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Algebraic surfaces with extreme Chern numbers
(report on the thesis of Th. Hdfer, Bonn 1984)

F. Hirzebruch

For a smooth algebraic surface X the Chern numbers c\(X) and c2(X) are

defined. Here c2(X) is equal to the Euler-Poincare characteristic of X and

c\{X) is the self-intersection number of a canonical divisor of X. For a

surface of general type they satisfy the Miyaoka-Yau inequality c\ < 3f2 (see

[8] and [11]). where the equality sign holds if and only if the universal

cover of the surface is the unit ball Iz, l 2 + \z2\
2 < 1 (see [11] and [9] §2

for the difficult, and [2] for the easy direction of this equivalence). If

c] = 3c2, then automatically c2 > 0. in fact, c2 is the volume of the surface

(normalized by the Gauss-Bonnet form) with respect to the complex-

hyperbolic metric induced from the ball.

We wish to construct surfaces of general type with extreme Chern

numbers (c\ = 3c2) that are ramified covers of the complex projective plane

branched along lines. Thus, we continue the investigation of the paper [3] .

However, the much better developed theory and the new examples are due

to Th. Hofer [ 4 | . This note is a report on his work.

We have to omit many things. For example, we only consider the case

when the surface is the quotient of the ball by a discrete group Γ of

automorphisms. Γ operating freely with compact quotient. Hofer includes

the case when Γ may have torsion and cusps (at infinity) and constructs

many such ball quotients as ramified covers of the plane. His formulae

(with suitable modifications) hold for this more general case.

1. Let S be an algebraic surface and C, (i = 1 t) finitely many distinct

smooth irreducible curves on S such that the curve C = V. Ct has only-

ordinary double points. Let Υ be a smooth algebraic surface, which is a

Galois cover over S with covering map

π: 7 — S

that ramifies only over C. Then for every point ρ €Ξ }' there exist local

coordinates (it. v) on Υ with centre at ρ and local coordinates (z, \v) on S

with centre at./'( p) such that π is given by functions

1) ζ = ua, w = vb,
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where a and b are positive integers. If a or & is at least 2, then ρ Ε π
We can associate with each C, a positive integer a,· such that for a smooth
point q of C lying on Ct the map π is given locally (for ρ Ε π " 1 ^ ) ) by (1)
with a — af and b = 1. If ^ € Q η C; (/ =£/), then for ρ € ττ'Η?) the map
π is given locally by (1) with a = a,-, ft — α;·, and if <i is the mapping degree
of π, the number of inverse image points of q is d/(e,-e;·)· A covering Υ of S
with the properties explained in this section is called good with respect to
the curves C,· and the branching numbers a,·.

2. As in [3], we consider the complex projective plane P2{C) with
homogeneous coordinates z0: zx: z2 and an arrangement of k distinct lines
Li, ..., Lk given by /,· = 0 (/ = 1, ..., k), where /,· is a linear form in z0, zx, z2.
For a point ρ in the plane let rp be the number of lines in the arrangement
that pass through ρ and tr (for r > 2) the number of points ρ with /"p = r.
Then

Given an arrangement, we blow up the points pj in the plane with rp. ^ 3

to get an algebraic surface S in which there is a configuration of curves C,· as
in 1, namely, the strict transforms of the lines of the arrangement (which we
also call Lx, ..., Lk as smooth irreducible curves on S) and the curves
Ει, ..., Es obtained by blowing up the points p;-, where 1 < / < s and
s = 2 tT. (The number / of 1 is equal to k + s.)

r> 3

We now associate weights ηλ, η2, .... nk (integers > 2) to the " o l d " lines
L\, L2, .... Lk and weights ml, m2, ... ms (integers > 1) to the " n e w " lines
Ει, E2, ..., Es or, equivalently, to the points Pj. We speak of a weighted
arrangement of lines in the plane. (Each line L,· has a weight /?, and each
intersection point p ; with rp. ^ 3 has a weight rrij.) For a weighted

