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Preface to the first edition

In recent years new topological methods, especially the theory of
sheaves founded by J. LERAY, have been applied successfully to algebraic
geometry and to the theory of functions of several complex variables.

H. CartAN and J.-P. SERRE have shown how fundamental theorems
on holomorphically complete manifolds (STEIN manifolds) can be for-
mulated in terms of sheaf theory. These theorems imply many facts of
function theory because the domains of holomorphy are holomorphically
complete. They can also be applied to algebraic geometry because the
complement of a hyperplane section of an algebraic manifold is holo-
morphically complete. J.-P. SERRE has obtained important results on
algebraic manifolds by these and other methods. Recently many of his
results have been proved for algebraic varieties defined over a field of
arbitrary characteristic. K. Kopaira and D. C. SPENCER have also
applied sheaf theory to algebraic geometry with great success. Their
methods differ from those of SERRE in that they use techniques from
differential geometry (harmonic integrals etc.) but do not make any use
of the theory of STEIN manifolds. M. F. Ativag and W. V. D. HopGe
have dealt successfully with problems on integrals of the second kind on
algebraic manifolds with the help of sheaf theory.

I was able to work together with K. Kopaira and D. C. SPENCER
during a stay at the Institute for Advanced Study at Princeton from
1952 to 1954. My aim was to apply, alongside the theory of sheaves, the
theory of characteristic classes and the new results of R. TuoM on
differentiable manifolds. In connection with the applications to algebraic
geometry I studied the earlier research of J. A. Topp. During this time
at the Institute I collaborated with A. BoreL, conducted a long cor-
respondence with THOM and was able to see the correspondence of
KobDAIRA and SpeENCER with SeRgE. I thus received much stimulating
help at Princeton and I wish to express my sincere thanks to A. BoReL,
K. Kopalra, J.-P. SERRE, D. C. SPENCER and R. THOM.

This book grew out of a manuscript which was intended for publica-
tion in a journal and which contained an exposition of the results obtained
during my stay in Princeton. Professor F. K. ScHMIDT invited
me to use it by writing a report for the “Ergebnisse der Mathematik”.
Large parts of the original manuscript have been taken over unchanged,
while other parts of a more expository nature have been expanded. In
this way the book has become a mixture between a report, a textbook
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and an original article. I wish to thank Professor F. K. SceMipT for his
great interest in my work.

I must thank especially the Institute for Advanced Study at Princeton
for the award of a scholarship which allowed me two years of undisturbed
work in a particularly stimulating mathematical atmosphere. I wish
to thank the University of Erlangen which gave me leave of absence
during this period and which has supported me in every way; the Science
Faculty of the University of Miinster, especially Professor H. BEENKE,
for accepting this book as a Habilitationsschrift ; and the Society for the
Advancement of the University of Miinster for financial help during the
final preparation of the manuscript. I am indebted to R. REMMERT and
G. ScuEeJA for their help with the proofs, and to H.-J. NasroLp for
preparing the index. Last, but not least, I wish to thank the publishers
who have generously complied with all my wishes.

Fine Hall, Princeton F. HIRZEBRUCH
23 January 1956

Preface to the third edition

In the ten years since the publication of the first edition, the main
results have been extended in several directions. On the one hand the
RiemanN-RocH theorem for algebraic manifolds has been generalised by
GROTHENDIECK to a theorem on maps of projective algebraic varieties
over a ground field of arbitrary characteristic. On the other hand ATivAR
and SINGER have proved an index theorem for elliptic differential
operators on differentiable manifolds which includes, as a special case,
the RieMANN-RocH theorem for arbitrary compact complex manifolds.

There has been a parallel development of the integrality theorems for
characteristic classes. At first these were proved for differentiable mani-
folds by complicated deductions from the almost complex and algebraic
cases. Now they can be deduced directly from theorems on maps of
compact differentiable manifolds which are analogous to the RIEMANN-
RocH theorem of GROTHENDIECK. A basic toolis the ring K {X) formed from
the semiring of all isomorphism classes of complex vector bundles over a
topological space X, together with the Bort periodicity theorem which
describes K (X) when X is a sphere. The integrality theorems also follow
from the ATIYAH-SINGER index theorem in the same way that the
integrality of the Tobp genus for algebraic manifolds follows from the
Riemann-Rocu theorem.

Very recently Ativan and Borr obtained fixed point theorems of
the type first proved by LeFscHETZ. A holomorphic map of a compact
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complex manifold V operates, under certain conditions, on the co-
homology groups of ¥ with coefficients in the sheaf of local holomorphic
sections of a complex analytic vector bundle W over V. For a special
class of holomorphic maps, ATivad and BoTT express the alternating
sum of the traces of these operations in terms of the fixed point set of the
map. For the identity map this reduces to the RIeMANN-RoCH theorem.
Another application yields the formulae of LANGLANDS (see 22.3) for the
dimensions of spaces of automorphic forms. ATivar and BoTT carry
out these investigations for arbitrary elliptic operators and differentiable
maps, obtaining a trace formula which generalises the index theorem.
Their results have a topological counterpart which generalises the
integrality theorems.

The aim of the translation has been to take account of these develop-
ments — especially those which directly involve the Topp genus —
within the framework of the original text. The translator has done this
chiefly by the addition of bibliographical notes to each chapter and
by a new appendix containing a survey, mostly without proofs, of some
of the applications and generalisations of the RIEMANN-RocCH theorem
made since 1956. The fixed point theorems of Atrvas and Botr could be
mentioned only very briefly, since they became known after the manus-
cript for the appendix had been finished. A second appendix consists of a
paper by A. BoreL which was quoted in the first edition but which has
not previously been published. Certain amendments to the text have
been made in order to increase the usefulness of the book as a work of
reference. Except for Theorems 2.8.4, 2.9.2, 2.11.2, 4.11.1-4.11.4,
10.1.1, 16.2.1 and 16.2.2 in the new text, all theorems are numbered as in
the first edition.

The author thanks R. L. E. SCEWARZENBERGER for his efficient work
in translating and editing this new edition, and for writing the new
appendix, and A. BorzL for allowing his paper to be added to the book.

We are also grateful to Professor F. K. ScumipT for suggesting
that this edition should appear in the “Grundlehren der mathematischen
Wissenschaften”, to D. ArLT, E. BrieskorN and K. H. MavEer for
checking the manuscript, and to ANN GAR°rIELD for preparing the
typescript. Finally we wish to thank the publishers for their continued
cooperation.

Bonn and Coventry F. HIRZEBRUCH
23 January 1966 R. L. E. SCHWARZENBERGER
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Introduction

The theory of sheaves, developed and applied to various topological
problems by Lerav [1], [21%), has-recently been applied to algebraic
geometry and to the theory of functions of several complex variables.
These applications, due chiefly to CARTAN, SERRE, KODAIRA, SPENCER,
ATrvag and HoDGE have made possible a common systematic approach
to both subjects. This bock makes a further contribution to this develop-
ment for algebraic geometry. In addition it contains applications of the
results of TrHOM on cobordism of differentiable manifolds which are of
independent interest. Sheaf theory and cobordism theory together
provide the foundations for the present results on algebraic manifolds.
This introduction gives an outline (0.1—-0.8) of the results in the book.
It does not contain precise definitions; these can be found by reference
to the index. Remarks on terminology and notations used throughout the
book are at the end of the introduction (0.9).

0.1. A compact complex manifold ¥V (not necessarily connected) is
called an algebraic manifold if it admits a complex analytic embedding
as a submanifold of a complex projective space of some dimension. By
a theorem of Cuow [1] this definition is equivalent to the classical
definition of a non-singular algebraic variety. Algebraic manifolds in
this sense are often also called non-singunlar projective varieties. In
0.1—-0.6 we consider only algebraic manifolds.

Let V,, be an algebraic manifold of complex dimension #. The arith-
metic genus of ¥, has been defined in four distinct ways. The postulation
formula (HILBERT characteristic function) can be used to define integers
Pa(Vy) and P,{V,). These are the first two definitions. SEVERI con-
jectured that

Pa(Vy) = Pa(Vn) =fp = fnr o+ =D, (1)

where g; is the number of complex-linearly independent holomorphic
differential forms on V,, of degree ¢ (i-fold differentials of the first kind).
The alternating sumn of the g; can be regarded as a third definition of the
arithmetic genus. Further details can be found, for instance, in SEVERI
{1]. Equation (1) can be proved easily by means of sheaf theory (KopAIRA-
SPENCER [1]) and therefore the first three definitions of the arithmetic
genus agree.

!) Numbers in square brackets refer to the bibliography at the end of the book.
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The form of the alternating sum of g; in (1) is inconvenient and we
modify the classical definition slightly. We call

2V =‘§; ~1)fe @

the arithmetic genus of the algebraic manifold V,. The integer g, in (2)
is the number of linearly independent holomorphic functions on V,, and
is therefore equal to the number of connected components of ¥,,. It is
usual to call g, the geometric genus of V, and g, the irregularity of V.
In the case » = 1 a connected algebraic curve V; is a compact RIEMANN
surface homeomorphic to a sphere with p handles. Then g, = g, = p and
the arithmetic genus of V; is 1 — p. The arithmetic genus and the
geometric genus behave multiplicatively:

The genus of the cartesian product VX W of two algebraic manifolds is
the product of the genus of V and the genus of W.

