Algebraic surfaces with extreme Chern numbers (report on the thesis of Th. Höfer, Bonn 1984)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1985 Russ. Math. Surv. 40135
(http://iopscience.iop.org/0036-0279/40/4/R16)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 192.68.254.154
The article was downloaded on 19/12/2011 at 09:53

Please note that terms and conditions apply.

Algebraic surfaces with extreme Chern numbers (report on the thesis of Th. Höfer, Bonn 1984)

F. Hirzebruch

For a smooth algebraic surface X the Chern numbers $c_{1}^{2}(X)$ and $c_{2}(X)$ are defined. Here $c_{2}(X)$ is equal to the Euler-Poincaré characteristic of X and $c_{1}^{2}(X)$ is the self-intersection number of a canonical divisor of X. For a surface of general type they satisfy the Miyaoka-Yau inequality $c_{1}^{2} \leqslant 3 c_{2}$ (see [8] and [11]), where the equality sign holds if and only if the universal cover of the surface is the unit ball $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1$ (see [11] and [9] §2 for the difficult, and [2] for the easy direction of this equivalence). If $c_{j}^{2}=3 c_{2}$, then automatically $c_{2}>0$, in fact, c_{2} is the volume of the surface (normalized by the Gauss-Bonnet form) with respect to the complexhyperbolic metric induced from the ball.

We wish to construct surfaces of general type with extreme Chern numbers $\left(c_{1}^{2}=3 c_{2}\right)$ that are ramified covers of the complex projective plane branched along lines. Thus, we continue the investigation of the paper [3]. However, the much better developed theory and the new examples are due to Th. Höfer $14 \mid$. This note is a report on his work.

We have to omit many things. For example, we only consider the case when the surface is the quotient of the ball by a discrete group Γ of atutomorphisms, Γ operating freely with compact quotient. Höfer includes the case when Γ may have torsion and cusps (at infinity) and constructs many such ball quotients as ramified covers of the plane. His formulae (with suitable modifications) hold for this more general case.

1. Let S be an algebraic surface and $C_{i}(i=1, \ldots, t)$ finitely many distinct smooth irreducible curves on S such that the curve $C=\sum C_{i}$ has only ordinary double points. Let Y be a smooth algebraic surface, which is a Galois cover over S with covering map

$$
\pi: Y \rightarrow S
$$

that ramifies only over ('. Then for every point $p \in Y$ there exist local coordinates (u, v) on Y with centre at p and local coordinates (z, w) on S with centre at $f(p)$ such that π is given by functions

$$
z=u^{a}, \quad w=v^{b}
$$

where a and b are positive integers. If a or b is at least 2 , then $p \in \pi^{-1}(C)$. We can associate with each C_{i} a positive integer a_{i} such that for a smooth point q of C lying on C_{i} the map π is given locally (for $p \in \pi^{-1}(q)$) by (1) with $a=a_{i}$ and $b=1$. If $q \in C_{i} \cap C_{j}(i \neq j)$, then for $p \in \pi^{-1}(q)$ the map π is given locally by (1) with $a=a_{i}, b=a_{j}$, and if d is the mapping degree of π, the number of inverse image points of q is $d /\left(a_{i} a_{j}\right)$. A covering Y of S with the properties explained in this section is called good with respect to the curves C_{i} and the branching numbers a_{i}.
2. As in [3], we consider the complex projective plane $P_{2}(\mathbf{C})$ with homogeneous coordinates $z_{0}: z_{1}: z_{2}$ and an arrangement of k distinct lines L_{1}, \ldots, L_{k} given by $l_{i}=0(i=1, \ldots, k)$, where l_{i} is a linear form in z_{0}, z_{1}, z_{2}. For a point p in the plane let r_{p} be the number of lines in the arrangement that pass through p and t_{r} (for $r \geqslant 2$) the number of points p with $r_{p}=r$. Then

$$
\begin{equation*}
\frac{k(k-1)}{2}=\sum_{r \geqslant 2} t_{r} \frac{r(r-1)}{2} \tag{2}
\end{equation*}
$$