arrangement we have the surface S and on it curves Lx, .... Lk, Εγ, .... Es

with branching numbers nx, .... nk, m1, ..., ms (which in 1 were called a,·).
Let Υ be a good covering of S with respect to L x , .... L k , Ex, .... Es and the
given branching numbers. (Right now, we do not consider the difficult
problem whether such a surface Υ exists. For a partial result, see [6]. For
the very special case nt = m, = n, see [3].) It is possible (and in principle
not difficult) to calculate the Chern numbers of Υ in a similar and rather
elementary way, as it was done in [3] in a special case. However, the
formulae for arbitrary weights are not easy to handle. Hofer found several
nice formulae to express ( 3 c 2 ( F ) - c](Y)/d in terms of the weights and the
combinatorial features of the (unweighted) arrangement.
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Let σ, be the number of points ρ with rp > 3 lying on the z-th line of the
given arrangement of k lines in the plane. We consider the (k χ &)-symmetric
matrix A with

< 3 a f - 4 (i = / ) ,

(3) Au=) 2 (igfc/, pGfcifl &j with r p = 2),

i - i ( i # / \ />££, Π £,· with r p > 3 ) .

With the k lines we associate real variables x,· and let χ be the column vector
(x,, ..., x A ). With the s points p;- with rp / > 3 w e associate real variables ^ ; · .

For each point p ; with rp. ^ 3 we consider the linear form

Pj(x, y) = 2yi+ Σ ^i, where y = (yt y,).

Hofer's formula. For the algebraic surface Υ (α good covering of S of degree
d with respect to L\, .... Lk, £\, ..., Es and the given branching numbers
ηλ nk. m, ms) we have

where xt = 1 - J_ and y, = - 1 - — .

Thus, Hofer's formula expresses (3c2(Y)-c](Y))/d as a quadratic form
over R'c + i in the .γ,· and })•. The quadratic form depends only on the
unweighted arrangement.

The sum of the entries in each line of the matrix A is equal to 3τ,- - {k+ 3),
where r, is the number of points ρ on Lt with rp > 2. This follows from
the equation

Σ (r,-l) = fc-l.

The formula (4) implies the following result:
// 3T,- = k + 3 /ο/· α// /znes arcc? //a// weights nt are equal (nt = η for

1 < / < k), then
S

(5) (3c2 (Y) - c\ (Y))/d = 4 " Σ Λ" ( .̂ ί/)2'

where xl — \ and y.— — 1 .

3. I know only the following arrangements with 3τ,· = k+ 3 for all lines I,·
of the arrangement. We exclude the triangle k — 3, t2 — 3. They all are
related to unitary reflection groups acting on C 3 (see [3]).
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a) The complete quadrilateral (Fig. 1)

Fig. 1

A- — 6, <2 = 3, f3 = 4, tT = 0 otherwise.

b) The arrangements A%\m), m > 3.

k = 3m, 12 = 0 , i 3 = m2, i m = 3, i r = 0 otherwise.

(for m = 3, t2 = 0, i 3 = 12).

In homogeneous coordinates the 3m lines can be given by the equation

\Z0 Z l I Vzi — "Ϊ M Z 2 — zo > — υ ·

c) ΓΛβ arrangements A%m), m > 2.

k — 3m 4- 3, i 2 = 3m, i 3 = m2, i m + 2 = 3, i r = 0 otherwise.

In homogeneous coordinates the 3m+3 lines can be given by the equation

z 0 z l z 2 \zo — ' ι ) ( ' ι — Ζΐ Ι \Ζϊ — "u I — υ ·

d) The Hesse arrangement

k = 12, f2 = 12, t = 9, i r =-= 0 otherwise.

The Hense pencil of all cubics passing through the 9 inflection points of a
smooth cubic has 4 singular cubics (triangles), which make up the 12 lines.
These 12 lines are dual to the 12 triple points of A%(3).

e) The extended Hesse arrangement (see [3] )

k = 21, t 2 = 36, tk = 9, tt = 12, tT = 0 otherwise.

The extended Hesse arrangement contains the 12 lines of the Hesse
arrangement and nine additional lines, which make an arrangement A°3{3)
such that the 12 triple points of /1°(3) coincide with the 12 double points of
the Hesse arrangement.
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f) The icosahedral arrangement (Fig. 2)
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Fig. 2

k = 15, i a = 15, tt = 10, i s = 6, i r = 0 otherwise.

g) 77/e G16B-arrangement. The simple group or order 168 operates on the

complex projective plane. It has 21 involutions with 21 fixed lines.

k = 21, <s = 28, tk = 21, i r = 0 otherwise.

h) The A ̂ configuration. The alternating group A6 (of order 360) operates
on the complex projective plane. It has 45 involutions with 45 fixed lines.

