
ON THE INDEX OF A FIBERED MANIFOLD1

S. S. CHERN, F. HIRZEBRUCH, AND J-P. SERRE

Introduction. Let V be a real vector space of dimension r. Let

F(x, y) = (x, y), x, y E V, be a real-valued symmetric bilinear function.

We can find a base e,-, 1 ̂ i^r, in V, such that

P P+3

(i) f(x, y) = zZ xy - zZ xy
i—1 immp+1

where x= zZt-i #'*< and y = X<-i y'**
The number p—q is called the index of F, to be denoted by t(F). It

depends only on F. If .F is nonsingular (i.e. p+q = r), then min (p, q)

equals the maximal dimension of the linear subspaces of V contained

in the "cone" .F(x, x)=0.

Now let M be a compact oriented manifold. The index of M is

defined to be zero, if the dimension of M is not a multiple of 4. If

M has the dimension ik, consider the cohomology group H2h(M) with

real coefficients. This is a real vector space, and the equation

(2) (x,y)t=xVy,        x,yEH2*(M),

where £ is the generator of Hik(M) defined by the given orientation of

M, defines a real-valued symmetric bilinear form (x, y) over H2k(M).

Its index is called the index of M, to be denoted by t(M). Reversal

of the orientation of M changes the sign of the index. The form (x, y)

defined by (2) is nonsingular, since, by Poincare's duality theorem,

the equation xWy = 0 for all xEHik(M) implies y = 0.

The main purpose of this paper is to prove the theorem:

Theorem. Let E-+B be a fiber bundle, with the typical fiber F, such
that the following conditions are satisfied:

(1) E, B, F are compact connected oriented manifolds;

(2) The fundamental group tti(B) acts trivially on the cohomology

ring H*(F) of F.
Then, if E, B, F are oriented coherently, so that the orientation of E is

induced by those of F and B, the index of E is the product of the indices

of F and B, that is,

t(E) = t(F)t(B).
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Remark. We do not know whether condition (2) and the connect-

edness hypothesis of condition (1) are necessary. For instance, let E

be an ra-sheeted covering of B (the spaces B and E still being compact

oriented manifolds); is it true that r(E)=nr(B)? We know the

answer to be positive only when B possesses a differentiable structure:

in that case, according to a theorem of one of us, t(B) (resp. r(E))

is equal to the Pontrjagin number L(B) (resp. L(E)) and it is clear

that Z(£)=ra-7,(73).

1. Algebraic properties of the index of a matrix. Let e<, l^i^r,

be a base in V. A real-valued symmetric bilinear function (x, y) de-

fines a real-valued symmetric matrix C= (c,;), c,; = (e,-, ej), 1 t%\i, j^r,

and is determined by it. The index of the bilinear function is equal

to the index r(C) of C, if we define the latter to be the excess of

the number of positive eigenvalues over the number of negative eigen-

values of C, each counted with its proper multiplicity. We have the

following properties of the index of a real symmetric matrix:

For a nonsingular (rXr)-matrix T we have

(3) t(C) = r('TCT).

Here, as always, we denote by 'T the transpose of T. For nonsingular

square matrices A, L (with A symmetric) we have

f 0    0     7,1
/ 0   L\

(4) r   0    A     0   = r( J + r(A) = r(A).
lL    0     0.

Here and always we make use of the convention that the index of

the empty matrix is zero.

To prove (4) it is enough to show that

<5> 'Cx  o)"°-
In this case, r is even. Put r = 2u. Obviously, the cone F(x, x) =0 of

the symmetric bilinear function F(x, y) belonging to the matrix

(°   )VL    0/

contains a linear space of dimension u. Thus min (p, q) Siju. On the

other hand, p+q = 2u. Therefore, p = q and r = 0.

Lemma 1. Let C be a real, symmetric, nonsingular matrix of the form
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0 Lo

C =

Lm'

where L0, ■ • • , Lm are square matrices (empty matrices are admitted)

and where Li is the transpose of Lm-i. Then

0 L0)
(   0,     if m is odd,

T(C) = T =   \
■ \.t(L„), if m = 2».

.Lm 0 J

Proof. We put

0 Lo

(6) Cx = 0 fk X fk 1.

Lm        X*

Since det (Cx) = + Ilr-o det (Li) 9^0, the index t(C\) is obviously inde-
pendent of X, so that t(C) =t(Ci) =t(Co). By (4) we have r(C0)=0

resp. t(C0) =t(L„), q.e.d.