Under the old terminology -the arithmetic genus clearly does not
have this property. The arithmetic genus (V) is a birational invariant
because each g; is a birational invariant (KAaLER [1] and vAN DER
WAERDEN [1], [2]). Under the old terminology the arithmetic genus of
a rational variety is 0. According to the present definition it is 1.

0.2. The fourth definition of the arithmetic genus is due to Topp [1].
He showed in 1937 that the arithmetic genus could be represented in
terms of the canonical classes of Ecer-Topp (Topp [3]). The proof
is however incomplete: it relies on a lemma of SEverI for which no
complete proof exists in the literature.

The Ecer-Topp class K; of ¥V, is by definition an equivalence
class of algebraic cycles of real dimension 2# — 27. The equivalence
relation implies, but does not in general coincide with, the relation
of homology equivalence. For example K, (= K) is the class of canonical
divisors of V,,. (A divisor is canonical if it is the divisor of a meromorphic
n-form.) The equivalence relation for 7= 1 is linear equivalence of
divisors. The class K; defines a (2n — 2i)-dimensional homology class.
This determines a 24-dimensional cohomology class which agrees (up
to sign) with the Caery class ¢; of V. This “agreement” between the
EGER-ToDD classes and the CHERN classes was proved by NARano [2]
(see also CHERN [2], HopGE [3] and ATIYAH [3]).

Remark: The sign of the 2i-dimensional cohomology class deter-
mined by K; depends on the orientation of V. We shall always use the
natural orientation of V,. If 2z, z,, ... 2, are local coordinates with
2y = % -+ 1y, then this orientation is given by the ordering x;, ¥y,
X3, Ya, « ++» %n Ya OF in other words by the positive volume element
dx, Ndy, NdxyAdy,A-- - Ndx, Ady,. In this case K; determines the
cohomology class (—1)¥ ¢;.
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In this book we use only the CHERN classes and so the fact that the
EGER-TODD classes agree with the CHERN classes is not needed. The
definition of the Topp genus T'(V,) is given in terms of the CHERN
classes. One of the chief purposes of this book is then to prove that
x(Va) = T(Vy).

0.3. The natural orientation of V, defines an element of the 2#u-
dimensional integral homology group H,, (V,, Z) called the fundamental
cycle of V,. The value of a 2#-dimensional cohomology class & on the
fundamental cycle is denoted by & [V,].

The definition of T(V,) is in terms of a certain polynomial 7, of
weight # in the CHERN classes ¢; of ¥, the products being taken in the
cohomology ring of V,,. This polynomial is defined algebraically in §1;
it is a rational 2n-dimensional cohomology class whose value on the
fundamental cycle is by definition 7 (V). For small # (see 1.7)

TV =56Vl T(V) =15 (2 +c) Vol T(Vy) = oy 1 6[Val. (3)

The definition implies that T'(V,) is a rational number. The equation
x{Va) = T(V,) implies the non-trivial fact that 7'(V,) is an integer
and that 7(V,) is a birational invariant. The sequence of polynomials
{T,} must be chosen so that, like the arithmetic genus, 7'(V,) behaves
multiplicatively on cartesian products. There are many sequences with
this property: it is sufficient for {T},} to be a multiplicative sequence
(§ 1). The sequence {7} must be further chosen so that T(V,) agrees
with y(V,) whenever possible. In particular if P,(C) denotes the =-
dimensional complex projective space then T(P,{C))=1 for all n.
This condition is used in § 1 to determine the multiplicative sequence
{T,} uniquely (Lemma 1.7.1).

For fixed » the polynomial T, is determined uniquely by the following
property: T, [V, 1 =14/ V = P; (€)X - -xX P, (C) is a cartesian product
of complex projective spaces with j, + -+~ + j, = n. Therefore T, is the
unique polynomial which takes the value 1 on all rational manifolds of
dimension n.

0.4. The divisors of the algebraic manifold ¥, can be formed into
equivalence classes with respect to linear equivalence. A divisor is
linearly equivalent to zero if it is the divisor {f) of a meromorphic function
f on V,. This equivalence is compatible with addition of divisors and
therefore the divisor classes form an additive group. We can also consider
complex analytic line bundles {with fibre € and group €*;see 0.9) over V,,.
In this introduction we identify isomorphic line bundles (see 0.9). Then
the line bundles form an abelian group with respect to the tensor pro-
duct ®. The identity element, denoted by 1, is the trivial complex line
bundle X x €. The inverse of a complex line bundle F is denoted by F1,
The group of line bundles is isomorphic to the group of divisor classes:
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Every divisor determines a line bundle. The sum of two divisors deter-
mines the tensor product of the corresponding line bundles. Two divisors
determine the same line bundle if and only it they are linearly equivalent.
Finally, every line bundle is determined by some divisor (Kopaira-
SPENCER [2]). Denote by H®(V,, D) the complex vector space of all
meromorphic functions f on V, such that D -+ (f) is a divisor with no
poles. H°(V,,, D) is the “RiEMANN-RocH space” of D and is finste dimen-
sional. The dimension dim H%(V,,, D) depends only on the divisor class of
D. The determination of dimH®(V,, D) for a given divisor D is the
RieMANN-RocE problem. If F is the line bundle corresponding to the
divisor D then H®(V,, D) is isomorphic to H®(V,,F), the complex
vector space of holomorphic sections of F.
0.5. It has already been said that one aim of this work is to prove
the equation
1(Va) = T(V.). 4)

The CHERN number ¢,[V,] is equal to the EULER-POINCARE charac-
teristic of V,. Therefore equation (4) gives, for a connected algebraic
curve ¥ homeomorphic to a sphere with $ handles:

2 (V) =T(V) =56Vil=5(2-28). 8]

The RieMaNN-RocH theorem for algebraic curves states (see for instance
WEevL [1]):
dimA*(V,, D) — dimH*(V, K—D)=d +1—9p (4%

where d is the degree of the divisor D and K is a canonical divisor of ¥;.
Since dim H*(V,, K) = g, the substitution D = 0 in (4¥) gives {4,). It will
be shown that for algebraic manifolds of arbitrary dimension equation
(4) admits a generalisation which corresponds precisely to the generalisa-
tion (4F) of (4,). This generalisation will be given in terms of line bundles
rather than divisors.

Let F be a complex analytic line bundle and let H¢(V,, F) be the
i-th cohomology group of ¥,, with coefficients in the sheaf of germs of
local holomorphic sections of F. In the case F = 1 this is the sheaf of
germs of local holomorphic functions. The cohomology “group™ H¥(V,, F)
is a complex vector space which, by results of CARTAN-SERRE [1] (see
also CARTAN [4]) and Kopaira [3], is of finite dimension. The vector
space H%V,, F) is the “RiemanN-Rocr space” of F defined in 0.4.
A theorem of DoLBEAULT [1] implies that dim H*(V,, 1) = g;. The integer
dim Hi(V,, F) depends only on the isomorphism class of F and is zero
for £ > n. It is therefore possible to define

AV ) = 3 () dimBEYV, F). (5)
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This is the required generalisation of the left hand side of (4). It will be
shown that y(V,, F) can be expressed as a certain polynomial in the
CHERN classes of V,, and a 2-dimensional cohomology class f determined
by the line bundle F. Here {is the first CHERN class of I (the cohomology
obstruction to the existence of a continuous never zero section of F).
If F is represented by a divisor D then fisalso determined by the (2# — 2)-
dimensional homology class corresponding to D. For small »,

xVuF) =(f+5a)Val, z(VaF)=(3(F+fc) +5 (F+))[Val,
2(Vs F) =(G P+ 5o+ 4513 + 0 + 576105 [V

This is the generalisation of the RIEMANN-RoCH theorem to algebraic
manifolds of arbitrary dimension (Theorem 20.3.2). By the SERRE
duality theorem {see 15.4.2) dim H*(V,, F) = dimH®(V;, K ® F-1) and
dim H3(V,, F) = dim H®(V,, K ® F-1) where K denotes the line bundle
determined by canonical divisors. It follows that the equations for
x(Vy, F) and 4 (V,, F) imply the classical RtEMANN-RoCH theorem for
an algebraic curve and for an algebraic surface. Full details are given in
19.2 and 20.7.

Koparra [4] and SerrReE have given conditions under which
dimH¥V,, F) = 0 for s > 0 (see Theorem 18.2.2 and Carran [4],
Exposé XVIII). The definition of y(V,, F) in (5) then shows that our
formula for y(V,, F) yields a formula for H°(V,, F). In such cases
the “RiEMANN-RocH problem” stated in 0.4 is completely solved.
This corresponds for algebraic curves to the well known fact that the
term dim H®(V,, K — D) in (4}) is zero if d > 2p — 2.