A· = 45, f3 = 120, i4 = 45, i 5 = 36r i r = 0 otherwise.

is this a complete list of the arrangements with 3r(- = k+3 for all lines £,·?

4. We wish to study good coverings Υ of an arrangement with 3r,· = k + 3
for all lines and the weights «,· along the lines all equal to //. We are looking
for surfaces Υ with 3c2(Y) = c](Y). Then by (5) all Pf(.\. y) have to be 0,
which means that

_ i — L ) + r (i_JL)=0,
m i / 1 1 η I

with rp = r ̂  3.where nij is the branching number (weight) in the point

Thus, we have to look at all triples /;, r. m of natural numbers with η
r > 3, in > 1 satisfying

(b) = r— 2.
v ' ran

There are exactly 1 1 possibilities:

η II 2

r I 5

m | 4

2

6

2

2

8

1

3 | 3

4 | 6

3 | *

4

3

8

4

4

5

3

5

5 6 j 9

5 | 3 | 3

1 4 | 3
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Now we can list good coverings Υ for weighted arrangements with
constant weight η for all lines Lt that satisfy 3c ̂ Y) = c\{Y). We list all
such cases for the arrangements given in 3, where (5) gives the value 0. In
all these cases Hofer shows that such good coverings Υ of S exist (for some
degree d) and that these surfaces Υ are of general type, therefore, have the
ball as universal covering.

For the complete quadrilateral we can take nt = η = 4, 5, 6, 9, the
weight in each of the 4 triple points being 8, 5, 4, 3, respectively.

For the remaining arrangements we indicate only the constant weight η
for the lines Lt, because the weight m, in a multiple point p ; with r p . = r > 3
is determined by (6) and listed in (7).

For the arrangement ^4°(3) we can take η = 4, 5, 6, 9, for ^3(4) we can
take η = 4, for A%5) the constant weight η = 5 is possible. These are all
cases among the A%(m).

For A%{2) we can take η = 4, for /13(3) we can take η = 5. These are all
cases among the A%m).

For the Hesse arrangement η = 3 and η — 4 is possible. For the
icosahedral arrangement η = 5 gives a solution, and for the G1SH -arrangement
η = 4. There is no solution for the extended Hesse arrangement, nor for
the v46-arrangement.

5. Hofer has associated with each arrangement a quadratic form over R f t + i

in k + s variables xx xk, ylt ..., ys (see (4)), which he denotes by
Prop(x, y), because it gives the deviation from the "proportionality"
3c2

 = c\. We have, by definition,

(8) Prop (*, y) = -J- (**Αχ + 2 Λ (*.

Hofer's formula (4) and the Miyaoka-Yau inequality could lead to the guess
that this form is semidefinite. However, this is wrong, in general, (see [3]).
But in some cases positive semidefiniteness can be established. The matrix A
can be written in the form

A = dB - U,

where U is the matrix with all entries equal to 1 and Β has Bit = σ, — 1
and Bu — 1 if / φ j and ρ = Lt Π L, is a double point (r = 2). Otherwise
Bij = 0. If for all lines 3r,· = k+3, then the column vector e = (1, ..., 1) GR*
satisfies Ae = 0, and for every vector χ orthogonal to e (in the standard
metric of Rfc)

Ax = 3Bx.

Therefore, Prop(x, y) is positive semidefinite if Β is. For all the
arrangements listed in 3 the matrix Β is positive semidefinite and in b), d),
f), g), h) positive definite, which implies that Prop(x, y) (a form in k + s
variables) is positive semidefinite with an eigenvalue 0 of multiplicity 1, and
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the good coverings Υ with 3c2(y) = c\(Y) must have constant weights for all
lines Z,, of the arrangement.