Lemma 2. Let A and B be two square matrices, which are either both

symmetric or both skew-symmetric. Then their tensor product A®B is

symmetric, and

(7) t(A ® B) = t(A)t(B) or 0,

according as both A and B are symmetric or skew-symmetric.

Suppose first that A and B are both symmetric. Let a,->0, a,<0,

1 fli^p, p + 1 Sj^p+q, be the nonzero eigenvalues of A and /3*>0,

/3j<0, lfkk^p', p' + lfklSp'+q' be the nonzero eigenvalues of B.

Then the nonzero eigenvalues of A®B are au/8(, lfku^p+q,

1 fktfkp'+q'. It follows that

r(A ® B) = pp' + qq' - pq' - p'q = T(A)r(B).

Now let A and B be both skew-symmetric. By applying (3) to

the matrix C = A ®B we can suppose that A and B are both of the

form

Ai 0

'An

0 0.
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where each A i is a 2 X 2 block:

Since

we have r(A ®B) =0.

2. Poincare rings. We consider a graded ring A with the following

properties:

(1) In the direct sum decomposition

A=   £ A-
0Sr<»

of A into the subgroups of its homogeneous elements, each Ar is a

real vector space of finite dimension. There exists an ra with ^4r = 0

for r>n and with dim ^4n = l.

(2) If xEA\yEA> then xyEAi+> and

xy = (—lY'yx.

Let ^0 be a base element of A". Relative to £ we define a bilinear

pairing (x, y) of A" and A"~T into the real field by the equation

(x, y)£ = xy, xEAr,yEA"~r.

Let in-r be the linear mapping of A"~r into (AT)*, the dual vector

space of Ar, which assigns to y£^4"_r the linear function (x, y) on

Ar (xEAr).

A graded ring A is called a Poincare' ring if it satisfies (1), (2) and

has moreover the following property:

(3) The mapping in-r is a bijection of A"~T onto (Ar)*.

A consequence of (3) is

dim AT = dim A"~r, 0 ^ f g «.

The cohomology ring of a compact orientable manifold is a Poin-

care ring.

A differentiation in a Poincar6 ring A is a linear endomorphism

d: A—>A, satisfying the following conditions:

(a) dArCA'+1;

(p) dd = 0;
(y) d(xy) = (dx)y + (-l)Tx(dy), if xEAr;

(5)  dA—1 = 0.
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As is well known, such a differentiation defines a derived ring

A'=d~1(0)/dA. Ii we put A'r = d~1(0)r\AT/dAr-1, we have the direct

sum decomposition

A' -   £ 4",
Osrjn

and .4' is a graded ring. It is easy to verify that, if x'EA'\ y'EA'',

then x'y'EA'i+>, and

x'y' =   (-lY'y'x'.

From the property (5) of d we have dim A'n = l. Thus A' satisfies (1)

and (2) with the same maximal degree n as A. We denote the residue

class of £ in A'n by £'. Relative to (•' we have the linear mapping

tn-,:A'~- '-*(4'')*.

Lemma 3. 77fe derived ring of a Poincart ring with differentiation is

a Poincart ring, i.e. i„_r is bijective.

It remains to prove that A' has the property (3) in the definition of

a Poincare ring. Let xEAT, yEAn~'~1. By property (8) of d, we have

0 = d(xy) = (dx)y + (-l)rx(dy).

This gives

(8) (dx, y)=(-l)-1(x,dy),

a relation which is independent of the choice of £. This relation is

equivalent to saying that the following diagram is commutative:

d                          d
An~T~1-> An~T->  An~r¥1

i   in-r-l                                1  in-r i  in—r+l

(,4 r+l)* ->  (^r)* ->  U—1)*

where (^4r)* is the dual space of Ar, and 'd is the dual homomorphism

of d. We have the canonical isomorphism

(A'')* at 'rf-i(O) n (^r)*/'^(^r+1)*.

The above diagram shows that i„_r induces an isomorphism, namely

i'n..T, of A'n~r onto (^4'r)*. It follows that A'r and 4'n-r are dually

paired into the real field relative to the element %EA'n, which is the

residue class of £.
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In analogy with the index of an oriented manifold we can define

the index t((A) of our Poincar6 ring A relative to £. It is to be zero,

if «=0, mod 4. If n=ik, r((A) is to be the index of the bilinear func-

tion (x, y), x, yEAik. Obviously, T((A) =T(t(A), if £1 is a positive mul-

tiple of £.

Lemma 4. 7ra a Poincare ring A let I;7*0 be a base of A", and let

%'EA'" be the residue class which contains £. Then ri(A') =t^(A).