0.6. There is a further generalisation of equation (4). Let W be a
complex analytic vector bundle over V,, {with fibre C, and group GL {g,C);
see 0.9]. Let H¢(V,, W) be the 4-th cohomology group of ¥, with co-
efficients in the sheaf of germs of local holomorphic sections of W. Then
HY(V,, W) is again a complex vector space of finite dimension and
dim H*(V,,, W) is zero for 7 > n. It is therefore possible to define

2V, W) = 2 (~1) Gm BV, 7). ®
It was conjectured by SERRE, in a letter to KoDAIRA and SPENCER
{29 September 1953}, that y(V,,, W) could be expressed as a polynomial
in the CHERN classes of ¥, and the CHERN classes of W. We shall obtain
an explicit formula for the polynomial of y (V,,, W). This is the RieMANN-
RocE theorem for vector bundles (Theorem 21.1.1). A corollary in the
case n = 1 (algebraic curves) is the generalisation of the Riemann-Rocn
theorem due to WEIL [1]. Full details are given in 21.1.
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The result on y(V,, W) can be applied to particular vector bundles
over V,. We define (see KODAIRA-SPENCER [3])

2 (Vali= x (Ve 42 T) 7

where A? T is the vector bundle of covariant p-vectors of V,,. The CHERN
classes of A# T can be expressed in terms of the CHERN classes of V,
(Theorem 4.4.3). Therefore y?(V,} is a polynomial of weight » in the
CHERN classes of V,,. By a theorem of DoLBEAULT [1], dimH?(V,, 4* T)
is the number A#:¢ of complex-linearly independent harmonic forms on

”

V, of type (#, q). Therefore y?(V,) = 23 (— 1)? h#:¢. For example, in the
g=0
case n = 4, there is an equation

(V) =R~ B L A2 B L Rt = 4y (V) — 4 (2044 650) [V, (8)

n
The sum 3 4?(V,) is clearly zero for » odd. The alternating sum
p=0

"
2. (—1)? x#(V,}) is by theorems of DE RuAaM and HODGE equal to the
p=0

EuLER-POINCARE characteristic ¢, [V,] of V,. The polynomials for
27 (V,) have the same properties. HobDGE [4] proved that for # even the

%

sum }! y#(V,) is equal to the index of V,,. By definition the index of V,,

is the signature (number of positive eigenvalues minus number of negative
eigenvalues) of the bilinear symmetric form x ¥ [V, ] (x, y € H*(V,,, R)) on
the n-dimensional real cohomology group of V. Therefore the index
of ¥, is a polynomial in the CHERN classes of ¥,,. This polynomial can
actually be expressed as a polynomial in the PONTRJAGIN classes of ¥V,
and is therefore defined for any oriented differentiable manifold.

0.7. We have just remarked that the main result of this book {the
expression of y(V,, W) as a certain polynomial in the CHERN classes
of ¥V, and W] implies that the index of an algebraic manifold V,, can be
expressed as a polynomial in the PONTRJAGIN classes of V. In fact this
theorem is the starting point of our investigation. Let M** be an oriented
differentiable manifold of real dimension 4 %. In this work “differentiable”
always means “‘C>-differentiable’” so that all partial derivatives exist
and are continuous. The orientation of M%* defines a 4 k-dimensional
fundamental cycle. The value of a 4%-dimensional cohomology class
b on the fundamental cycle is denoted by & [M*4*]. In Chapter Two the
cobordism theory of THOM is used to express the index 7 (M*4*) of M4*asa
polynomial of weight % in the PONTRJAGIN classes of M4+, For example,

T(MY = 55, (MY, 7(M®) = 5 (T, — 3 [M?]. )
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The formula for T(M%) was conjectured by Wu. The formulae for
©(M*) and 7 (M3) were both proved by THoM [2]. A brief summary of the
deduction of the formula for ¥ (V,,, W) from that for 7 (M*¥) can be found
in HirzesrucH [2].

0.8. The definitions in 0.1—0.6 were formulated only for algebraic
manifolds. In the proof of the RiEmaNN-RocH theorem we make this
restriction only when necessary. The index theorem described in 0.7 is
proved in Chapter Two for arbitrary oriented differentiable manifolds.
The main results of THOM on cobordism are quoted: the proofs, which
make use of differentiable approximation theorems and algebraic homo-
topy theory, are outside the scope of this work.

In Chapter Three the formal theory of the Topp genus and of the
associated polynomials is developed for arbitrary compact almost
complex manifolds (T-theory). In particular we obtain an integrality
theorem (14.3.2). This theorem has actually little to do with almost
complex manifolds; its relation to subsequent integrality theorems for
differentiable manifolds is discussed in the bibliographical note to
Chapter Three and in the Appendix.

In Chapter Four the theory of the integers y(V,, W) is developed
as far as possible for arbitrary compact complex manifolds (y-theory).
The necessary results on sheaf cohomology due to CARTAN, DOLBEAULT,
KODAIRA, SERRE and SPENCER are described briefly. In the course of the
proof it is necessary to assume first that V, is a KXHLER manifold.
Finally, if V, is an algebraic manifold, we are able to identify the
x-theory with the T-theory (RiEMANN-RoCH theorem for vector bundles;
Theorem 21.1.1).

The Appendix contains a review of applications and generalisations
of the RIEMANN-RoOCH theorem. In particular it is now known that the
identification of the y-theory with the T-theory holds for any compact
complex manifold ¥V, (see § 25).

The author has tried to make the book as independent of other
works as is possible within a limited length. The necessary preparatory
material on multiplicative sequences, sheaves, fibre bundles and charac-
teristic classes can be found in Chapter One.

0.9. Remarks on notation and terminology

The following notations are used throughout the book.

Z: integers, Q: rational numbers, R: real numbers, €: complex
numbers, R?: vector space over R of ¢g-ples (%, . . ., %,) of real numbers,
€,: vector space over € of ¢g-ples of complex numbers. GL{g, R) denotes
the group of invertible ¢x ¢ matrices (4;;) with real coefficients a;,,
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1. e. the group of automorphisms of R?

7
H= N agpr.
k=1

GL* (g, R) denotes the subgroup of GL{g, R) consisting of matrices
with positive determinant (the group of orientation preserving auto-
morphisms). 0(g) denotes the subgroup of orthogonal matrices of GL (¢, R}
and SO(g) = O(g) N GL* (g, R). Similarly GL (g, C) denotes the group of
invertible ¢ ¢ matrices with complex coefficients, and U(g) the sub-
group of unitary matrices of GL{g, €). We write €* = GL(1, C), the
multiplicative group of non-zero complex numbers. P,_, (€} denotes the
complex projective space of complex dimension ¢ — 1 (the space of
cormaplex lines through the origin of C;). We shall often denote real
dimension by an upper suffix (for example M*¥, R%) and complex dimen-
sion by a lower suffix (for example ¥, €;).

We have adopted one slight modification of the usual terminology.
An isomorphism class of principal fibre bundles with structure group G
is called a G-bundle. Thus a G-bundle is an element of a certain co-
homology set. On the other hand, we use the words fibre bundle, line
bundle and vector bundle to mean a particular fibre space and not an
isomorphism class of such spaces (see 3.2). In Chapter Four all con-
structions depend only on the isomorphism class of the vector bundles
involved and it is possible to drop this distinction (see 15.1).

The book is divided into chapters and then into paragraphs, which
are numbered consecutively throughout the book. Formulae are num-
bered consecutively within each paragraph. The paragraphs are divided
into sections. Thus 4.1 means section 1 of §4; 4.1 (5) means formula (5)
ot § 4, which occurs in section 4.1; 4.1.1 refers to Theorem 1 of section 4.1.
The index includes references to the first occurrence of any symbol.

Chapter One

Preparatory material

The elementary and formal algebraic theory of multiplicative
sequences is contained in § 1. In particular the Topp polynomials T,
and also the polynomials L; used in the index theorem, are defined.
Results on sheaves needed in the sequel are collected in §2. The basic
properties of fibre bundles are given in § 3. In §4 these are applied to
obtain characteristic classes. In particular, the CHERN classes and
PoNTRyAGIN classes are defined. The results of § 1 are not used until § 8.
The reader is therefore advised to begin with § 2 and to refer to § 1 only
when necessary.
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§ 1. Multiplicative sequences

1.1. Let B be a commutative ring with identity element 1. Let
po=1 and let p,, Py, ... be indeterminates. Consider the ring B =
B{#,, ps . . .] obtained by adjoining the indeterminates p; to B. Then B
is the ring of polynomials in the p; with coefficients in B, and is graded
in the following way:

The product #;, 9, . . . §;, has weight j; + 7, + - -+ + 7, and

B= 3B, (1)
k=0

where B; is the additive group of those polynomials which contain

only terms of weight  and B, = B. The group By is a module over B
whose rank is equal to the number (k) of partitions of %. Clearly

SBr %s C %r+: . (2)

1.2. Let {K,} be a sequence of polynomials in the indeterminates p;

with Kg=land K;¢€B; (7=0,1, 2, ...). The sequence {K;} is called a

multiplicative sequence (or m-sequence) if every identity of the form

Ldprztpaatt--

3

S plat i) (k) O
with z, $;, i’ indeterminate implies an identity
‘_Z; Kilps. por - 00) &

= 4)

= Z Kt i) # XK 85, 8 7
$= =
In abbreviated notation we write
K( Zﬁizi) = Y Eipy, ... 0)7
j=0 =0

both when the p; are indeterminates and when they are replaced by
particular values. The power series

K(1+2= 5'b2 (by=1,b=K(1,0,...,0)¢B)
§=0

is called the characiteristic power series of the m-sequence {K}.
In the sequel we consider formal factorisations

L post o+ puam= T (14 fi3). ()

That is, the elements p, are regardrd as the elementary symmetric
functions in B,, ..., B The ring B is then the ring of all symmetric
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polynomials in f,, ..., B, with coefficients in B. The following two
lemmas give a complete description of all possible m-sequences.
Lemma 1.2.1. The m-sequence {K;} is complelely determined by sis
characteristic power series Q(z) = K(1 + z).
Proof: By (3), (4) and (5}

.;:)Kj(Pl";" zj+ 2 Kf Plr--~3Pm:0,-l--,0)2’=yéQ(ﬁ¢2_’). (6,‘)

f=m+1
Therefore any polynomial K; ‘with 7 = m is determined as a symmetric
polynomial in the f§; and hence as a polynomial in the ;. This holds for
arbitrary m and so completes the proof.