Given an arrangement, we blow up the points p_{j} in the plane with $r_{p_{j}} \geqslant 3$ to get an algebraic surface S in which there is a configuration of curves C_{i} as in 1 , namely, the strict transforms of the lines of the arrangement (which we also call L_{1}, \ldots, L_{k} as smooth irreducible curves on S) and the curves E_{1}, \ldots, E_{s} obtained by blowing up the points p_{j}, where $1 \leqslant j \leqslant s$ and $s=\sum_{r \geqslant 3} t_{r}$. (The number t of 1 is equal to $k+s$.)

We now associate weights $n_{1}, n_{2}, \ldots, n_{k}$ (integers $\geqslant 2$) to the "old" lines $L_{1}, L_{2}, \ldots, L_{k}$ and weights $m_{1}, m_{2}, \ldots, m_{s}$ (integers $\geqslant 1$) to the "new" lines $E_{1}, E_{2}, \ldots, E_{s}$ or, equivalently, to the points p_{j}. We speak of a weighted arrangement of lines in the plane. (Each line L_{i} has a weight n_{i} and each intersection point p_{j} with $r_{p_{j}} \geqslant 3$ has a weight m_{j}.) For a weighted arrangement we have the surface S and on it curves $L_{1}, \ldots, L_{k}, E_{1}, \ldots, E_{s}$ with branching numbers $n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{s}$ (which in 1 were called a_{i}). Let Y be a good covering of S with respect to $L_{1}, \ldots, L_{k}, E_{1}, \ldots, E_{s}$ and the given branching numbers. (Right now, we do not consider the difficult problem whether such a surface Y exists. For a partial result, see [6]. For the very special case $n_{i}=m_{j}=n$, see [3].) It is possible (and in principle not difficult) to calculate the Chern numbers of Y in a similar and rather elementary way, as it was done in [3] in a special case. However, the formulae for arbitrary weights are not easy to handle. Höfer found several nice formulae to express $\left(3 c_{2}(Y)-c_{1}^{2}(Y) / d\right.$ in terms of the weights and the combinatorial features of the (unweighted) arrangement.

Let σ_{i} be the number of points p with $r_{p} \geqslant 3$ lying on the i-th line of the given arrangement of k lines in the plane. We consider the ($k \times k$)-symmetric matrix A with

$$
A_{i j}=\left\{\begin{array}{cl}
3 \sigma_{i}-4 & (i=j) \tag{3}\\
2 & \left(i \neq j, \quad p \in L_{i} \cap L_{j} \text { with } r_{p}=2\right) \\
-1 & \left(i \neq j, \quad p \in L_{i} \cap L_{j} \text { with } r_{p} \geqslant 3\right)
\end{array}\right.
$$

With the k lines we associate real variables x_{i} and let x be the column vector $\left(x_{1}, \ldots, x_{k}\right)$. With the s points p_{j} with $r_{p_{j}} \geqslant 3$ we associate real variables y_{j}. For each point p_{j} with $r_{p_{j}} \geqslant 3$ we consider the linear form

$$
P_{j}(x, y)=2 y_{j}+\sum_{p_{j}=L_{i}} x_{i}, \text { where } y=\left(y_{i}, \ldots, y_{k}\right) .
$$

Hoffer's formula. For the algebraic surface Y (a good covering of S of degree d with respect to $L_{1}, \ldots . L_{k}, E_{1}, \ldots, E_{s}$ and the given branching numbers $n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{s}$) we have

$$
\begin{equation*}
\left(3 c_{2}(Y)-c_{1}^{2}(Y)\right) / d=\frac{1}{4}\left(x^{t} A x+\sum_{j=1}^{s} P_{j}(x, y)^{2}\right) \tag{4}
\end{equation*}
$$

where $x_{i}==1-\frac{1}{n_{i}}$ and $y_{j}=-1-\frac{1}{m_{j}}$.
Thus, Höfer's formula expresses $\left(3 c_{2}(Y)-c_{1}^{2}(Y)\right) / d$ as a quadratic form over \mathbf{R}^{k+s} in the x_{i} and y_{j}. The quadratic form depends only on the unweighted arrangement.

