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This short note illustrates connections between Lothar G6ttsche's results from the 
preceding paper and invariants for finite group actions on manifolds that have 
been introduced in string theory. A lecture on this was given at the MPI workshop 
on "Links between Geometry and Physics" at Schlol3 Ringberg, April 1989. 

Invariants of quotient spaces. Let G be a finite group acting on a compact 
differentiable manifold X. Topological invariants like Betti numbers of the 
quotient space X/G are well-known: 

�9 i a 1 b,~X/G) = dlmH (X, R) = ~ g~)~ tr(g* I H'(X, R)). 

The topological Euler characteristic is determined by the Euler characteristic of 
the fixed point sets Xa: 

1 

Physicists" formula. Viewed as an orbifold, X/G still carries someinformation on 
the group action. In I-DHVW1, 2; V] one finds the following string-theoretic 
definition of the "orbifold Euler characteristic": 

1 e(X<~.h> ) e X, 

Here summation runs over all pairs of commuting elements in G x G, and X <g'h> 
denotes the common fixed point set ofg and h. The physicists are mainly interested 
in the case where X is a complex threefold with trivial canonical bundle and G is a 
finite subgroup of $U(3). They point out that in some situations where X/G has a 
resolution of singularities X-~Z,X/G with trivial canonical bundle e(X, G) is just 
the Euler characteristic of this resolution [DHVW2; St-W]. 
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In this paper we consider some well-known examples from algebraic geometry 
and check to what extent the formula 

e(X, 6) = etx/6) 

holds. We will also do this in the local situation of a matrix group G C U(n) acting 
on C", since in this non-compact ease all the invariants considered here are 
meaningful as well. 

Some elementary calculations. For a fixed g e G the elements commuting with g 
form the centralizer C(g). The conjugacy class [g] is a system of representatives for 
G/C(g), so we have 

~C(g)'#(Eg])=lGI. 

Since simultaneous conjugation of g and h by some element of G leaves e(X <~'h>) 
fixed, using the classical formula for e(X/G) we can write e(X, G) as a sum over the 
conjugacy classes of G: 

1 
e ( x , ~ ) =  ~-~ y #([g])  2 e(X <"'h>) 

[g] h ~ c(g) 

1 
= - -  • ~([g]) '  4~ C(g)'e(X"/C(g)). 

tGI tgl 

So we get an equivalent definition which sometimes is more useful than the original 
one: 

e(X, G)= Y, e(X"/C(g)) 
[g] 

For a free action we immediately get e(X, G)=e(X/G), and we also see that some 
assumption is necessary: For a cyclic group of order n acting on PI(C) with two 
fixed points, the quotient is PI(C) again, whereas e(P 1, G)=e(P1)+(n - 1). 2=2n. 

Loop spaces. For g e G we consider the space of paths 

-~(x, g): = {~: It -- ,x I ~(t + 1) = g~(t)}. 

G acts on the disjoint union of these spaces by (h~)(t):= h. ~(t). Obviously h 
transforms .o~(X, g) into ~(X,  hgh-1). We form the quotient 

The real numbers act on the ~(X,  g) and on ~(X,  G) by transforming a(t) to 
�9 (t+c), The fixed point set of this action is 

U (X,lC(g))czetx, G), 
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where X ~ is embedded in .W(X, g) as the set of constant paths. This corresponds to 
the inclusion of X in the ordinary loop space La(X) as the fixed point set of the 
obvious S 1-action. On each component Le(X, g) our R-action is in fact an action of 
S 1 as well because ~t(t + ord(g))= ct(t). So we can take the Euler characteristic with 
respect to this action, i.e. the Euler characteristic of the fixed point set, and get the 
orbifold invariant e(X, G). 

Quotient singularities. If G is a finite subgroup of U(n) acting on C', then every 
fixed point set is contractible. Thus e(C", G) equals the number of conjugacy 
classes, i.e. the number of isomorphism classes of irreducible representations of G. 

If in particular G CSU(2), then the corresponding 2-dimensional quotient 
singularity has a minimal resolution C~G by a configuration of rational 
(-2)-curves. This is equivalent to C:/G having t._~dvial canonical bundle. If the 
number of exceptional curves is k, then e(CZ/G)=k+l. Now the McKay 
correspondence states that the number of non-trivial irreducible representations of 
G equals this number k of exceptional curves, hence e(C2/G) = k + 1 = e(C 2, G). 

For resolution configurations containing other than (-2)-curves and therefore 
having non-trivial canonical divisor the result is false: If G is a cyclic subgroup of 
U(2) generated by 

exp (21ti p ) 0 

q~ , 
0 exp 2~i n, 

p, q relatively prime to n, we have e(C 2,G)=n. But now the resolution graph 
consists of rational curves with self-intersections - as determined by the continued 

n 
f r ac t ion -  = a j  where r=-p/qmodn, 0 < r < n .  In the case Gs 

r 1 '  a 2 - - - -  

considered above we have r =  n - 1 ,  the continued fraction has length n - 1  with 
entri.__zes as = 2, and the result is true. But for p=q there is just one (-n)-curve, so 
e(C2/G)=2 equals e(C 2, G)=n only if n=2,  i.e. GCSU(2). 

In higher dimensions the same phenomenon occurs: IfG C SU(n) is generated by 
a diagonal matrix diag (( . . . . .  0 for ( a primitive n-th root of unity, then a resoluti.__.on 
of (C"/G) consists of a single P" -  l with normal bundle d~(- n) and we have e(C"/G) 
= n = e(C", G). 