Lemma 1.2.2. To every formal power series Q(z) Z b2 (by=1,
b; € B) there is associated an m-sequence {K3} wu‘h K(l + z) g(z).

Proof: We apply (5,) and- consider the product H Q(B:2). The

coefficient of 27 in this product is symmetric in the f; a.nd homogeneous
of weight ] It can therefore be expressed as a polynomial K™ (py, ..., 55
of weight 7 in a unique way. It follows easily that K("‘) does not depend
on m for m = j. Define K; = K™ for m = j. The sequence {K,} is the
required multiplicative sequence. For the proof note that (6,,) holds.
This implies that the multiplicative property “(3) implies (4)” is true if
the indeterminates $;, p;’ are replaced by 0 for large values of 4. Hence
{K,}is an m-sequence. Finally (6,,) for m = 1 shows that K (1 + z) = Q ().

Lemmas 1.2.1 and 1.2.2 together show that there is a one-one corre-
spondence between m-sequences and formal power series with constant
term 1. For instance the m-sequence {$;} has 1+ z as its characteristic
power series.

1.3. It is convenient to reformulate 1.1 and 1.2 with the indeterminates
p; replaced by ¢;, the indeterminate z by «, and the roots g; in (5,) by y:
The two formulations will be linked by putting ¢, = p,= 1, 2 = x? and
B: = ¥% In other words we introduce the relations

z=2x% and ié’:pi(—z)‘—(]g’c(— )(Zcx‘) (7)

We have the following trivial

Lemma 1.3.1. Let {K;(py, - - ., p;)} be the m-sequence with Q(2) as
characteristic power series and {K;(c,, .. ., c;)} the m-sequence with {(x)
= Q%% as characterisiic power series. Then the relations (7) imply

Ki(py, - - P = Kzf(cv o v e Cag)

0= Kziﬂ(cx» v ees Cagiy) -
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In pariicular the m-seqience in the c; with 14 x® as characteristic
power series is 1,0, p1, 0, pg, . .. .
Note that

Pr=—2Cq+ 6} Py=2¢,—2C50,+ €5, Py=—2¢6+205¢; —2c,6,+ CF.

1.4. Given a power series Q(2) = Z(b;€B,bp=1) we can

Q\ﬂs

- N . - *
consider the formal factorisation

14+ bz2+by2+ et byzmr=(01+p12)(1+ P32 (1+ Bnz. (8
The sum
: - r
Z(Be (B (B, (hzaz 2z L SZ;J's—*— k=m), (9
denotes as usual the symmetric function in the g} which is the sum of all
pairwise distinct monomials obtained by applying a permutation of
(B1, Bss - - -» Bm) to the monomial (B1) (B3)* - -+ (B/)~. The number of
monomials in the sum is m!/h where % is the number of permutations
of (B, Bs, - - . Br) which leave (B;): (B3)i...(B,)" fixed. The condi-
tions on 7, Js, - . -, j, in (9) imply that the symmetric function
2By (B . .. (B is a polynomial of weight % in the b; with integer
coefficients. It does not depend on m and can be denoted simply by
2(j1, ja» - - - Jr)- We can now formulate a lemma which facilitates the
explicit calculation of the polynomials of an m-sequence.
Lemma 14.1. Let {K; -(j)l,'. .., Pi)} be the m-sequence corresponding

to the power series Q(2) = Z’ b; z8. Then the coefficient of
it b Kaliz2hzo 25zl =)

1s equal 10 X(fy, Jg, - - -1 Jv)-
The proof uses (6) and (8). The details are left to the reader. As an
example the coefficient of g, in K, is equal to s, = (k).

=1, =10, 5= —2b, + b3, s3=3b, ——3b2b1+b1, etc.

ll\/

Simila.rly the coefficient of pfin K, is 2(k, k) = (s,, — Sa5)- The Sk
can be calculated by a formula of CAUCHY:

z [+

1— z%log@(z) = Q(Z)'% (”Q(_,)) =2 (=ls2.  (10)

=0
1.5. In this section, and in the following sections 1.6—1.8, we define
the particular m- sequences which arise in the present work. We consider
gzt

first the power series
‘_ V; e 5 E-1_2 k
0 = ta,nh]/z_ - +ké,1( 1) (2k)! Byt
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Here the coefficient ring B is the field @ of rational numbers. The co-
efficients B, are the BERNOULLI numbers (in the notation for which

By >0 and +  for all &):

1. 1 1
Blz?{) Bz='§, Ba='_4—2': BL=W:

5 691

17
BS:T-‘E* B = 2730 ’

B,—~+, By=21,

510

The m-sequence with @(z) as characteristic power series is denoted by
{L;(#1, . - .. $5)}- The methods of 1.4 can be used to calculate the first
few polynomials L;:

Li=5p:,

Ly=5(7ps— %),

Ly =557 (625 — 18352 51+ 289)

Ly = gopy (3815, — Tlpy by — 1945 + 229, p3 — 3p4) ,

1
Ly = gy X

X (5110 95— 9199, py— 836D pa-+ 237 P, p+ 12793 $,— 83, 3 +1055) .
The coefficient s; of p, in L, can be calculated by 1.4 (10)

& 1 1 2V«
s gL L 2V
,‘:Zo'( 1) s, 2+2s' 2V

and therefore

gar(2rk-1__ 1)
so=1and_sk=»—((2—k)~!—B,,forkgl. (11)

The following lemma shows that the substitution $, = (ij- 1) de-
finedby 1 4+ Py 2 - P a® + - - - + P 25 = (1 + 2)2*+1 (mod 2*+1) gives the
value Ly(py, ..., P2) = 1.

Lemma 1.5.1. Let Qz) = tanf Then for every k the coefficient

= .
Fi of 2 in (Q(2))2*+1 55 equal to 1, and Q) (2) is the only power series with
rational coefficients which has this property.

Proof: By the Caucny integral formula

1 1 V; 2k+1
]k”“‘zm‘fzm (mhyy) dz.

The substitution £ = tanh V;gives

1 de
Je =257 f (I—py s+ = k.
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In both cases the integral is over a small circle with centre the origin
in the z-plane and #-plane. Note that under the substitution a circuit of
the circle in the #-plane corresponds to two circuits in the z-plane. The
equations J, = 1 can then be used to calculate the coefficients of Q(2)
inductively.

The following lemma is not used in the present work but is never-
theless important for applications of the polynomials L, to cohomology
operations. A proof is given in ATIYAH-HIRZEBRUCH [4].

Lemma 1.5.2. The polynomial L, can be wrilten in a unique way as a
polynomial with coprime integer coefficients, divided by a positive integer
#(Ly), where

_2’“_]

,u(L,c)zﬂq[q—l
15 a product over all primes q with 3 < ¢ < 2k + 1.

. 2 . .
1.6. The m-sequence with Q(z2) = ——gz as characteristic power
SIn. F4

series is denoted by {A,(py, - - ., 1)} The methods of 1.4 give

Ay = — 2 A= (~4pa+ THY), A= 5oy (16p3— Mpypy + 315 .

Remark: The polynomial 4, can be written in a unique way as a
polynomial with coprime integer coefficients multiplied by 2*®/u(L;).
Here o (k) is the number of non-zero terms in the dyadic expansion of &
(see ATIvar-HIRZEBRUCH [2]).

1.7. The last two particular m-sequences which are needed in the
sequel will be given in the (¢, *, ;) formulation (see 1.3). Let the co-
efficient ring B be the field Q of rational numbers. Consider the m-
sequence {T;(c,, . . ., &)} with characteristic power series

x

1 b . B,
Q(x)=1—_‘::=1+7x+k§l(—1)" e ¥

The polynomials T are called Topp polynomials. The identity

———— l -
1 :5—’ = exp (? x) sini;x (we write exp (a) = ¢7)

is useful for the calculation of the first few TopD polynomials. It implies,
using Lemma 1.3.1, formula (6,,) in the (c;, #, y;) formulation and the
relations (7), that

Tk(Cp L ck) == E"zg_fﬁ' (—;‘01),A'(171, . 'Ypl) (12)

where the sum is over all non-negative integers 7, s with 7 + 2s =< &.
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The result (compare Topp {1]} is
L= % Cys
Ty= le‘ (ca+ D),
1
Ty=5560,
Ty=gg5 (—Cat 6+ 3G +4c, G —cf),
Ts"‘ﬁio“( CeC+ 5 6F +3cf ey — 6y )
Te= W (2cg — 250, — 9cgg — Sey6f —cF + 1006, +
+ 50563+ 1063 + 1133 — 12¢, cf + 2¢9) .
Remarks: 1). Formula (12) implies that T, is divisible by ¢, for
k odd.
2). It follows from formula 1.4 (10) applied to the m-sequence
{T,} that the coefficients of ¢, and ¢f in the Topp polynomial T are
equal. It is easy to see that {T'} is the only m-sequence which has this

property and for which T} = 5 ¢;

The following lemma shows that the substitution ¢;= (”_f 1)

defined by
1+ x+ o epa=(1+ %7+ (modartl)
gives the value T, (c;, ..., ¢,) = 1.

