) = 0 if iiteee¥i > 4,

We then have the following corollary of (E.8)
In a special )-ring A of reduced y=-dimension < d

(v - kM E N, Fe) =0,

(E.10) Theoren (Adams)

If the special A-ring A has reduced y-dimension ;d,dthen A8 0 (which is a

vector space over ®) snlits as a direct sum A 8 @ = G}Vq where V¥ k(r) =1, p
q=0

for r e V0 all k > 0.

Proof: Fix a prime k. By (E.9) and linear algebra A 8 @ splits as a direct sum

of elgenspaces V(k) helongirg to Vk, Let 1 # k be such that 1 is not divisible

by kj gt and gt commute so V(k) splits into eigens: 203 VE; corresponding to

. . Y. o i a .
the eigenvalues 1° of Wl. On ggi ,wlw is a multiplication by kqlr. But we know

1" z .
from (E.5) thet vl = WLl, which means that Y°¥' has only the cigenvalues (11)°
1
q.
take any two natural numbers 1,1' there is always a prime k such that neither

* ’
Thercfore only r=q contributes essentially in VE} hnd V:i = Vi =V If we

k
1 nor 1° is divisible by k. Therefore V‘(1 does not depend on k, and we can call

1z

Va =V, to get the theorem. qe€.de

%) that is V'Y =0 if q # r.
qr



(E.11)  X-rings with augmentation

The definition At(1) = 1+t gixens Z (the ring of the integers) the structure of a
special A-ring: Lt(k)= (1+)%, A% (n) = (),

¥
A A-ring A together with a homomorphism of A-rings € : A > Z is called a A -ring

with augmentation.,

Grothendieck defines for every A-ring A with augmentation a filtration in the

following way. Let I bte Xer € , then A is the subgroup generated by the monomials

n, n, n,
<f. &
; (x1)a Y (de),..., Y (xk)
with x. ¢ I, B RN 5
* j=1 * 7

(et [2])

F) Applications of the theory of A-rings to K(X)

(F.1) ring Promnosition,

¥(X) is a A-ring with augmentation (X is connected)

Proof: define A B(X) —— 1 + K(X)[[t]]+ by

@ . .
E av—s 1 [AY(E)]tY
o

([Al(E)] denotes the element in K(X) represented by A (Z) e B(X).

Then because of the identity (1) in (E.1) we have that

e s - T
GAEP) = & (Rt BY)

: L S . +
is an additive homomorvhism in the abelian groun 1 + K(X)[[t]]  and thovrefir

)\t(E)o)\

So At :

factorizes through K(¥). This defines the A~ for all elgments in 12(X) and makes

K(X) a A-ring. The explicit formula for an clement £ = I ni[Fi] eK(X) is

n.
i

= Eas

A (€) M [£;]

Ye cefine ¢ : B(X)——Z by e(E) = dim Z. e is clearly an additive homomorrhisu

and so factorizes through Z(¥). This defines the augmentation of K(X). q.e.d.

(F.2) The splitting principle
Let E be a complex vectorbundle over X, we define IP(E) as follows. ]P(E)y

through origin of Ex} i.€5 H’(E)xrthe projective spaces associated

{all lines in E

A.lx
to B .
b4



(-

P (E) = ]P(E)X with the local product tonology inherited from E.

The map HE) — ¥ defined by mapping each line lx of Ex into x 1s a fibering
of X. :

There is a canonical linebundle over HE),

Sy, the linebundle, vhose fiber over 1, € KE) consists of the points of 1.
And there is another bundle

Qe’ the bundle, whose fiber over lX HE) consists of the vectorspace Ex/l
We have now over IP(E) an exact sequunce of bundles

0 > 8, > n-1E N QF —> 0 .

So [ﬂ’1E] =[s5] + [o] in ¥ (KE)) dim Qg = n=1 if dim Een.
Set E, = Q, and consider IRE1) over H(E). When L is lifted to IRE1) it splits off

two linebundles. Continuing this nrocess we find a snace BKBn) such that when &

is lifted to IREn) it can be written as a sum of n linebundles.

The composed map p : IP(E )—> I’(En 1)+°°° > P(E) — X

E
)n MX)—+x®w5n==mw(m>.

induces an injection K(p

This is known as the splitting princinle. (cf, [8])

.3) Lemma )
continuous . N )
Let £: X >Y bea /map, then X(f) K(Y) » K(X) is a homomorphism of A -rinns.

(i.e to prove AX(£"'E) = £ (a’w),
Proof: Exercise.
(F.k) K(X) is a special A-ring.

Pirst we prove that At is a ringhomomornhinm .