It is only necessary to prove the lemma for the case ra=4&. Let

Z2h = d-1(0)C\A2k, Bik = dAn~1, and let a, b, c be the respective dimen-

sions of A2k, B2k, Zik. It follows immediately from (8) that each of the

two spaces B2k and Z2k is the orthogonal of the other with respect to

the symmetric form (x, y) of A2k, whence a = b + c. We have

B2kEZ2kEA2k. If ei is a base of A2k such that etEB2k for 1 ̂ i^b and

e,£Z2* for b + l^i^c, the matrix ((e,-, e,)) has then the form

o  o r

0   Q   *  ,
'L    *    *.

where L and Q are square nonsingular matrices, of orders o and c — b

respectively. Its index is t((A), while r(Q) is t(>(A'). By Lemma 1,

we get therefore T(>(A') = T((A), as contended.

3. Proof of the theorem. It suffices to prove the theorem (see Intro-

duction) for the case dim E = ik, which we suppose from now on. We

consider the cohomology spectral sequence £%'*, 2^r^=o, of the

bundle 7£—>5, with the real field as the coefficient field. Let

E\ =   V Ef'\       Et=22E'r, 2 ^ r ^ oo.
p+q— 0s»

Each E, is a graded ring, satisfying EJEf EE'r+'' and also E'/'E™

EEr+T'''+Q'. It has a differentiation dr, such that Er+i is the derived

ring of Er. In our case d, is trivial for sufficiently large r and Ex, or

Er for r sufficiently large, is the graded ring belonging to a certain

filtration of the cohomology ring of the manifold E. The term E2 of

the spectral sequence is by hypothesis (2) of our theorem isomorphic

to 77*(B, H*(F)) = 77*(£) ®H*(F), such that

EV ^ HP(B, H\F)) ^ HP(B) ® H\F).

If we identify El* with HP(B)®H'>(F) under this isomorphism, the

multiplication in E2 is given by
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(b ® f)(b' ® /') = (-iy'<(b \J b') ® (f\Jf),

bEH»(B),       b'EH"'(B),       fEH«(F),       f E H*'(F).

Let w = dim F, so that dim B=4k — m. Since B and F are mani-

folds, E2 is a Poincare ring with respect to the grading

Et =   E Et        (El = 0 for 5 > 4k, eI" = Et'^).
OS»<«0

The ring E2 is isomorphic to the cohomology ring of BXF.

The orientations of B, F define a generator £2 = £b®!;f of Ef. Here

£b (resp. £F) denotes the generator of Hik-m(B) (resp. Hm(F)) belong-

ing to the orientation of B (resp. F). We wish to prove that

r(l(Et) =t(B)-t(F).

We have

(9) EV = E,"'° + El"'1 + • • • + £,"--".

Here some of the Ef'" might vanish, in particular £f'" = 0 if /><0.

Clearly, for xG£f"M and yEE?~°''a' we have xy = 0 unless

t> + q' = m.

By Poincare duality in B and F, we have

2*-«,« _**-">+«,m-g

dim Et        = dim £2

Therefore, the symmetric matrix, which defines the bilinear sym-

metric function over El1, is, when written in blocks relative to the

direct sum decomposition (9), of the form

0 Lo

Lm 0

where the L,- are nonsingular square matrices, such that L< is the

transpose of Lm_,-. By Lemma 1 we obtain

T(,(E*) = 0 if w is odd,       rit(Et) = r(Lmlt) if m is even.

In the first case the equation T{,(£2) =t(B)t(F) is proved, since

t^(E2) =t(F) =0. In the latter case we have

tk-m/t,m/t 2*-»»/2,„. „>»/2,    ,

Et = H (B) ® H    (F),
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and it is clear that up to the sign (— l)m'2 the matrix Lm/2 is the tensor

product of the two matrices defining the bilinear forms of B and F. If

m/2 is odd, both matrices in this tensor product are skew-symmetric,

and we have, by Lemma 2, r(Lm/2) =0; on the other hand we have

t(B)t(F) =0, since dim P^O (mod 4) and thus by definition t(F) =0.

If m/2 is even, that is, if m = 0 (mod 4), both matrices are symmetric,

and Lemma 2 gives: T(Lm/2) =t(B)t(F). Combining all cases, we get

the formula

(10) TJS(£2) = t(B)t(F)

in full generality.

