Chern Numbers of Algebraic Surfaces

An Example

F. Hirzebruch

Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany

Max Koecher zum 60. Geburtstag gewidmet

An algebraic surface has the Chern numbers c_2 (Euler-Poincaré characteristic or Euler number) and c_1^2 (selfintersection number of a canonical divisor). For a minimal surface of general type these numbers are positive and satisfy

$$c_1^2 \leq 3c_2 \quad (\text{see } [4, 6]).$$
 (1)

athematische

Springer-Verlag 1984

If $\{E_i\}$ is a finite set of disjoint smooth elliptic curves on a minimal surface of general type, then $E_i E_i < 0$ and

$$-\sum E_i E_i \leq 3c_2 - c_1^2$$
 (see [5, Sect. 7]). (2)

We shall construct a sequence X_n (n=2,3,...) of minimal surfaces of general type with the following properties

$$c_2(X_n) = n^7 \tag{3}$$

$$3c_2(X_n) - c_1^2(X_n) = 4n^5.$$
(4)

There are $4n^4$ smooth disjoint elliptic curves on X_n with selfintersection number -n, showing that we have the equality sign in (2). As a consequence of (3) and (4) we have

 $c_1^2(X_n)/c_2(X_n) < 3$

but

$$\lim_{n \to \infty} c_1^2(X_n) / c_2(X_n) = 3.$$
 (5)

Holzapfel [2, 3] has made a thorough investigation of Picard modular surfaces as quotients of the complex ball. He showed that the Picard modular surfaces give examples of (2) with equality sign where the E_i correspond to the resolution of the cusps. Holzapfel observed that the Picard modular surfaces give many examples of surfaces with c_1^2/c_2 arbitrarily near to 3. But it may be of some interest to give a direct geometric construction of surfaces X_n satisfying (5). Perhaps the X_n we are going to construct are Picard modular surfaces. In any case, it should be conjectured that the universal cover of $X_n - \bigcup E_i$ is the ball. For more references to the literature see [1]. Anyhow, this note should be regarded as a continuation of [1].

1. Abelian Coverings of an Abelian Surface

Let $\zeta = e^{2\pi i/6}$ and T the elliptic curve

$$T = \mathbb{C}/\mathbb{Z} \cdot 1 + \mathbb{Z}\zeta.$$

Consider the abelian surface $T \times T$ whose points are denoted by (z, w). The curve T has complex multiplication by the algebraic integers $\alpha \in \mathbb{Q}[\zeta]$ and $w = \alpha z$ is an elliptic curve T_{α} in $T \times T$ isomorphic to T. We take the following curves on $T \times T$

$$T_{0}: w = 0$$
$$T_{\infty}: z = 0$$
$$T_{1}: w = z$$
$$T_{\zeta}: w = \zeta z.$$

The four curves pass through the origin of $T \times T$ and do not intersect anywhere else. It suffices to remark that $T_1 \cap T_{\zeta} = \{(0,0)\}$. This follows from the fact that $1-\zeta$ is a unit, namely $1-\zeta = -\zeta^2$.

Let U_n be the group of *n*-division points of $T \times T$,

$$U_n = \{(z, w) | (nz, nw) = (0, 0)\}.$$

It has order n^4 . The group U_n acts on $T \times T$ by translations, each of the four curves remaining invariant under a group of n^2 translations contained in U_n . Therefore $U_n(T_0)$, $U_n(T_\infty)$, $U_n(T_1)$, $U_n(T_{\zeta})$ each consists of n^2 smooth disjoint elliptic curves. Altogether we have $4n^2$ elliptic curves. Through each of the n^4 points of U_n (considered as subset of $T \times T$) pass 4 of the $4n^2$ curves. There are no other intersections.