The sum of the entries in each line of the matrix A is equal to $3 \tau_{i}-(k+3)$, where τ_{i} is the number of points p on L_{i} with $r_{p} \geqslant 2$. This follows from the equation

$$
\sum_{p \in L_{i}}\left(r_{p}-1\right)=k-1
$$

The formula (4) implies the following result:
If $3 \tau_{i}=k+3$ for all lines and if all weights n_{i} are equal $\left(n_{i}=n\right.$ for $1 \leqslant t \leqslant k$), then

$$
\begin{equation*}
\left(3 c_{2}(Y)-c_{i}^{2}(Y)\right): d=\frac{1}{4} \sum_{j=1}^{s} P_{j}(x, y)^{2} \tag{5}
\end{equation*}
$$

where $x_{i}=1-\frac{1}{n}$ and $y_{j}=-1-\frac{1}{m_{j}}$.
3. I know only the following arrangements with $3 \tau_{i}=k+3$ for all lines L_{i} of the arrangement. We exclude the triangle $k=3, t_{2}=3$. They all are related to unitary reflection groups acting on \mathbf{C}^{3} (see [3]).
a) The complete quadrilateral (Fig. 1)

Fig. 1

$$
k=6, t_{2}=3, t_{3}=4, t_{r}=0 \text { otherwise }
$$

b) The arrangements $A_{3}^{0}(m), m \geqslant 3$.

$$
\begin{gathered}
k=3 m, t_{2}=0, t_{3}=m^{2}, t_{m}=3, t_{r}=0 \text { otherwise } \\
\text { (for } m=3, t_{2}=0, t_{3}=12 \text {). }
\end{gathered}
$$

In homogeneous coordinates the $3 m$ lines can be given by the equation

$$
\left(z_{0}^{m}-z_{1}^{m}\right)\left(z_{1}^{m}-z_{2}^{m}\right)\left(z_{2}^{m}-z_{0}^{m}\right)=0 .
$$

c) The arrangements $A_{3}^{3}(m), m \geqslant 2$.

$$
k=3 m+3, \quad t_{2}=3 m, \quad t_{3}=m^{2}, \quad t_{m+2}=3, \quad t_{r}=0 \text { otherwise. }
$$

In homogeneous coordinates the $3 m+3$ lines can be given by the equation

$$
z_{0} z_{1} z_{2}\left(z_{0}^{m}-z_{1}^{m}\right)\left(z_{1}^{m}-z_{2}^{m}\right)\left(z_{2}^{m}-z_{0}^{m}\right)=0 .
$$

d) The Hesse arrangement

$$
k=12, \quad t_{2}=12, \quad t=9, \quad t_{r}=0 \text { otherwise. }
$$

The Hense pencil of all cubics passing through the 9 inflection points of a smooth cubic has 4 singular cubics (triangles), which make up the 12 lines. These 12 lines are dual to the 12 triple points of $A_{3}^{0}(3)$.
e) The extended Hesse arrangement (see [3|)

$$
k=21, \quad t_{2}=36, \quad t_{4}=9, \quad t_{5}=12, \quad t_{T}=0 \quad \text { otherwise }
$$

The extended Hesse arrangement contains the 12 lines of the Hesse arrangement and nine additional lines, which make an arrangement $A_{3}^{0}(3)$ such that the 12 triple points of $A_{3}^{0}(3)$ coincide with the 12 double points of the Hesse arrangement.
f) The icosahedral arrangement (Fig. 2)