Let 51, €2 be two linebundles then €1 s &2 is also a linebundle, and so
& = (1+€.t) 0 (1+E,t) =
(e, @ Ey) =1+ 8 06t S0 A(g) 0 (gy) = (1+5,8) 0 (1+E,t)

=1+ £ &t =xt(g1 8 52).

low consider the product of two sums of linebundles

(§1 ‘Docaegn) @ (r]]@...@ﬂn) = (€1n1 e E1n2@--0951nm90--$€nnm)

At being additive we get.
= n 1+€.n.t) =
)‘t((€10°°°0£n)e(n1oocoonm)) i j ( Ean )
1]

H(1+£it) 0 H(1+njt) = At(£19...0£n) 0 At(n1®...9nm).

Vow if we have two arbitrary bundles E,F over X we can find by the splitting

principle for vectorbundles a space X1 and a man X1 + X such that the 1nduced man
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K(X) > K(X1) is an injection, such a map is always a homomorphism of A-rings, and
such that E considered as an element of K(X1) splits in a sum of linebundles,

considering T as an element of K(X1) we can repeat this procedure, to get a space

X2 and an injection
K(X) » K(X,)
such that both E, F split into a sum of linebundles.
If follows from this that
An(ESTF) = At(E) 0 At(F) for arbitrary bundles over X.

t
So the map A, : B(X) » 1 + K(X)[[t]]+

i
is a homomorphism of semirines, from which follows that the associated map

A ¢ K(X)—> 142(X) [[t]]" is & ringhomomorphism.

Next we prove that Ay is a homomorphism of A -rings. Let g = £ @ Epeoe® £ be

a sum of linebundles.
Then A\"(E, ® £.0..0 £ ) =0 if r > n
1 258 nn

\(E, & £.0...65 ) = 1 (1+¢.t), and (nm (1+£.t)) =0 if r > n by definitio
71 2 n 2t 1 =1 2

of A" in 1+ k(O[[]]".

Let r < n, then
X i1 in
o = pasigp &
(g, 86, w00 E )= ) s =I’A (1) 50005 (g,)
K- b

Now Al(gj) =0 if i > 2, so we have only to extend the sum over those (i1’°'°’in)

B . 1 o 1 :
with i +...+i = r and ij = 0,1 for every j. A (Ej) =£j, A (Ej) =1 for all J.

1 _r '
So A (510,..9 gn) = g (g1,,,,, En)

E

" . : 1 r
At is a ringhomomorphism so At(A (£)) =0 (Xt(£1),..a, At(gn)
(The operation in the polynomial o ¥ now being . and 0)

n

At(g) = 1 (1+git), SO
1=1
e r -
(T (1+E.t)) = i (1+E; eebit) =0 (rﬁgt,...,r+§f) =
i=1 * i <eoe<i 1 r
{ P
- ~ r
= (A (8)),0eenh (E))). B0 ATALE) = AX(E),
. . r il ¥ )

Again by the splitting principle this proves that A Xt(E) = A () for an

arbitrary bundle over Z.
2

—t3+ooo) =

1+t if r even
: . P
liow as is easily checked A (1-t+t

(1-t+t2..., if r is odd

So ArAt(-1) = Atlr(-1) . Tvery clement in K(X) can be written in the form [E]-n."
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i y
The formulas for )\~ of a sum are the same in both rings,)\t is a ring homomorphisn

T
s0 A\ (o) = Aa (a)  for every aek(X) qeeod.

t

(F.5)
Topological filtration of K(X). (cf. [2] 52).

Let X be a finite CW complex, we introduce a filtration on K(X) by putting
K (%) = Ker(x(x) — x(xP"))

=1
where XP7' denotes the (p=1)=-skeleton of X.
This filtration is a homotopy invariant and turns X(X) into a filtered ring, i.c.
e 4 °}~r DY
hp(X) .xq(K) C:Kp+q(X) "

(F.6) Proposition

(cf. Aiyah Characters and cohomology of finite groums).

Let X be a finite CW-complex, if we denote the filtration of K(X) as an augmented
A =ring by KA(X) we have
9 ¥
K (X) cK, (X) for all n.
(F.7) Corollary

K(X) is of reduced y -dimension < [} dim(X)]

 Proof: Let xeK(X) be such that y+p is of X ~dimension n, this means that e(x) = 0.
For every element in K(X) can be written [E]-m, with E a vectorbundle, and for a

vectorbundle ¥ e(F) = n 1is equivalent to "F is of A-dimenison n"
i i

SO if i1'('o.c+ir ; [% dim (:':) ]':'1 => Y 1(X),oco, Y r(X) K'
i1 i1
- (& S 1 5 °+' fl 1 c oo = °
C:Kdim(X)+1 0 . So if i +.. i > |2 aim(X)| then Yy (x),eee, ¥ (x) =0
q.e.do
(F.8) Corollary
K(x) & § (a finite dimensional vector space over @ , since X(X) 1is finitely

generated, X being a finite CW complex cf. F.9) splits as a sum of the
. e : gk .4 s
rational cohomology groups. HEI(X, Q) (Hﬁl(X, M) = Ker@ - k) by definition).