The differentiation d2 of E2 satisfies the conditions of a differentia-

tion in a Poincare ring given in §2. In fact, dim E4^ = 1, since £ is a

manifold of dimension ik. Therefore, dim 7f^' = l for 2^r. Thus d2

annihilates Ef-1; more generally dr annihilates £^*_1. It follows by

Lemma 3 that E3 is a Poincare ring. It has dt as differentiation and

therefore Et is a Poincare ring etc. Finally, Ex is a Poincare ring. By

Lemma 4 and (10) we get

r(B)r(F) = rh(E2) = ru(E3) = ... = tUE«),

where £r (resp. £M) is the image of £2 in ET (resp. £«,)•

It remains to prove thatT{„(£00) =r(E). The cohomology ring H*(E)

is filtered:

77*(7f) = D° D D1 D • • ■ D 7> D D**1 D ■ • ■ , PI 7> = 0,

(11) 7>'« = D" PI H*+*(E),

We have the filtration

77-tE) = D0' D D1-^1 D ■ ■ ■ D D''<> D D»+i.-i = 0

and the canonical isomorphism

(12) D^/D^-^ET.

The ring structure of Ex is induced by that of H*(E) by the canonical

homomorphisms 7>-«->£™ (see (12) and (11)). Since Etf = E%-m'm,

(where m — dim F), we have

„4*,„. 4fc—m,m 4fc—m,m

(13) 77   (E) = D g*EK

and

(14) D*>>-i,i = o for i < m.
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Earlier we have chosen a generator ij.oG.Etf. Under the canonical iso-

morphism (13) £«, goes over in the generator %B of Hik(E) belonging

to the orientation of E generated by the given orientations of B and

F in this order.2 We now consider the bilinear symmetric function

(x, y) over H2k(E) relative to £#. Choose a direct sum decomposition

of H2k(E) in linear subspaces,

(15) H2k(E) = Vo + Vi + Vt + • ■ ■ + Vm

such that

i, Vj = D2"-*-" (0 fl q g m).
1=0

Here we use that D2k-'-' = D2k-m'm ior s>m. By (11) and (14) we have

(16) (x, y) = 0 ior x E V,, y E Vj and i + j < m,

and moreover by (13)

(17) (x, y) = <x, y), for x G F,-, y G F,- and i + j = m,

where x (resp. y) denotes the image (see (12)) of x (resp. y) in E2*~*'

(resp. £2i_w) and where on the right side of this equation stands the

symmetric bilinear form over E2k relative to £M. Since (x, y) = 0 ior

xEE2^1'", yGE«_B''8', unless q+q' = m, and since £«, is a Poincare

algebra, we can conclude

_2&—q,q tk—m+q,m—q
(18) dun EK       — dim EK

The preceding remarks, in particular (16), (17), (18), imply: The

matrix of the symmetric bilinear function over H2k(E) relative to £b

can be written in blocks with respect to the direct sum decomposition

(15) in the form

0 Lo

Li

Lm *

2 This is easy to see when £ is a trivial bundle, in which case it is almost the

definition of the orientation of a product of manifolds. The general case can be re-

duced to this one by comparing the spectral sequence of E to that of the bundle in-

duced by E on an open cell of the base, the cohomology being taken with compact

carriers.
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where the 7,,- are nonsingular square matrices and where 7,,- is the

transpose of Lm-i. Moreover,

Lm 0.

is the matrix of the symmetric bilinear function over E2£ relative to

£«,. By Lemma 1 we have t(E) =t^(£«,)• This concludes the proof of

our theorem.
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THE PERIPHERAL CHARACTER OF CENTRAL

ELEMENTS OF A LATTICE1

A. D. WALLACE

A lattice being a Hausdorff space together with a pair of continuous

lattice operations (A and V) the content of this note is best exhibited

by quoting a corollary to our theorem: 7/a compact connected lattice is

(topologically) situated in Euclidean n-space then its center is contained

in its boundary. Thus, far from being "centrally located," the central

elements are "peripheral."

The above is a consequence (see [3, p. 273]) of the

Theorem. If L is a compact connected lattice, if R is an (ra, G)-rim

[3]/or L and if (i) a is central [l, p. 27] or if (ii) L is modular and a is

complemented then aER-

Proof. The procedure is to introduce an appropriate multiplication

into L so that L is a semigroup, to show that 7, is not simple (in the

semigroup sense [3]) and that a is a left unit. Since 7, is compact it

has a zero and unit, 0 and 1, as is well-known. Indeed, the set

n{x\/T-|x£Z} is easily seen to consist of exactly one element,

namely 1. If a = l then the hypotheses of Theorem 1 of [3] are ful-

filled using the multiplication (x, y)—>xAy so that 1 being a unit for

the multiplication,  l£i?.  If a 7*1 let xy = (a'Ax) Vy, a' being a

Received by the editors September 15, 1956.

1 This work was supported by the National Science Foundation.