Fig. 2

$$
k=15, \quad t_{2}=15, \quad t_{3}=10, \quad t_{\mathrm{b}}=6, \quad t_{r}=0 \text { otherwise }
$$

g) The G_{188}-arrangement. The simple group or order 168 operates on the complex projective plane. It has 21 involutions with 21 fixed lines.

$$
k=21, \quad t_{3}=28, \quad t_{4}=21, \quad t_{r}=0 \text { otherwise }
$$

1) The A_{6}-configuration. The alternating group A_{6} (of order 360) operates on the complex projective plane. It has 45 involutions with 45 fixed lines.

$$
k=45, \quad t_{3}=120, \quad t_{4}=45, \quad t_{5}=36, \quad t_{r}=0 \quad \text { otherwise }
$$

Is this a complete list of the arrangements with $3 \tau_{i}=k+3$ for all lines L_{i}.
4. We wish to study good coverings Y of an arrangement with $3 \tau_{i}=k+3$ for all lines and the weights n_{i} along the lines all equal to n. We are looking for surfaces Y with $3 c_{2}(Y)=c_{1}^{2}(Y)$. Then by (5) all $P_{j}(x, y)$ have to be 0 , which means that

$$
2\left(-1-\frac{1}{m_{i}}\right)+r\left(1-\frac{1}{n}\right)=0
$$

where m_{j} is the branching number (weight) in the point p_{i} with $r_{p_{j}}=r \geqslant 3$. Thus, we have to look at all triples n, r. m of natural numbers with $n \geqslant 2$. $r \geqslant 3, m \geqslant 1$ satisfying

$$
\frac{2}{m}+\frac{r}{n}=r-2
$$

There are exactly 11 possibilities:

n	2	2	2	3	3	4	4	5	5	6	9
r	5	6	8	4	6	3	4	3	5	3	3
m	4	2	1	3	1	8	2	5	1	4	3

Now we can list good coverings Y for weighted arrangements with constant weight n for all lines L_{i} that satisfy $3 c_{1}(Y)=c_{1}^{2}(Y)$. We list all such cases for the arrangements given in 3 , where (5) gives the value 0 . In all these cases Höfer shows that such good coverings Y of S exist (for some degree d) and that these surfaces Y are of general type, therefore, have the ball as universal covering.

For the complete quadrilateral we can take $n_{i}=n=4,5,6,9$, the weight in each of the 4 triple points being $8,5,4,3$, respectively.

For the remaining arrangements we indicate only the constant weight n for the lines L_{i}, because the weight m_{j} in a multiple point p_{j} with $r_{p_{j}}=r \geqslant 3$ is determined by (6) and listed in (7).

For the arrangement $A_{3}^{0}(3)$ we can take $n=4,5,6,9$, for $A_{3}^{0}(4)$ we can take $n=4$, for $A_{3}^{0}(5)$ the constant weight $n=5$ is possible. These are all cases among the $A_{3}^{0}(m)$.

For $A_{3}^{3}(2)$ we can take $n=4$, for $A_{3}^{3}(3)$ we can take $n=5$. These are all cases a mong the $A_{3}^{3}(m)$.

For the Hesse arrangement $n=3$ and $n=4$ is possible. For the icosahedral arrangement $n=5$ gives a solution, and for the G_{168}-arrangement $n=4$. There is no solution for the extended Hesse arrangement, nor for the A_{6}-arrangement.
5. Höfer has associated with each arrangement a quadratic form over \mathbf{R}^{k+s} in $k+s$ variables $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{s}$ (see (4)), which he denotes by $\operatorname{Prop}(x, y)$, because it gives the deviation from the "proportionality" $3 c_{2}=c_{1}^{2}$. We have, by definition,

$$
\begin{equation*}
\operatorname{Prop}(x, y)=\frac{1}{4}\left(x^{t} A x+\sum_{j=1}^{s} P_{j}(x, y)^{2}\right) \tag{8}
\end{equation*}
$$