We introduce the divisors

$$D_0 = U_n(T_0), \quad D_\infty = U_n(T_\infty), \quad D_1 = U_n(T_1), \quad D_\zeta = U_n(T_\zeta)$$

on $T \times T$. Each such divisor is a sum of n^2 disjoint smooth curves (of multiplicity 1). In the integral homology group $H_2(T \times T, \mathbb{Z})$ each D_i ($i \in \{0, \infty, 1, \zeta\}$) is divisible by n^2 , since uT_i and T_i determine the same homology class if u is a translation. In fact,

$$D_i \approx n^2 T_i$$
,

where \approx denotes linear equivalence. This is clear, because T_i is a direct factor of $T \times T$ and since on an elliptic curve $n^2(0)$ is linearly equivalent to the divisor consisting of the n^2 division points of order *n*. Let f_i be the meromorphic function on $T \times T$ whose divisor equals $D_i - n^2 T_i$. It is uniquely determined up to a constant factor. Observe that the divisor of f_i/f_j restricted to a component of D_k (where i, j, k are distinct elements of $\{0, \infty, 1, \zeta\}$) is of the form $n^2(a) - n^2(b)$ where a, b are points of the component such that a-b is an *n*-division point in the underlying group structure. Therefore $n(a) \approx n(b)$.

Thus f_i/f_j restricted to a component of D_k becomes an n^{th} power of a meromorphic function.

Using the f_i we construct the algebraic surface X_n .

Chern Numbers of Algebraic Surfaces

The function field of X_n will be the function field of $T \times T$ with $(f_1/f_0)^{1/n}$, $(f_{\omega}/f_0)^{1/n}$, $(f_{\omega}/f_0)^{1/n}$, $(f_{\omega}/f_0)^{1/n}$ adjoined to it. This already defines the birational equivalence class of X_n . To get a smooth model we blow up the n^4 points of $T \times T$ belonging to U_n . We get an algebraic surface Y_n with Euler number n^4 and n^4 exceptional curves L_j ($j \in U_n$) arising from blowing up. The strict transforms of the D_i are smooth curves \hat{D}_i in Y_n which do not intersect each other and $(f_1/f_0)^{1/n}$, $(f_{\omega}/f_0)^{1/n}$, $(f_{\omega}/f_0)^{1/n}$ determine a smooth covering X_n of Y_n of degree n^3 ramified above the \tilde{D}_i with ramification index n. Since the branching locus consists of elliptic curves which have Euler number 0, the Hurwitz method for calculating Euler numbers gives

$$c_2(X_n) = n^3 c_2(Y_n) = n^3 \cdot n^4 = n^7.$$
(6)

Let $\pi: X_n \to Y_n$ be the covering map. Then

$$\pi^* \tilde{D}_k = n \tilde{D}_k \quad (k \in \{0, \infty, 1, \zeta\})$$

and \bar{D}_k consists of n^4 disjoint elliptic curves. Over each of the n^2 components of \tilde{D}_k lie n^2 components of \bar{D}_k . This follows from the fact mentioned above that f_i/f_j , restricted to a component of \tilde{D}_k , is the n^{th} power of a meromorphic function. Each component of \bar{D}_k has selfintersection number -n. To check this observe first that $D_k D_k = 0$ and $\tilde{D}_k \tilde{D}_k = -n^4$, since D_k passes through the n^4 points of $T \times T$ which were blown up. Then we have

$$\pi^* \tilde{D}_k \cdot \pi^* \tilde{D}_k = n^3 (\tilde{D}_k \cdot \tilde{D}_k) = -n^7 = (n \tilde{D}_k) \cdot (n \tilde{D}_k)$$

$$\bar{D}_k \bar{D}_k = -n^5 \quad (k \in \{0, \infty, 1, \zeta\}).$$
(7)

Thus each of the n^4 components of \overline{D}_k has selfintersection number -n.