Lemma 1.7.1. Let Q(x) = 1*:;—_7 . Then for every k the coefficient of x*
in (Q(x))F+1 is equal to 1, and Q(x) is the only power series with rational
coefficients which has this property.

Proof: By the Cavucry integral formula as in Lemma 1.5.1. A similar

proof gives
Lemma 1.7.2. Substitute in Ty(cy, - .., ¢} the values c¢; given by
It xt o boab=(1+ 2)*(1 —2) (modx*+1).
Then Ty=0fork = 1.

There is a result analogous to Lemma 1.5.2 which is proved in
ATivaH-HIRZEBRUCH [4]:

Lemma 1.7.3. The polynomial T,, can be wrillen in a unique way as a
polynomial with coprime integer coefficients, divided by a positive inieger
#(Ts), where A
w(Ty) = I ‘1[}"—1]
is a product over all primes q with 2 < g < k + 1. Moreover (see Lemma
15.2) i (Typsr) = 2p(Typ) = 2241 (L),

1.8. Now let the coefficient ring B be the ring Q[4] of polynomials
in an'indeterminate y with rational coefficients. Consider the m-sequence
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T;(y; ¢4, - - -, ¢5) with characteristic power series
. zy +1) #y + 1)
Qly;x) = T —g=an ~Y¥=gamwm _71 T%-

The following generalisation of Lemma 1.7.1 shows that the substitution
c;= (”j_ 1) gives
Ta(yiey - wtn) =1=y+5"— -+ (=1)"y".
Lemma 1.8.1. For every n the coefficient of x™ im (Q(y;x)*+* is
equal to Z (— 1)y, and Q(y, x) s the only power series with coefficients

in Qy] whzch has this property.
The polynomial T,(y;¢,, ..., ¢,) can be written in a unique way
in the form

T.(¥icy - vnn ) =?§) To(cy, - -y C) Y7 .

The polynomials T5{cy, - - -, €,) satisfy
Ta(ey - w ) = ()" T3 (e - - s ) - (13)
Proof of (13): Q(—:’— ; yx) = @ (y; — ) and therefore

ym T,,(—;~ P c,,) — (=) To(yicp - - - 6). Q. E.D.
Consider the formal factorisation
1+clx—|—---+c,,x”=_lnfl(1+y,-x) (14)
where x is an indeterminate. Then (again iwri‘cing exp(a) = €%

Ta(Cs - - Cn) = 2 [Z'CXP(—%; —t =) ﬂr:m] - (15)

The sum is over all (;

denotes the sum of all homogeneous terms of degree » in the y; which
occur in [ ]. By (14) this sum can be written as a polynomial in the ¢, of
weight #.

Proof of (15): Denote temporarily the expression on the right hand
side of (15) by 7. Then

” » B .
P‘é;f’"y? = ¥n [,—_ . ((1 +3 exp (=) 1—exp (“7{))]

_ (1 +yexp(—(1 +9) 7)) . (1 +5) y;
"‘"[,.{.7, Tty T—exp(—(1 +3’)’Ye)]

) combinations of p pairwise distinct ;. #, [ ]

:x“[ﬁg(y;y‘)] — 3 Thep..w0)y® .  Q.ED.
i=1 p=0
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Fma]ly note that Q(0;%)=y——, ¢(-1; %) =14 x and
Q(1; %)= . Therefore (see 1.5 and Lemma 1.3.1)
Tﬁ(cl, cen c,,) = Tpy(¢, - - ., €x) (TODD polynomial) ,

PG ONNSELS

2 T’(cl, e Cy) = Lpley, .-y c), e e (16)
p_

)E‘TP( )}=0fornodd
2(Cy, . vr Cn -
= 1 =Li{p, - - -» P} for m=2E.

1.9. The Topp polynomials are essentially the BERNOULLI poly-
nomials of higher order defined by NORLUND (see N. E. NORLUND,
Differenzenrechnung, Berlin, Springer-Verlag, 1924, especially p. 143).
The BERNOULLI polynomial B (y,, . . ., ,) is defined by

[+]
_onr e ¥ ooy
,-‘Z exp(y‘x)——l",é; FT B - 7a) -

If the c; are regarded as the elementary symmetric functionsin y,, . . .,
[see 1.8 (14)] then

. '3
Ta(ey - o 08) =~ B (yy, .. . ) for k< .

A corresponding remark holds for the polynomials 4, defined in 1.6.
They are essentially the polynomials D, considered by NORLUND. In the
notation of 1.3 and 1.6

2lk

APy -+ Pr) = Aailer, - - o1 Cax) = WD&)(YD ceuyw) for 2k = n.

§ 2. Sheaves

This paragraph contains the basic results of sheaf theory needed in
the present work (see also CarTAN [2], SErrRE [2] and GRAUERT-
RemMERT [1]). The book by GODEMENT [1] is strongly recommended
as a self-contained introduction to algebraic topology and sheaf theory.

We use the following terminology. A fopological space X is a set
in which certain subsets are distinguished and called open sets of X.
It is required that the empty set, and X itself, be open sets and that
arbitrary unions and finite intersections of open sets be open. An open
nesghbourhood of a point x € X is an open set U such that x ¢ U. A system
of open sets of X is called a basss {for the topology of X) if every open
set of X is a union of sets in the system. X is a Hauspor¥F space if,
given any two distinct points x,, x, in X, there is an open neighbourhood
U, of x; and an open neighbourhood U, of x, such that U, n Uy is empty.
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An open covering U of X is an indexed system U = {U};¢; of open
sets of X whose union is equal to X. The index ¢ runs through the given
index set I and so it is possible for the same open set to occur several
times in the covering. Since the index set is arbitrary there are logical
difficulties in discussing the set of all open coverings of X. These dif-
ficulties can be avoided by considering the set of all proper coverings
of X. An open covering U = {U};¢; is proper if distinct indices 4, j €1
determine distinct open sets U;, U; and if the index set is chosen, in
the natural way, as the set of all open sets of the covering. Each proper
covering is then a subset of the set of all subsets of X.

An open covering B = {V };¢c; of X is a refinement of U = {U}s¢y if
each V; is contained in at least one U,. Two open coverings are cofine
if each is a refinement of the other. It is clear that, given any open
covering U, there is a proper covering B such that U and B are cofine.
A HAUSDORFF space is compact if for every open covering ¥ = {U}ser
of X there is a finite subcollection {U;, ..., U,} which is an open
covering of X.

2.1. Definition of sheaves and homomorphisms

Definition: A sheaf & (of abelian groups) over X is a triple
& = (S, =, X) which satisfies the following three properties:

1) S and X are topological spaces and 7: S — X is an onfo continuous
map.

11) Every point a € S has an open neighbourhood N in S such that n|N
s a homeomorphism between N and an open neighbourhood of (o) in X.

The counterimage n—1(x) of a point x € X is called the stalk over x
and denoted by S,. Every point of S belongs to a unique stalk. Property
II) states that  is a local homeomorphism and implies that the topology
of S induces the discrete topology on every stalk.

IT1) Every stalk has the structure of an abelian group. The group
operations associale o points o, B € Sy the sum a + f €S, and the difference
a — B¢8S,. The difference depends continuously on o and f.

In III), “continucusly” means that, if S®& S is the subset
{{a, $Y€SxS; a{e) =n(f)} of Sx S with the induced topology, the
map S @ S — S defined by («, f) — (« — ) is continuous. Properties I),
1I), 111) imply that the zero element 0, of the abelian group S, depends
continuously on %, . ¢., the map X -» S defined by x —» 0, is continuous.
Similarly the sum « + § depends continuously on «, .

Remark: Property III) can be modified to give a definition of a
sheaf with any other algebraic structure on each stalk. It is sufficient
to require that the algebraic operations be continuous. It will often
happen that each stalk of S is a K-module (for some fixed ring K).
In this case III) must be modified to include the condition: the module
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multiplication associates to «€S,, € K a point ka €S, and the map
S - S defined by a —» &k« is continuous for each k¢ K. In the sequel we
shall tacitly assume that all sheaves are sheaves of abelian groups or
sheaves of K-modules (fixed ring K). All definitions and theorems are
formulated for sheaves of abelian groups only but they remain true for
sheaves of K-modules with the appropriate modifications {e. g. with
“homomorphism” replaced by “K-homomorphism”). In many cases
K = C (field of complex numbers). Sections 2.1—2.4 can be carried over
for sheaves with arbitrary algebraic structures. However, the definition of
cohomology groups of a topological space X with coefficients in a sheaf
& given in 2.6 depends essentially on the fact that each stalk of & is an
abelian group or a K-module. The cohomology groups themselves are
then abelian groups or K-modules. Part of the cohomology theory in
dimension 1 holds also in the non-abelian case (see 3.1).

Definition: Let €= (S,n, X) and & = (§,#, X) be sheaves
over the same space X. A homomorphism h: S — & is defined if

a) A is a continuous map from S to 8.

b) @ = &h, i. e. h maps the stalk S, to the stalk S, for each %€ X.

c) For each x € X the restriction

he:S,~8, (1)
s a homomorphism of abelian groups.
By a) and b}, 4 is a local homeomorphism from S to S.
If k. is one-one for each point x € X we call & a monomorphism.
Similarly % is an epimorphism if k, is onto for each x € X, and an 7so-

morphism if k, is an isomorphism for each x € X. Further elementary
properties of sheaves are discussed in 2.4.