6. The quadratic form Prop(x, y) (see (8)) can be written as
i.

(9) Prop(x, J/) = 4-

where (see (4))

7 Prop (χ, y ) + 2 if,—-Prop iz, y)),—

•^•Prop(x, tf) = />„(*, t,),

We define

The k + s homogeneous linear equations in the k + s real variables xlt ..., xk,

Qafa y) = ο, ρ φ, y) = ο,
or, equivalently,

(10) Ax = 0, /V*. lf) = 0 ( 1 < β < 5 ) ,

define the null space of PropCx, y) whose dimension is equal to the corank
of A. If (10) holds, then Prop(x, y) = 0. The converse is true if Prop(x, y)
is positive semidefinite. Hence, for all the arrangements listed in 3, an
algebraic surface Υ (good covering of S of degree d with respect to Lx Lk,

Ex Es and the given branching numbers «,
3c2(Y) = c]{Y) if and only if (10) holds with

nk, m, ms) satisfies

(11) xt = 1 — 1/raj, y} = — 1 — ilms, nt > 2, m} > 1.

For the complete quadrilateral the corank of A is 4, there are finitely
many solutions of (10), (11). This corresponds to the theory of the
hypergeometric differential equation [1 ]. We come back to this later.

For the extended Hesse arrangement (see 3.e)) the corank of A is 2. The
x, have to be constant for the lines of the Hesse arrangement and also
constant for the additional 9 lines. Hofer shows that there are exactly 3
solutions of (10), (11). The weights nt are:

Hesse lines

3
4
4

additional lines

9
2
6

The weights rrij are determined by Pj(x, y) = 0. Hofer shows that such
coverings exist.
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7. The ball IzJ2-!- \z2\
2 is embedded in P2(C). The automorphisms of the

ball are exactly the projective isomorphisms of P2(C) that map the ball into
itself. The ball carries the invariant complex hyperbolic metric. The totally
geodesic smooth curves (totally geodesic as 2-dimensional surfaces in a
4-dimensional Riemannian manifold) are the intersections of lines of P2{C)
with the ball.

Let Υ be an algebraic surface whose universal cover is the ball. Then Υ
inherits the complex hyperbolic metric from the ball. Up to a constant
factor, this the unique Einstein-Kahler metric of Y. Every automorphism of
Υ is an isometry. The totally geodesic curves of Υ are those curves that
when lifted to the ball become lines. If a curve is pointwise fixed under an
automorphism of Υ (other than the identity), then this curve is totally
geodesic. Therefore, if Υ is, in addition, a good covering of S as in 1, then
all curves ^""'(C,·) (they are smooth, but not necessarily connected) are
totally-geodesic if the branching number at is greater than 1.

If a smooth curve C on Υ is totally geodesic, then

e(C) = 2C-C,

where e{C) is the Euler-Poincare characteristic of C and C-C the self-
intersection number. This follows from a relative version of the
"proportionality principle" [2], because it is true in P2(C), where the totally
geodesic curves are the lines (e(I) = 2, LL = 1).

Enoki has proved*1> that for every smooth curve on Υ {the universal cover
of Υ is still supposed to be the ball)

(12) e(C) < 2C-C

and that C is totally geodesic if and only if the equality sign holds in (12).

As deviation from proportionality we define

(13) prop (C) = 2C-C - e(C).

for a smooth curve C on an algebraic surface Y. If the universal cover of Υ
is the ball, then prop(C) > 0 in accordance with Enoki's observation.

8. We consider again a weighted arrangement of lines in the plane (as in 2)
and let Υ be a good covering of S with respect to L{, .... Lk, El Es and
the branching numbers nx, .... nk {n{ > 2) and mx, .... ms {nij > 1). Let d
be the degree of it : Υ -*• S. Then π " 1 ^ , ) and π~1(Εί) are smooth curves in Υ
(generally, not connected). The partial derivatives of Prop(.v, y) introduced
in 6 have, as Hofer shows, a geometric meaning, namely,

(14) Qa(x, i/) = -^-prop(n- 1 L a ), Pe(x, y) = -^f prop ( i r 1 ^ ) ,

if xa = 1 - \/na, y-β = -1 - \/m0.