Kummer surfaces. The quotient of an abelian surface (two-dimensional complex 
torus) X by the involution z: x ~ - x has 16 singularities corresponding to the 16 
fixed points of z. Eac_~_h singularity can be resolved by a single (-2)-curve. This 
minimal resolution X/(~) is called the Kummer surface of X. It is a K3-surface 
with Euler characteristic 24. On the other hand e(X, (v))=�89 e(X')) 
= �89 

A Calabi-Yaumanifold. Thisisacorrespondingexampleindimensionthree.  I fCis  
the elliptic curve with complex multiplication of order 3, the cyclic group G = (Q) 
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of order 3 operates also on X = C x C x C with 27 fixed points. As described above, 
each of the corresponding singularities is resolved by a P ' ,  and we get 

e(X, G) =~(e(X) + 8- e(X~ =~(0 + 8- 27) = 72, 

e(XIG) = e(X/G)-- 27 + 27' e(P 2) = ~(e(X) + 2. e(XQ)) + 54 = 72. 

These global results are not too surprising ff one has the local results for quotient 
singularities, since e(X, G)=e(Xt, G)+e(X2, G) for reasonable disjoint unions 
X=X1uX2 of G-invariant subsets for which the Euler characteristic is defined. 

G6ttsche's formula [G1, 2]. One important class of examples consists in the 
symmetric powers S ~") of a smooth (complex-)algebraic surface S. The symmetric 
power is a quotient of the cartesian power S" by the obvious action of the 
symmetric group 5r Algebraic Geometry provides a canonical resolution 

Hilb" (S) = :  S E"J L S t") 

by the Hilbert scheme of finite subsehemes of length n. The action leaves the 
canonical divisor of S" invariant, so it descends to a canonical divisor on S ~"). This 
divisor is not affected by the resolution, i.e. f*~gs(.~ = OFs,.~. If in particular S has 

�9 "[.l bu trivial canomcal divisor then so does ~ , t we will see that e(S t"{) = e(Sn, 5r holds 

in general. 
In his Diplom thesis G6ttsche computed the Betti numbers of S t"~ for an 

algebraic surface S. His main result is 

t ~ P(s,~)'~ 
a=O k = l  

where P(X,z) denotes the modified Poincar6 polynomial P(X,z)=P(X,-z)  
= 5~(-l)lb,(X)z ~. For the Euler characteristic e(X)= P(X, 1)'this simplifies to 

~.. e(Sl"l).t"=exp (e(S) ~ 1 t i 
,=0 i=x i 1--t i] 

i=1  i k = l  

o p(.s, lo ,, ,.,) 
= I~ ( 1 - 0 )  -'r 

k = l  

Compare these formulae to those obtained for symmetric powers by Macdonald 
[M;Z],  for example: 

~s"~. e '=0  - 0  -'~s' . 

Verification of e(St'~)=e(S ", 5e,) for symmetric powers of algebraic surfaces. Let 
.gl(n) denote the set of all series (00=(a,, ~2 .... ) of nonnegative integers with 
Y~i~--n, and .4/:= U..Cg(n). The conjugaoy class of a permutation a~5~, is 
| 
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determined by its type (ct)=(~l,a 2 .... )e~C/(n) where ~i denotes the number of 
/-cycles in a. Its fixed point set in S n consists of all n-tuples (xl, ...,x,) with 
x~ =. . .  = x~, for any/-cycle (el...vi) in a and is therefore isomorphic to I-I S% Any 

i 

element �9 in the centralizer C(a) permutes the cycles of cr respecting their length, i.e. 
it induces permutations n~ of cti elements. Thus C(cr) maps onto I] r e ,  the kernel 

i 

acting trivially on H S% Therefore (Sn)'/C(a} = I~ StY~ is a product of symmetric 
i i 

powers. We can compute e(S", ~,) using the formulae of Macdonald and GSttsche: 

e(SL S,~ �9 t~ ~ E e((S")'/C(~)), t" 
n = O  n = O  [tr] C S i n  

=o=o E FI 
= ~ [] (e(S~"l).ti'9 

(~)~.~q i >_ l 

= [I ~ (e(S'~")" : ' )  
i = l  ~ i = O  

1 
= i=I ~ (1-t l )  e(s) 

= ~. e(Sl~l).t ". 
n=O 

Graeme Segal's interpretation (Equivariant K-theory). Equivariant K-theory of 
(X, G) and ordinary K-theory of the fixed point sets are related by an isomorphism 
of complex vector spaces IS] 

KG(X)|  G K(X#/C(g))| 
[a] 

The image of an equivariant vector bundle E on X is defined as follows: On EIx~ the 
element g still acts, leaving the base points fixed. Thus E]x~ splits into a direct sum 
of vector bundles consisting of the eigenspaces of g in every fibre. We put the 
corresponding eigenvalue in the second factor and get an element in K(Xg)| 
Now as C(g) still acts on X g, we can take the invariants and get something in 
K(Xg)C(g)|174 The same also holds for K~(X), and by the 
standard fact that the Euler characteristic of the complex K*(X) equals the 
topological Euler characteristic we can deduce 

e(K*(X)| C) = dim c K~174 dim c K~(X)| 

= Y. e(Xg/C(g)) 
[gl 

= e(X, G). 

However, since the isomorphism does not commute with Adams operations, we 
cannot say anything about the single Betti numbers. 
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