2.2. Presheaves

In many concrete cases a sheaf over a topological space X is con-
structed by means of a presheaf.

Definition: A presheaf over X consists of an abelian group Sy
for each open set U of X and a homomorphism #¥: Sy — Sy for each
pair of open sets U, V of X with V C U. These groups and homomorphisms
satisfy the following properties:

1) If U is emply then Sy = O is the zero group.

1Y) The homomorphism r§: Sy -~ Sy is the identity. If W VU
then vl = rig r¥.

Remark: By I) it suffices to define Sy and r§ only for non-empty
open sets U, V.

Every presheaf over X determines a sheaf over X by the following
construction:
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a) For each point ¥ € X let S, be the direct limit of the abelian
groups Sy, x € U, with respect to the homomorphisms 7¥ (see for instance
E1LENBERG-STEENROD [1], Chapter VIMI). In other words: U runs
through all open neighbourhoods of x. Each element f € Sy determines
an element f, ¢ S, called the germ of f at x. Every point of S, is a germ.
If U, V are open neighbourhoods of ¥ and f( Sy, g¢ Sy then f, = g,
if and only if there is an open neighbourhood W of x such that W U,
WcVandr§ f=rhg.

b) The direct limit S, of the abelian groups Sy is itself an abelian
group. Let S be the union of the groups S, for distinct x € X and let
7: §— X map points of S, to x. Then S is a set in which the group
operations of 2.1 III) are defined.

¢) The topology of S is defined by means of a basis. An element
} €Sy defines a germ f, € S, for each point ¥ € U. The points f,, y € U,
form a subset f;; of S. The sets f;; (as U runs through all open sets of X,
and f through all elements of Sg;) form the required basis for the topology
of S.

It is easy to check that by a), b) and c) the triple & = (S, #n, X)
is a sheaf of abelian groups over X. This sheaf is called the sheaf con-
structed from the presheaf {Sy, r¥}.

Let & = {Sy, 7¥} and & = {Sy, #J} be presheaves over X. A homo-
morphism h from © to & isa system {Ay} of homomorphisms ky: Sy Sy
which commute with the homomorphisms #§, #§, i.e. #§ by = by 7§
for VcU.

The homomorphism % is called a monomorphism (epimorphism,
isomorphism) if each homomorphism %y is a monomorphism (epi-
morphism, isomorphism). @ is a subpresheaf of & if, for each open set U,
the group Sy is a subgroup of Sy and 7Y is the restriction of 7§ to Sy
for VCU. If @ is a subpresheaf of & then the quotient presheaf & | ®
is defined. This assigns to each open set U the quotient group Sg/Sy.
If & is 2 homomorphism from the presheaf & to the presheaf & then the
kernel of k and the image of % are defined in the natural way. The kernel
of h is a subpresheaf of & and associates to each open set U the kernel
of hy. The image of % is a subpresheaf of & and associates to each open
set U the image of hy.

Let S =(S,m, X) and & = (§,# X) be the sheaves constructed
from the presheaves ® and &. The homomorphism %: & - & induces
a homomorphism from & to & which is also denoted by %. In order to
define this homomorphism it is sufficient to define the homomorphisms
h,:S,—~ 8, [see 2.1 (1)]: if € S, is the germ at x of an element f € Sy
then A, (o) is the germ at x of the element ky(f) € Sy. This rule gives a
well defined homomorphism 4,: S, —» 8, called the direct limit of the
homomorphisms Ag.
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2.3, The canonical presheaf of a sheaf

A section of a sheaf & = (S, #, X) over an open set U is a continuous
map s: U — S for which zzs: U — U is the identity. By 2.1 III) the set
of all sections of & over U is an abelian group which we denote by
I'(U, &). The zero element of this group is the zero section x— 0,.
If s is a section of S over U the image set s(U) C S cuts each stalk S,,
1 € U, in exactly one point.

Now associate to each open set U of X the group I'(U, &) of sections
of & over U, where if U is empty I'(U, ©) is understood to be the zero
group. UV c Ulet 7§ : I'(U, &) » I'(V, &) be the homomorphism which
associates, to each section of & over U, its restriction to V (if V is
empty put #¥ = 0). The presheaf {I'(U, &), 7§} is called the canonical
presheaf of the sheaf &. By the construction of 2.2 a), b}, ¢} the presheaf
{I'(U, &), 7Y} defines a sheaf; this is again the sheaf &. In fact by
2.1 I), II) every point a €S belongs to at least one image set s(U),
where s is a section of & over some open set U. If s, s” are sections over
U, U’ with & € s(U) n s’ (U’) then s agrees with s’ in an open neighbour-
hood of x = z(a). Therefore germs at x of sections of & over open
neighbourhoods of x [see 2.2 a)] are in one-one correspondence with
points of the stalk S,. Further the system of all image sets s(U) is,
by 2.1 1), II), a complete system of open sets for the topology of S, in
agreement with 2.2 ¢).

Let & be the sheaf constructed from a presheaf & = {Sy, r§}.
An element f € Sy has a germ [, at x for each point x ¢ U [2.23)]. Let
hy(f) be the section x — f, of & over U. This defines a homomorphism
hy: Sy— I'(U, ©) and hence a homomorphism A from ® to the canonical
presheat of &. In general 4 is neither a monomorphism nor an epi-
morphism (for details see SErrE [2], § 1, Propositions 1 and 2). The
homomorphism {#y} from & to the canonical presheaf of & induces
the identity isomorphism k: & - & (see the end of 2.2).

2.4. Subsheaves. Exact sequences. Quotient sheaves. Restriction and
trivial extension of sheaves
We now come to further algebraic concepts of sheaf theory.
Definition: & = (S, &', X) is a subsheaf of S = (S5, n, X)) if
I) 5’ is an open set of S.
I} 7" is the restriction of  to S* and maps S’ onto X.
1Y)y The stalk n'—(x} = S’ N a—2(x) s a subgroup of the stalk n—(x)
forall x € X.
Condition ) is equivalent to
1*) Lei s(U) C S be the image set of a section of G over Uand a ¢ s{Uy N S’.
Then U contains an open neighbourhood V of m(a) such that s{x} ¢ S’ for
allx¢cV.
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Conditions I*), IT) imply that =’ is a local homeomorphism and III)
implies that the group operations in &' are continuous. Therefore the
triple (S, #’, X) is itself a sheaf. The inclusion of S’ in S defines a mono-
morphism from &’ to & (see 2.1) called the embedding of &' in &.

The zero sheaf 0 over X can be defined up to isomorphism as the
triple (X, @, X) where s is the identity map and each stalk is the zero
group. The zero sheaf is a subsheaf of every sheaf & over X: let S” be the
set 0(S) of zero elements of stalks of &, i. e. 0(&€) = s(X) where s is the
zero element of I'(X, &).

Let &= (S, = X) and & = (S, #%, X) be sheaves over X and
#:S > & a homomorphism. If S'= A1(0(&)) and #’' = a|S’ then
(S’, 7', X) gives a subsheaf A~1(0) of & called the kernel of k. The stalk
of the sheaf 5-1(0) over x is the kernel of the homomorphism 4, : S, - 8,
[see 2.1 (1)]. If § = A(S) and #’ = #|8’ then (&, #’, X) gives a subsheaf
2(©) of & called the image of k. The stalk of the sheaf /(&) over x is the
image of the homomorphism 4,.

Let {4} be a sequence of groups (or presheaves or sheaves) and {4}
a sequence of homomorphisms h;: A;—> Ay (The index 7 takes all
integral values between two bounds 7,, #, which may also be —oco or +oo.
Thus A; is defined for ny<i<n, and h; for ny<i<n, — 1.) The
sequence A, h; is an exact sequence if the kernel of each homomorphism is
equal to the image of the previous homomorphism, provided the latter is
defined. If the A; are presheaves {S§)} over the topological space X,
then the exactness means that for each open set U of X there is an exact
sequence of groups

oo SP s SEHD s SEFD (@)

If the A, are sheaves over X then the exactness means that at each
point x € X the stalks of the sheaves 4; form an exact sequence. Since
the direct limit of exact sequences is again an exact sequence (EILEN-
BERG-STEENROD [1], Chapter VIII, Theorem 5.4) we have

Lemma 2.4.1. Consider an exact sequence
S By By > Bprg ®)

of presheaves over X. Then the induced sequence of sheaves €; constructed
from &, is an exact sequence of sheaves over X.
For example let

0-cbebe o0 @)

be an exact sequence of sheaves & = (5, &', X}, &= (S, n, X) and
& = (58", n", X) over X.