(lh. Enoki, A proof of the proportionality principle for submanifolds (private
communication).
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According to (9) we have

(15) 3

Actually, this is a formula of a rather elementary nature and can be obtained
directly, but is useful to recognize the prop of the lifted ramification locus
as partial derivatives of the quadratic form Prop(x, y). If Υ has the ball as
universal cover (equivalently, if Υ is of general type and 3c2(Y) = c\{Y)),
then propiiT1/-,-) = 0 and ρΓορίπ"1^·) > 0, see 7. Therefore, by (15), also
the ρΓορ(π - 1£ ;) vanish. Thus, we get a result that we cannot obtain formally
from 6, because we do not know, in general, that PropCx, y) is positive
semidefinite.

Suppose that Υ is obtained as in the beginning of 8. We assume that it is
of general type. Then the universal cover of Υ is the ball if and only if all
ρΓορίπ"1/,,·) and pro ρ (η ~lE,) vanish.

9. As an illustration let us look at ρΓορ(π"1£/·)). The curve Ef on S arose
from blowing up the point pt in the plane. We put rPj = r and let Lx, ..., Lr

be the lines passing through p;- with weights nu ..., nr.
We put Ej = Ε and wz;· = m. Then

E-E=-\ and JT1 (Ε)-η^ {Ε) = - - ^ - .

For the Euler-Poincare characteristic we have

djm

t = i

Thus,

7 = 1

if .ν,- = 1 - 1/n,· and y = -1 - \jm. This verifies (14) (see the definition of the
linear form Pj{x, y) in 2). Thus, ρΓορ(π" !£) vanishes if and only if

r

(16) 7+Στ = Γ-2·

Hofer gives a complete list of the (m; ηλ, ..., nr) with m > 1;

nx > n2 > ••• > nr> 2 satisfying (16). Let Nr be the number of solutions

for a given r.

Then

Γ 3

87

4

27

5

150

6

18

7

3

8

1

Included are the 11 cases with constant «,- (see (7)).
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10. We consider the complete quadrilateral as in 3, a). We have to blow up
the four triple points to get the surface S. It is a Del Pezzo surface with 10
exceptional curves Ll7 . . ., Le, Ex, . . ., E4. But the configuration of
these 10 curves on S is very symmetric. In this special case the Lt and Ej do
not play separate roles. We can index the 10 curves by the 10 subsets of
{0, 1, 2, 3, 4} of cardinality 2, in such a way that two curves intersect if
and only if their indexing subsets are disjoint. We denote the 10 curves by
£,,/(withi , ; 6 {0, 1, 2, 3, 4}). We see that the configuration of our 10
curves admits S5 as symmetry group. We can choose Ev E2, E3, 2s4 as

E0l, EOi, EOi, EOk. The weights «,-, m,- are now denoted by ni}, in particular,
n0} = m}.

We have

Therefore, to find surfaces Υ whose universal cover is the ball we have to
look for weights n,-y satisfying

(17) _^_+JL+_L+_!_ = i
noi n« nji nsi

and all permutations of (17). We must have ntJ ^ 2. Up to a permutation
there are 7 solutions, the 4 solutions mentioned in 4 and 3 others. The
table in [1] has 27 cases, due to the fact that ramified covers Υ of the plane
are admitted, which are related to ball quotients for groups Γ that do not
operate freely or are not cocompact and have cusps. Hofer's theory includes
these cases for the complete quadrilateral and for all other arrangements.
Refinements of Yau's theorem due to Miyaoka [ 10] and R. Kobayashi [7] are
needed.

If in the case of the complete quadrilateral
4

__ = 1_μ._μ, and 2 μ« = 2,
11 i=0

then (17) and all permutations hold. This is the notation of [1 ]. The
affine space ^ μ,· = 2 corresponds to our 4-dimensional null space of the

quadratic form Prop(x, y).

11. The ramified covers of the plane with respect to the complete
quadrilateral correspond to the theory of the hypergeometric differential
equation dating back to Picard (see [ 1 ]). The question arises whether such
differential equations whose monodromy gives our coverings exist also for
other arrangements. This difficult question has been successfully treated by
Masaaki Yoshida in two papers ([12], [13]).

The work of Holzapfel on Picard modular surfaces (see, for example, [5]
and the references given there) has many connections with this paper.
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