Höfer's formula (4) and the Miyaoka-Yau inequality could lead to the guess that this form is semidefinite. However, this is wrong, in general, (see [3]). But in some cases positive semidefiniteness can be established. The matrix A can be written in the form

$$
A=3 B-U
$$

where U is the matrix with all entries equal to 1 and B has $B_{i i}=\sigma_{i}-1$ and $B_{i j}=1$ if $i \neq j$ and $p=L_{i} \cap L_{j}$ is a double point $(r=2)$. Otherwise $B_{i j}=0$. If for all lines $3 \tau_{i}=k+3$, then the column vector $e=(1, \ldots, 1) \in \mathbf{R}^{k}$ satisfies $A e=0$, and for every vector x orthogonal to e (in the standard metric of \mathbf{R}^{k})

$$
A x=3 B x
$$

Therefore, $\operatorname{Prop}(x, y)$ is positive semidefinite if B is. For all the arrangements listed in 3 the matrix B is positive semidefinite and in b), d), f), g), h) positive definite, which implies that $\operatorname{Prop}(x, y)$ (a form in $k+s$ variables) is positive semidefinite with an eigenvalue 0 of multiplicity 1 , and
the good coverings Y with $3 c_{2}(y)=c_{1}^{2}(Y)$ must have constant weights for all lines L_{i} of the arrangement.
6. The quadratic form $\operatorname{Prop}(x, y)$ (see (8)) can be written as
(9) $\operatorname{Prop}(x, y)=\frac{1}{2}\left(\sum_{i=1}^{k} x_{i} \frac{\partial}{\partial x_{i}} \operatorname{Prop}(x, y)+\sum_{j=1}^{\dot{j}} y_{y} \frac{\partial}{\partial y_{j}} \operatorname{Prop}(x, y)\right)$,
where (see (4))

$$
\frac{\partial}{\partial y_{\beta}} \operatorname{Prop}(x, y)=P_{\beta}(x, y), \quad 1 \leqslant \beta \leqslant s .
$$

We define

$$
\frac{\partial}{\partial x_{\alpha}} P(x, y)=Q_{\alpha}(x, y) . \quad 1 \leqslant \alpha \leqslant k,
$$

The $k+s$ homogeneous linear equations in the $k+s$ real variables x_{1}, \ldots, x_{k}, $y_{1} \ldots . y_{s}$

$$
Q_{\alpha}(x, y)=0, \quad P_{\beta}(x, y)=0,
$$

or. equivalently,

$$
\begin{equation*}
A x=0, \quad P_{\xi}(x, y)=0 \quad(1 \leqslant \beta \leqslant s), \tag{10}
\end{equation*}
$$

define the null space of $\operatorname{Prop}(x, y)$ whose dimension is equal to the corank of A. If (10) holds, then $\operatorname{Prop}(x, y)=0$. The converse is true if $\operatorname{Prop}(x, y)$ is positive semidefinite. Hence, for all the arrangements listed in 3 , an algebraic surface Y (good covering of S of degree d with respect to L_{1}, \ldots, L_{k}, E_{1}, \ldots, E_{s} and the given branching numbers $\left.n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{s}\right)$ satisfies $3 c_{2}(Y)=c_{1}^{2}(Y)$ if and only if (10) holds with
(11) $\quad x_{i}=1-1 / n_{i}, \quad y_{j}=-1-1 / m_{j}, \quad n_{i} \geqslant 2, \quad m_{j} \geqslant 1$.

For the complete quadrilateral the corank of A is 4 , there are finitely many solutions of (10), (11). This corresponds to the theory of the hypergeometric differential equation [1]. We come back to this later.