For each exceptional curve L_j of Y_n (where $j \in U_n$) the lifted curve π^*L_j is a smooth curve \overline{L}_j in X_n with Euler number

$$e(\bar{L}_{j}) = -2n^{3} + 4n^{2}.$$
(8)

This follows from Hurwitz's formula since the map $\overline{L}_j \rightarrow L_j$ is of degree n^3 with ramification over 4 points of L_j with ramification index *n* everywhere. We have

$$\bar{L}_j \bar{L}_j = -n^3 \,. \tag{9}$$

The surface Y_n has a unique effective canonical divisor K, namely $K = \sum L_j$ $(j \in U_n)$. Thus

$$\bar{K} = \sum_{j \in U_n} \bar{L}_j + (n-1) \sum_{i \in \{0, 1, \infty, \zeta\}} \bar{D}_i$$
(10)

is an effective canonical divisor of X_n . For $n \ge 2$, the divisor \overline{K} does not contain any rational curves. So X_n is free of exceptional curves, because an exceptional curve is contained in every effective canonical divisor. Hence the surface X_n is minimal for $n \ge 2$.

For the calculation of $c_1^2(X_n) = \overline{K}\overline{K}$ we have to use that

$$\bar{L}_i \bar{D}_i = n^2 \quad (j \in U_n, i \in \{0, \infty, 1, \zeta\}) \tag{11}$$

which follows from the fact that over a ramification point on L_j of $\bar{L}_j \rightarrow L_j$ lie n^2 points on \bar{L}_j . Using (7), (9), and (11) we get from (10)

$$c_{1}^{2}(X_{n}) = \sum \bar{L}_{j}\bar{L}_{j} + 2(n-1)\sum \bar{L}_{j}\bar{D}_{i} + (n-1)^{2}\sum \bar{D}_{i}\bar{D}_{i}$$

= $n^{4}(-n^{3}) + 2(n-1)\cdot 4n^{4}\cdot n^{2} + (n-1)^{2}\cdot 4(-n^{5})$
 $c_{1}^{2}(X_{n}) = 3n^{7} - 4n^{5}.$ (12)

This number is positive for $n \ge 2$ and thus X_n is of general type.

We have proved all statements mentioned in the introduction. The $4n^4$ elliptic curves of selfintersection number -n come from the four elliptic curves T_0 , T_{∞} , T_1 , T_{ζ} .

2. A Surface with $c_1^2 = 3c_2$

Consider the surface X_n constructed in Sect. 1. Adjoining to the function field of X_n the element $(f_0)^{1/n}$ [or equivalently $(f_1)^{1/n}$, $(f_{\infty})^{1/n}$, $(f_{\zeta})^{1/n}$], defines an *n*-fold covering of X_n ramified along the curves \overline{L}_j . We obtain a smooth surface W_n . By Hurwitz's method

$$c_2(W_n) = nc_2(X_n) - (n-1)\sum e(L_j)$$

and by (6) and (8)

$$c_{2}(W_{n}) = n^{8} - (n-1)n^{4}(-2n^{3}+4n^{2}),$$

$$c_{2}(W_{n}) = n^{6}(3n^{2}-6n+4).$$
(13)

The divisor $\bar{K} + \frac{n-1}{n} \sum \bar{L}_j$ gives, when lifted to W_n , a canonical divisor of W_n . Thus

$$c_{1}^{2}(W_{n}) = n \left(\bar{K} + \frac{n-1}{n} \sum \bar{L}_{j} \right)^{2}$$
$$= n \left(\bar{K}^{2} + 2 \frac{n-1}{n} \sum \bar{K} \bar{L}_{j} + \frac{(n-1)^{2}}{n^{2}} \sum \bar{L}_{j}^{2} \right).$$
(14)

By (9)-(11) we have

$$\bar{K}\bar{L}_{i} = 3n^{3} - 4n^{2} \tag{15}$$

and by (14), (12), (15), and (9)

$$c_1^2(W_n) = n(3n^7 - 4n^5 + 2(n-1)n^3(3n^3 - 4n^2) - (n-1)^2n^5)$$

$$c_1^2(W_n) = n^6(8n^2 - 12n + 3).$$
(16)