The first 0 denotes the zero subsheaf of &’, the first arrow the embed-
ding of 0 in &'. Therefore exactness implies that A’ is a monomorphism
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and can be regarded as the embedding of the subsheaf € in &. The
final 0 denotes the zero subsheaf of &”, the final arrow the trivial homo-
morphism which maps each stalk of €’ to its zero element. Therefore
exactness implies that 4 is an epimorphism. For each point x € X the
exact sequence (4) gives a corresponding exact sequence of stalks over x:

05155 25" 0. &)

The group S, is isomorphic to the quotient group S,/S;. It is easy
to check that S” has the quotient topology with respect to the map
h: S - S {asubset of 5" is open if and only if its counterimage under 4
is an open set in S). This shows that given the sheaf & and the subsheaf
&’ there is (up to isomorphism) at most one sheaf &’ for which the
sequence (4) is exact. It is possible to prove the existence of such an &”
directly so that we may speak of the quotient sheaf &' = &/&’. We shall
obtain the existence of & in a slightly different manner by defining
first a presheaf for ©”'.

Let &’ be a subsheaf of & and U an open set of X. The group I'(U, &’)
of sections of &' over U is then a subgroup of I'{U, &), the group of
sections of & over U. We define Sy = I'(U, @)/I'(U, &') so that there
is an exact sequence

0->I'U,&)~TI'(U,&)>Sg—>0. (6)
If V is an open set contained in U the restriction homomorphism
(U, &) - I'(V, &) maps the subgroup I'(U, &'} of I'(U, &} to the
subgroup I'(V, &) of I'(V, &) and induces homomorphisms ¥ : Sy - S%.
The presheaf {Sy, 7§} is the quotient of the canonical presheaf of &
by the subpresheaf given by the canonical presheaf of &’. Let &” be the
sheaf constructed from the presheaf {Sy, r¥}. The exact sequence (6)
of presheaves induces, by Lemma 2.4.1, an exact sequence of sheaves as
required. We collect our results in the following theorem:

Theorem 24.2. Let & be a sheaf over a fopological space X and &’
a subsheat of © with embedding ' : & — &. There exists a sheaf &'
over X, unique up to tsomorphism, for which there is an exact sequence

0-¢Lete 0. 7

At each point x € X the homomorphism h,, gives an isomorphism belween
the gquotient group S,|S; and the stalk S; of & over x.

Remark: From (7) one obtains the exact sequence
01U, &Y->1I'(U, &)~ 1I(U,&"). (8)
In general I'(U, &) — I'(U, &) is not an epimorphism. By (), Sy is
the subgroup of I'(U, &”) consisting of all sections of &” over U which
are images of sections of & over U.
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Let G = (S, n, X) be a sheaf over X and let Y be a subset of X.
If the subset =~1(Y) of S is given the induced topology the triple
(2 (Y), mjn—1(Y), Y) defines in a natural manner a sheaf &|Y over ¥
called the restriction of & to Y.

Theorem 2.4.3. Let Y be a closed subset of the topological space X
and & = (S, w, Y) a sheaf over Y. There exists a sheat & over X, unique
up to isomorphism, such that é]Y =& and @}(X —Y) = 0.-The groups
I, é) and I'UNY, &) are isomorphic for any open set U of X.

~

(G is called the (frivial) extension of @ to X.)

Proof: Uniqueness follows immediately from the properties of
&: if &= (8,# X) then §S=SuU((X—Y)x0), fi(e)=n(x) for
2 €S, #(ax0)=a for a ¢ X — Y and therefore the stalk §,= #-1(x)
is equal to 7z~ (x) for x € Y and equal to the zero group forx ¢ X — Y.
The sets s(U N Y) U ((Un (X —Y))x0), for arbitrary open sets U
of X and arbitrary sections s of & over U, define a basis for the topology
of S. This completes the construction of &. It is also possible to define
S by means of a presheaf: associate to each open set U of X the group
Sy =I({UNY, &) and to each pair of open sets U, V with V' C U the
restriction homomorphism #¥: I'UNY, &) > I'(VNnY, &). Since Y
is closed, each point x € X — Y has an open neighbourhood U for which
UANY is empty and Sy = 0. Therefore the sheaf & constructed from
the presheaf {8y, 7§} has &|Y = & and &|X — Y = 0. In fact {8u. 7%}
is the canonical presheaf of .

Remark: Suppose that at some boundary point of Y the stalk of &
has a non-zero element. Then § is a non-HAUSDORFF space.

2.5. Examples

1) Let X be a topological space and A an abelian group. The constant
sheaf over X with stalk A4 is defined by the triple (X X 4, #, X) and is
also denoted simply by A. Here m: X X 4 - X is the projection from
the cartesian product X X A where 4 is given the discrete topology.
The sum and difference of points (¥, a) and (x, 4') in X X 4 are equal to
(x, a +a’).

2) Let X be a topological space. Associate to each non-empty open
set U of X the additive group Sy of all continuous complex valued
functions defined on U. For ¥V C U the homomorphism 7§ : Sy —~ Sy is
defined by taking the restriction to V of each function defined on U.
Let €, be the sheaf constructed from the presheaf {Sy, r§} as in 2.2.
Then €, is called the sheaf of germs of local complex valued continuous
Junctions.
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The sheaf C¥ of germs of local never zero complex valued continuous
functions is defined similarly: associate to each non-empty open set U
the abelian group S¥ of never zero complex valued continuous functions
defined on U. The group operation is ordinary multiplication. There is a
homomorphisme Sy - S which associates to each function f €Sy the
function e27tf ¢ S}. This defines a homomorphism {Sy, r§} — {S7. 7§}
of presheaves and hence a homomorphism €, — C} of sheaves (see 2.2).
The kernel of the homomorphism €, — C¥ is a subsheaf of €, isomorphic to
the constant sheaf over X with stalk the additive group Z of integers.
Every point z, in the multiplicative group C* of non-zero complex
numbers has an open neighbourhood in which a single branch can be
chosen for logz. If % is a germ of €F then (2x 4)-1 logk is a germ of C,
which maps to k under €, — Cf. Therefore there is an exact sequence of
sheaves over X

0+Z~>C—>CF—>0. 9)

3) Now let X be a n-dimensional differentiable manifold. We adopt
the following definition (see DE Ruam (11, §1, and Lanc [1]). X isa Haus-
DORFF space with a countable basis. At each point x € X certain real
valued functions are distinguished and called differentiable at x. Each
function is defined on some open neighbourhood of x and the following
axiom is satisfied:

There is an open neighbourhood U of x and a homeomorphism g from U
on to an open subset of R™ such that, for all y ¢ U, if { is a real valued func-
tion defined on a neighbourhood V of y and b = glU NV, then | is differen-
tiable at v if and only if f B is C*-differentiable at g (y).

Here f 5 is a real valued function defined on an open neighbourhood
of g(x) in R#. It is C™-differentiable at g(x) if all the partial derivatives
exist and are continuous in some neighbourhood of g (x).

A homeomorphism g which satisfies this axiom is called an admissible
chart of the differentiable manifold X.

If X is a differentiable manifold, and U is an open set of X, let Sy,
be the additive group of complex valued functions differentiable in U
{a complex valued function is differentiable if and only if its real and
imaginary parts are differentiable). Just as in 2), the presheaf {Sy, r§}
defines a sheaf Cy: the sheaf of germs of local complex valued differentiable
functions. Similarly the sheaf C} of germs of local never zero complex
valued differentiable functions is defined. As in 2} there is an exact
sequence of sheaves over X

0>Z>C—>C8—>0. (10)
4) Now let X be a n-dimensional complex manifold. The definition

is analogous to that of a differentiable manifold (see WEIL [2]}). X is a
HAuUsDORFF space with a countable basis. At each point x € X certain
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complex valued functions are distinguished and called holomorphic
or complex analytic at x. Each function is defined on some open neigh-
bourhood of x and the following axiom is satisfied:

There is an open neighbourhood U of x and a homeomorphism g from U
on to an open subset of C, such that, for all yC U, if f is a complex valued
function defined on an open neighbourhood V of y and h = g|lU NV, then
1 is holomorphic at v if and only if f k=1 is holomorphic at g (y).

A homeomorphism g which satisfies this axiom is called an admzessible
chart of the complex manifold X. The admissible charts of a #-dimensional
complex manifold X can be used, in a natural way, to define a 2#-
dimensional differentiable manifold with the same underlying space X.

If X is a complex manifold let Sy be the additive group of (complex
valued) functions holomorphic in U. Just as in 2) and 3) these groups
define a sheaf C,: the sheaf of germs of local holomorphic functions.
Similarly the sheaf C¥ of germs of local never zero holomorphic functions
is defined and there is an exact sequence of sheaves over X

0>Z->C,~>CE->0. (11)

Remarks: The sheaves C,, C;, C, can also be regarded as sheaves
of C-modules. In the exact sequences (9), (10), (11) all sheaves are how-
ever to be regarded as sheaves of abelian groups. The presheaves used
to construct €, C¥, C,, C¥, C,, C* are all canonical presheaves. For
instance I'(U, C.) is the additive group of all complex valued continuous
functions defined on U.

2.6. Cohomology groups with coefficients in a sheaf

The aim of this section is to define, for each integer ¢ = 0, the co-
homology group H?(X, &) of the topological space X with coefficients
in a sheaf & over X. As a first step we define the cohomology groups
He(ll, &) of an open covering U = {U};c; of X with coefficients in a
presheaf ®. The cohomology groups He(U, &) of U with coefficientsin a
sheaf & are defined to be the cohomology groups of U with coefficients
in the canonical presheaf of &. Finally the cohomology groups H*(X, &),
H¢(X, &) are defined as the direct limit of all groups H?(U, &), H«(U, &)
as U runs through ““all” open coverings of X.