For the extended Hesse arrangement (see 3.e)) the corank of A is 2 . The x_{i} have to be constant for the lines of the Hesse arrangement and also constant for the additional 9 lines. Höfer shows that there are exactly 3 solutions of (10), (11). The weights n_{i} are:

Hesse lines	additional lines
3	9
4	2
4	6

The weights m_{j} are determined by $P_{j}(x, y)=0$. Höfer shows that such coverings exist.
7. The ball $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ is embedded in $P_{2}(\mathbf{C})$. The automorphisms of the ball are exactly the projective isomorphisms of $P_{2}(\mathbf{C})$ that map the ball into itself. The ball carries the invariant complex hyperbolic metric. The totally geodesic smooth curves (totally geodesic as 2-dimensional surfaces in a 4-dimensional Riemannian manifold) are the intersections of lines of $P_{2}(\mathbf{C})$ with the ball.

Let Y be an algebraic surface whose universal cover is the ball. Then Y inherits the complex hyperbolic metric from the ball. Up to a constant factor, this the unique Einstein-Kähler metric of Y. Every automorphism of Y is an isometry. The totally geodesic curves of Y are those curves that when lifted to the ball become lines. If a curve is pointwise fixed under an automorphism of Y (other than the identity), then this curve is totally geodesic. Therefore, if Y is, in addition, a good covering of S as in 1 , then all curves $\pi^{-1}\left(C_{i}\right)$ (they are smooth, but not necessarily connected) are totally-geodesic if the branching number a_{i} is greater than 1.

If a smooth curve C on Y is totally geodesic, then

$$
e(C)=2 C \cdot C
$$

where $e(C)$ is the Euler-Poincare characteristic of C and $C \cdot C$ the selfintersection number. This follows from a relative version of the "proportionality principle" [2], because it is true in $P_{2}(\mathbf{C})$, where the totally geodesic curves are the lines $(e(L)=2, L L=1)$.

Enoki has proved ${ }^{(1)}$ that for every smooth curve on Y (the universal cover of Y is still supposed to be the ball)

$$
\begin{equation*}
e(C) \leqslant 2 C \cdot C \tag{12}
\end{equation*}
$$

and that C is totally geodesic if and only if the equality sign holds in (12).
As deviation from proportionality we define

$$
\begin{equation*}
\operatorname{prop}(C)=2 C \cdot C-e(C) \tag{13}
\end{equation*}
$$

for a smooth curve C on an algebraic surface Y. If the universal cover of Y is the ball, then $\operatorname{prop}(C) \geqslant 0$ in accordance with Enoki's observation.
8. We consider again a weighted arrangement of lines in the plane (as in 2) and let Y be a good covering of S with respect to $L_{1}, \ldots, L_{k}, E_{1}, \ldots, E_{s}$ and the branching numbers $n_{1}, \ldots, n_{k}\left(n_{i} \geqslant 2\right)$ and $m_{1}, \ldots, m_{s}\left(m_{j} \geqslant 1\right)$. Let d be the degree of $\pi: Y \rightarrow S$. Then $\pi^{-1}\left(L_{i}\right)$ and $\pi^{-1}\left(E_{j}\right)$ are smooth curves in Y (generally, not connected). The partial derivatives of $\operatorname{Prop}(x, y)$ introduced in 6 have, as Höfer shows, a geometric meaning, namely,

$$
\begin{equation*}
Q_{\alpha}(x, y)=\frac{n_{\alpha}}{d} \operatorname{prop}\left(\pi^{-1} L_{\alpha}\right), P_{\beta}(x, y)=\frac{m_{\beta}}{d} \operatorname{prop}\left(\pi^{-1} E_{\beta}\right) \tag{14}
\end{equation*}
$$

if $x_{\alpha}=1-1 / n_{\alpha}, y_{\beta}=-1-1 / m_{\beta}$.