Hence by (13) and (16)

$$3c_2(W_n) - c_1^2(W_n) = n^6(n-3)^2.$$
⁽¹⁷⁾

Thus W_3 is a surface (minimal, of general type) with $c_1^2 = 3c_2$. We observe that

$$\lim_{n \to \infty} \frac{c_1^2(W_n)}{c_2(W_n)} = \frac{8}{3}.$$

3. Elliptic Functions

Consider an elliptic curve $\mathbb{C}/\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. The Weierstrass σ -function can be used to describe elliptic functions with given zeros and poles: If a_i (i=1,...,m) and b_i (i=1,...,m) are complex numbers satisfying

$$\sum a_i = \sum b_i \mod \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2,$$

then

$$\prod_{i=1}^{n} (\sigma - a_i) / \prod_{i=1}^{n} (\sigma - b_i)$$

is an elliptic function with zeros and poles in a_i and b_i , respectively. Its divisor equals

$$\sum (a_i) - \sum (b_i),$$

where now addition and subtraction are in the group of divisors of the curve. In particular, we can define the elliptic function

$$F_n(z) = \prod_{a \in U_n} \sigma(z-a) / \sigma(z)^{n^2} = \operatorname{const} \cdot \sigma(nz) / \sigma(z)^{n^2},$$

where U_n is the group of *n*-division points of the curve.

We now take the lattice $\mathbb{Z} + \mathbb{Z}\zeta$ of Sect. 1, and use also the notation of Sect. 1. Then we can write the functions $f_0, f_\infty, f_1, f_\zeta$ as follows

$$f_0 = F_n(w), \quad f_\infty = F_n(z)$$

$$f_1 = F_n(w - z), \quad f_\zeta = F_n(w - \zeta z).$$

Thus the function field of the algebraic surface X_n is the field of meromorphic functions of z and w elliptic in both variables (with respect to the lattice $\mathbb{Z} + \mathbb{Z}\zeta$) extended by adjoining

$$(F_n(z)/F_n(w))^{1/n}, \quad (F_n(w-z)/F_n(w))^{1/n}, \quad (F_n(w-\zeta z)/F_n(w))^{1/n}.$$

The function field of W_n is obtained by adjoining

$$F_n(z)^{1/n}$$
, $F_n(w)^{1/n}$, $F_n(w-z)^{1/n}$, $F_n(w-\zeta z)^{1/n}$.

Remark. I came to the constructions of Sect. 1, Sect. 2 by trying to replace line arrangements (see [1]) by other interesting arrangements of curves on some surface. Then I realized how close the constructions of Sect. 1, Sect. 2 are to the paper of Livné (Harvard thesis, see [1]). He takes the elliptic modular surface E(n) of level n and uses the n^2 sections of the elliptic fibration $E(n) \rightarrow X(n)$ as locus of ramification. I write $T \times T$ in different ways as direct product and thus as a trivial fibration and use its n^2 sections of n-division points as locus of ramification, applying several such ramifications simultaneously.

The methods of Sect. 1, Sect. 2 lead to interesting surfaces also for other elliptic curves with complex multiplication. The special fact occuring for the curve T is that the four elliptic curves T_0 , T_∞ , T_1 , T_ζ meet only in the origin of $T \times T$.

Acknowledgements. This paper was written in March 1983 when I was visiting the Mathematical Sciences Research Institute in Berkeley. I would like to thank the MSRI for the invitation and the hospitality. During my visit of the MSRII met S-T. Yau who told me that he has proved his uniformization theorem also in the relative (logarithmic) case: The equality sign in (2) implies that the universal cover of the surface with the union of the elliptic curves removed is the ball.

References

- 1. Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Volume dedicated to I.R. Shafarevich. Progress in Mathematics, Vol. 36, pp. 113–140. Boston: Birkhäuser 1983
- 2. Holzapfel, R.P.: A class of minimal surfaces in the unknown region of surface geography. Math. Nachr. 98, 211-232 (1980)
- 3. Holzapfel, R.P.: Invariants of arithmetical ball quotient surfaces. Math. Nachr. 103, 117-153 (1981)
- 4. Miyaoka, Y.: On the Chern numbers of surfaces of general type. Invent. Math. 42, 225-237 (1977)
- 5. Sakai, F.: Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps. Math. Ann. 254, 89-120 (1980)
- Yau, S.-T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. USA 74, 1798-1799 (1977)

Received April 28, 1983