Proof: apoly (E.10)
(F. 9) Proposition.
Let X be a finite CW-complex with only even dimensional cells. Then

1. KTH(X) =0
2, K(¥) is a finitely generated free abelian group with as many generators as

there areczlls in X.
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: : -1,,2n=2 ; ; .
Proof: By induction, let K (X > ) = 0 as an induction hypothesis. We have the

exact sequence,
-1,.2n _2n-1 =1 " . - -
K(x, ) ) — 1Y) = T (532

2n/ 2n-1 on 2n-1)

/X is a bouquet of even-dim. spheres, so K-1(X s X = 0 (use D.10).

- -2 :

= 0 by induction, so (%

follows that K“1(X) = Qs

= 0 , X being finite dimensional it

For 2 we consider the exact sequence

2nn2)

K~ (x EG (0 g sk T IR R T

By 1, K1 (x%22) = ¢ = K_1(X2n, 2) 1 ve suppose by induction that REXn2

. -2
t20-2  ipen k(X°02)

is free abelian with as many generators as there are“&lls in X
is projective and the sequence splits yielding

- 2n=2
2n 2) n )

K(X7®) = K(X 5 k(X2 X g.e.d.
(F, 10)
We now consider very special complexes

X = eoveanehn

(Examples are the projective planes)

K(X) =Z06 Z6 Z
and we have a filtration (cf. (F.5))

K(X) DKen(X) DKhn(X) >0

each terming being Z less than the preceding one.
e can choose an additive base of K(X) by taking 1€K(¥), aexen(x), b exﬁn(x).

We know the multiplicative structure if we know the u of

a2 = ub (ab = ba = b2 =0 ®(X)

being a filtered ring).

(F. 11) Lemma
(. (X) Ku(&&)*KH&PUD=Ka%RR)*KW

; 2m—2)])
2m
= Ker[(YP=K") () weo (¥ = KD)] if dim ¥ = 2n

H

(F, 12) Lemme

1 " k i
Let k& = EPq, q odd, then the number r of factors 2 in 3 -1 1s
r=1 if n=0
r=p+2 if p21



Proof: Let p=0, then k is odd
% =1 K-
(3%-1) = 2,(35"! w35

nurbers. k is odd, Lence the second term is odd.

+.00+3+1), The second term of the nroduct is the sum of k odd

et p=1, then

ii¢ k=2 il : 2
(3°=1) = 8 (3 =+ ?k +.on+32+1). The second term 1s the sum of k-odd numbers.

2
k. =2 ST e
5 18 odd. Hence (3 +o.°+32+13 1s odd and 31-1 has exactly 3 factors 2.
Suppose now the lemma provec for p<n=-1, n> 1.
o 2n-—1q 2n-10 2n-1
Then (3°°%1) = (3 *-1)(3 1), By the induction hypothesis 3° %=1 has

n-1
exactly n+1 factors 2 n+1>1, therefore 32 %1 has only one factor 2. So

n
20
3°°%.1 nas n+2 factors 2. Qe€eCe

Corollary. If r > k, then k = 1,2,k4,

If p >3 then 22 > p+2, If p = 0,1,2 r.s. then we get k = 1,2,  q.e.d.

(F,13)
Theorem

The only spaces of the type considered in (F.10) with u = 1 have n=1,2,k,
Proof: Wg(a) = 2% ¢ da" . since (We - 2n)<iKhn(X) by (F.11) in the same way
y>(a) = 352 + u.a2

2n

= v2(3% + pad) = (2% +A a°) + u(2%®,a%) (a3 = 0)

2

<

<

—~

O

~
t

2" (3% + ua2) + A32na

2 2n n 2n
F’W3 = W3W2 , therefore A3t 2™ = 20+ 3T or

e
W
=
n
—~
®
N
]

A37(3%-1) = w2(2"-1)

1 2
mow ¥ = (A1)2 - 2)® (v2 = °(2", 29))
SO Wg(x) = % - 2A2(x) s so modulo 2 V¥° is the square of X,

so A must be odd.

Therefore (37-1) must be divisible by 2" .

By (F.12) this mcans n=1,2,k

(F.1h) v(£)
"naidey a map f ¢ Shn_1-"—- > 5°% | Ye define y(f) as the linrino numbcraf

= 2 , . . o e .
f_1(p), f—1(q), for two points ;.1 €5 (aypzovimatin: [ by a differentiable
function) . Hopf defined mavs with vy(f) = 1 for n=1,2,4 (using complex numbers,

ruaterninng . Cavley numbers resp.)

Problem: are there maps with y(f) = 1 for other n.
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Suppose there is a map T : Shg:l——> 82n consider the diagram
o™ “on Ehn
=~ lin-1
B = Stn-
‘n

e attach Ehn to ey @ by means of f, to get a CW-complex of the tyne

2n
&gV ey v ey o It was proved by Steenrod that with this construction and the

using the notation introduced in F 10 that

e =k y(f) b

Apnlving now (F.13) we sece that the problem posed by Hopf is solved.

hne- . .
There are no mans f : S‘E—l———+ 82n with y(f) = 1 for n not equal to 1,2,4.
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