[^0]According to (9) we have

$$
\begin{align*}
& 3 c_{2}(Y)-c_{1}^{2}(Y)=\frac{1}{2}\left(\sum\left(n_{i}-1\right) \operatorname{prop}\left(\pi^{-1} L_{i}\right)-\right. \tag{15}\\
&\left.-\sum\left(m_{j}+1\right) \operatorname{prop}\left(\pi^{-1} E_{j}\right)\right)
\end{align*}
$$

Actually, this is a formula of a rather elementary nature and can be obtained directly, but is useful to recognize the prop of the lifted ramification locus as partial derivatives of the quadratic form $\operatorname{Prop}(x, y)$. If Y has the ball as universal cover (equivalently, if Y is of general type and $3 c_{2}(Y)=c_{1}^{2}(Y)$), then $\operatorname{prop}\left(\pi^{-1} L_{i}\right)=0$ and $\operatorname{prop}\left(\pi^{-1} E_{j}\right) \geqslant 0$, see 7. Therefore, by (15), also the $\operatorname{prop}\left(\pi^{-1} E_{j}\right)$ vanish. Thus, we get a result that we cannot obtain formally from 6, because we do not know, in general, that $\operatorname{Prop}(x, y)$ is positive semidefinite.

Suppose that Y is obtained as in the beginning of 8 . We assume that it is of general type. Then the universal cover of Y is the ball if and only if all $\operatorname{prop}\left(\pi^{-1} L_{i}\right)$ and $\operatorname{prop}\left(\pi^{-1} E_{j}\right)$ vanish.
9. As an illustration let us look at prop $\left(\pi^{-1} E_{j}\right)$). The curve E_{j} on S arose from blowing up the point p_{j} in the plane. We put $r_{P_{j}}=r$ and let L_{1}, \ldots, L_{r} be the lines passing through p_{j} with weights n_{1}, \ldots, n_{r}.

We put $E_{j}=E$ and $m_{j}=m$. Then

$$
E \cdot E=-1 \text { and } \pi^{-1}(E) \cdot \pi^{-1}(E)=-\frac{d}{m^{2}}
$$

For the Euler-Poincaré characteristic we have

$$
e\left(\pi^{-1} E\right)=\frac{d}{m}(2-r)+\sum_{i=1}^{r} \frac{d / m}{n_{i}}
$$

Thus,

$$
\operatorname{prop}\left(\pi^{-1} E\right)=\frac{d}{m}\left(-\frac{2}{m}-\sum_{i=1}^{r} \frac{1}{n_{i}}-r-2\right)=\frac{d}{m}\left(2 y+\sum_{i=1}^{\tau} x_{i}\right)
$$

if $x_{i}=1-1 / n_{i}$ and $y=-1-1 / m$. This verifies (14) (see the definition of the linear form $P_{j}(x, y)$ in 2). Thus, $\operatorname{prop}\left(\pi^{-1} E\right)$ vanishes if and only if

$$
\begin{equation*}
\frac{2}{m}+\sum_{i=1}^{r} \frac{1}{n_{i}}=r-2 \tag{16}
\end{equation*}
$$

Höfer gives a complete list of the ($m ; n_{1}, \ldots, n_{r}$) with $m \geqslant 1$; $n_{1} \geqslant n_{2} \geqslant \ldots \geqslant n_{r} \geqslant 2$ satisfying (16). Let N_{r} be the number of solutions for a given r.

Then

r	3	4	5	6	7	8
N_{r}	87	27	150	18	3	1

Included are the 11 cases with constant n_{i} (see (7)).
10. We consider the complete quadrilateral as in 3 , a). We have to blow up the four triple points to get the surface S. It is a Del Pezzo surface with 10 exceptional curves $L_{1}, \ldots, L_{6}, E_{1}, \ldots, E_{4}$. But the configuration of these 10 curves on S is very symmetric. In this special case the L_{i} and E_{j} do not play separate roles. We can index the 10 curves by the 10 subsets of $\{0,1,2,3,4\}$ of cardinality 2 , in such a way that two curves intersect if and only if their indexing subsets are disjoint. We denote the 10 curves by $E_{i, j}$ (with $i, j \in\{0,1,2,3,4\}$). We see that the configuration of our 10 curves admits S_{5} as symmetry group. We can choose $E_{1}, E_{2}, E_{3}, E_{4}$ as $E_{01}, E_{02}, E_{03}, E_{04}$. The weights n_{i}, m_{j} are now denoted by $n_{i j}$, in particular, $n_{0 j}=m_{j}$.

We have

$$
\operatorname{prop}\left(\pi^{-1} E_{01}\right)=\frac{d}{n_{01}}\left(-\frac{2}{n_{81}}-\frac{1}{n_{23}}-\frac{1}{n_{24}}-\frac{1}{n_{34}}+1\right)
$$

Therefore, to find surfaces Y whose universal cover is the ball we have to look for weights $n_{i j}$ satisfying

$$
\begin{equation*}
\frac{2}{n_{01}}+\frac{1}{n_{23}}+\frac{1}{n_{25}}+\frac{1}{n_{34}}=1 \tag{17}
\end{equation*}
$$

and all permutations of (17). We must have $n_{i j} \geqslant 2$. Up to a permutation there are 7 solutions, the 4 solutions mentioned in 4 and 3 others. The table in [1] has 27 cases, due to the fact that ramified covers Y of the plane are admitted, which are related to ball quotients for groups Γ that do not operate freely or are not cocompact and have cusps. Höfer's theory includes these cases for the complete quadrilateral and for all other arrangements. Refinements of Yau's theorem due to Miyaoka [10] and R. Kobayashi [7] are needed.

If in the case of the complete quadrilateral

$$
\frac{1}{n_{i j}}=1-\mu_{i}-\mu_{j} \text { and } \sum_{i=0}^{4} \mu_{i}=2
$$

then (17) and all permutations hold. This is the notation of [1]. The affine space $\sum \mu_{i}=2$ corresponds to our 4-dimensional null space of the quadratic form $\operatorname{Prop}(x, y)$.
11. The ramified covers of the plane with respect to the complete quadrilateral correspond to the theory of the hypergeometric differential equation dating back to Picard (see [1]). The question arises whether such differential equations whose monodromy gives our coverings exist also for other arrangements. This difficult question has been successfully treated by Masaaki Yoshida in two papers ([12], [13]).

The work of Holzapfel on Picard modular surfaces (see, for example, [5] and the references given there) has many connections with this paper.

References

[1] P. Deligne and G.D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, preprint IHES/M/82/46, July 1983.
[2] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Symp. Internat. Topologia Algebraica 1956, 129-144, Universidad de México, Mexico City 1958. MR 21 \# 2058.
[3] ——, Arrangements of lines and algebraic surfaces, Progr. Math. 36 (1983), 113-140, Birkhäuser, Boston, MA.
[4] Th. Höfer, Ballquotienten als verzweigte Überlagerungen der projektiven Ebene, Ph.D. thesis, Bonn 1985.
[5] R.-P. Holzapfel, Arithmetic curves on ball quotient surfaces, Ann. Global. Anal. Geom. 1 (1983), 21-90. MR 85e:14053.
[6] Mi. Kato, On the existence of finite principal uniformizations of $C P^{2}$ along weighted line configurations, Mem. Fac. Sc. Kyushu Univ. Ser. A 38 (1984), 127-131. MR 85h:32018.
[7] R. Kobayashi, Einstein-Kaehler V-metrics on open algebraic surfaces, Preprint, Tohôku Univ. 1984.
[8] Y. Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977), 225-237. MR 57 \# 337.
[9] - , On algebraic surfaces with positive index, Progr. Math. 39, 281-301, Birkhäuser, Boston, MA, 1983.
[10] ——. The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), 159-171.
[11] S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA 74 (1977), 1798-1799. MR 56 \# 9467.
[12] Ma. Yoshida, Orbifold-uniformizing differential equations, Math. Ann. 267 (1984), 125-142.
[13] - Orbifold-uniformizing differential equations. II, preprint 1984.
Math. Inst. Univ. of Bonn

[^0]: ${ }^{(1)}$ I. Enoki, A proof of the proportionality principle for submanifolds (private communication).