Cohomology groups He(U, ©), H2(U, &):

Let & = {Sy,7}§) be a presheaf over X and U= {U;};.; an open
covering of X. A g-cochain is a function / which associates to each
(g+ 1)-ple (£,,...,%,) of indices in I an element f(3,, ..., %) of S(psyn ... nvyp-
The g-cochains form a group C*(l}, ®). Define the coboundary homo-
morphism

&: CU, B) > C1+i(, &)
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by the formula:
g+1
(1) G+« - Bqr1) =k§) (Gl V24 CORNS PR S0 )

for f¢C*(U, &). Here the “roof” (*) over a symbol means that the
symbol is to be omitted,

W= U;.f\"'(\U;H_) a.nd sz U,‘_{\"'I"\U,-.ﬂ"'f\Ug'h.
As usual #+1 8% = 0 and therefore cohomology groups can be defined:
He(Ul, &) = kernel(d%)fimage (6~ 1) .

The cohomology groups H? (U, &) with coefficients in a sheaf & over X
are then defined as the cohomology groups with coefficients in the
canonical presheaf of &.

Cohomology groups H¢(X, &), H' (X, &):

Let ¥ = {V,};cs be a refinement of the open covering % = {U },c;.
Choose a map 7: J — I so that V;C U,; for all j € J. The map r defines
a homomorphism

™*: C' (U, &) » CYD, 6)
by the formula
@* 1) (o - - - Ja) = 15 (FT o - - - THd)
for { ¢ C2(U, &). Here we have for the moment put W= V; n---nV;,
and W' = Uy, N+ -+ N Uy, so that WC W,
For each ¢ = 0 there is a commutative diagram

Y, B) = CYDB, 6)
e | ¢
Cr+(U, 6) > COH(D, ©).
Therefore t* induces a homomorphism
3 H U, 6) > HY(D, ©).

Lemma 2.6.1. The homomorphism 3 depends only on the open
covering W and the refinement B of W, and not on the choice of refinement
map v : J - 1. Furthermore 84} is the identity, and if B is a refinement of B
then i% ~ i3, 3.

Proof: Let 7, 7’ be two maps from J to I with V;C U, ;N U,;.
For each g = 1 we define a homomorphism (homotopy operator)

kCU, B) > C1(D, 6)

by the formula
g—1
(B f) (Jor - - 2 Ja-1) 21‘:2; (P72 Flos - o T T ¥ ns - 0 T Foa))
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for f € C¢(U, &). Here we have for the moment put
W=V;n---nV;

dg-1
and

Wy=U N -nUynUpsn Uy Voo U,',-,_‘

so that W W;. Then
B = (T)* — o+

F TR el = (t)* —1* for g=1.

This proves the first part of the lemma. The second part follows im-
mediately.

By Lemma 2.6.1, cofine coverings have naturally isomorphic co-
homology groups. It is therefore possible, for the definition of the co-
homology groups of the space X, to restrict attention to proper coverings
of X (see the beginning of this paragraph for terminology).

Definition: The cohomology group H(X, &) of the topological
space X with coefficients in a presheaf © is the direct limit of the groups
He (U, &) with respect to the homomorphisms 3, where U runs through
all proper coverings of X.

The cohomology groups He (X, &) with coefficients in a sheaf & over X
are the cohomology groups with coefficientsin the canonical presheaf of &.

The cohomology group H°(U, €) is, by definition, the group of
functions j which associate to each 7 € I a section f, of G|U; such that
fi=1f; on U; n U;. Therefore H*(U, &) = I'(X, &) which gives

Theorem 2.6.2. The cohomology group HY(X, &) is naturally iso-
morphic to the group I'(X, &) of sections of & over X.

Now let & be a sheaf over a closed subset Y of the topological space X

and é the trivial extension of & to X constructed in Theorem 2.4.3.
With these notations we have

Theorem 2.6.3. The cohomology groups HU(Y, &) and H?(X, é)
are naturally isomorphic. ‘

Proof: An open covering U = {U};r of X defines an open covering
Y = {U,; " Y}z of Y. Every open covering of Y is obtained in this
way. For each open set U of X the groups I'(UN Y, &) and I'(U, &)

are naturally isomorphic, and these isomorphisms are compatible with
the restriction maps 7§ when V C U. Therefore there is an isomorphism

CaU|Y, &) =~ C1(Y, &)

for each ¢ which commutes with the coboundary homomorphisms in the
cochain complexes {C¢(U|Y, &)} and {C?(U, &)}. Therefore there is a
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natural isomorphism .
Hi (WY, &) =« H1 (U, &)

and the statement of the theorem follows.

2.7. The exact cohomology sequence for presheaves

Let ®, & be two presheaves over the topological space X. A homo-
morphism 4 = {hy} from ® to & (see 2.2) induces in a natural way a
homomorphism &, from C*(Y, &) to C2(Y, ). This homomorphism
commutes with the coboundary homomorphisms and therefore defines a
homomorphism v -

hy: H1 (U, ®&) > He (U, &)
for each ¢ = 0. If B is a refinement of U there is a commutative diagram
Ry

He(u, ®) =% Hs (U, 6)
&) 1% (12
He(B,6) = HY(T,6)
and hence in the direct limit a homomorphism
hy: HY(X, 6) > H(X, &) .
Now consider an exact sequence
0—6 66" —0 (13)

of presheaves over X (see 2.4). Here O denotes the zero presheaf which
associates the zero group to each open set of X. Let Sy, Sy, Sy be the
groups associated to the open set U by the presheaves &', ®, 6.
Then S is the quotient group Sy/Sy. Therefore for each open covering U
of X the sequence

0— Ce(Y, 6') 2% Colt, ®) 2 Ce(U, 6") — 0 (14)

induced by (13) is exact.
The theory of cochain complexes implies that there is an exact
cohomology sequence

. 9
Q— Hom,sl) _”1, Hom,@) _1'1, Hu(u, @") _"_’:, Hl(u,G') -
, (15)
oo HYU, G') 5 He(U, 6) 5 He(U, 67) &, He+1(,G) >+ +.

The homomorphism ¢4 is obtained in the following way: Represent
the element 4 ¢ He(U, ") by a cochain f€Ce(U, &) with #f=0.
By the exactness of (14) it is possible to choose a cochain g € C*(U, &)
such that b, (g) = /. Therefore &% g lies in the subgroup C*+'(U, &) of
Ce+1(l, ®) and &+ (8 g) = 0. Then 3% b € He+1(ll, ®') is the element
represented by the cochain & g.
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Now let B be a refinement of the open covering U of X. There is an
exact cohomology sequence for B, corresponding to {15), and the diagram

14
He(U, ") 2 Heri(l, &)
i3] I (16)
6'
He(B, 6") — He+1(B, &)
is commutative. Therefore in the direct limit there is a homomorphism
foreachg = 0
0L : H(X, 6") > H+Y (X, &).
The commutative diagram (16), and the commutative diagrams (12)
given by A’ and &, imply that £} is 2 homomorphism from the exact

cohomology sequence (15) for U to the corresponding exact cohomology
sequence for Y. There is a commutative diagram

L HOW,6) 2 HO,6) 2 He(U, 67) T Her (), @) > - -
1! 11

& & & 18w

o> HUD,6) 25 He (D, 6) 2 HUDB, 6") 2> HI+1(B,6) > - - .

The direct limit of exact sequences is again an exact sequence and
therefore (17) implies

Lemma 2.7.1. An exact sequence 0 -~ & - & > &~ 0 of pre-
sheaves over a topological space X gives a natural exact cohomology sequence

0 HO(X,6') > HO(X, 6) > HO(X, 6") > H'(X, 6) >+ - -

. 18
coe HU(X, 6') > HO (X, 6) > HO (X, 6") 2> H+1(X, 6") > - - - . 8)

Corollary: Lef 0> 6'> 6 2. 8 > 6" 0 be an exact sequence
of presheaves over a topological space X, and suppose that H?(X, &)
= HY(X,®")=0 for all g = 0. Then h, : H\(X, &) - H1(X, &) is an
isomorphism for all ¢ = 0.

Proof: Let k(®) be the image of A Then the exact sequences
0->8 > 6—>h(®)>0 and 0> A(G) > &> & -0 imply that k,
is the composition of isomorphisms H?(X, ®) > H¢(X, h(®)) -
— He(X, &) for all ¢ = 0.

2.8. Paracompact spaces

Certain results of sheaf theory can be proved only for paracompact
spaces (see however the bibliographical note to Chapter One). In this
section we collect the definitions and theorems on paracompact spaces
which are needed. We follow the definitions given by Boursaxkt (Topo-
logie générale). Thus compact, locally compact and paracompact spaces
are all HAUSDORFF spaces by definition.
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Definition: An open covering U = {U};¢; of a topological space X
is point findte i each point of X is contained in U, for only finitely many
1 ¢ I. The covering U is locally finite if each point of X has an open
neighbourhood which meets U for only finitely many ¢ € I.

Definition: The topological space X is paracompact if it is a Havus-
DORFF space and if every open covering of X has a locally finite refine-
ment.

Theorem 2.8.1 (DieuponNE [1], Théoréme 1). Every paracompact
space is normal.

Theorem 2.8.2 (DIEUDONNE [1], Théoréme 3). Every locally compact
space, which is the union of a countable number of compact subsets, is
paracompact. In particular, every locally compact space with a countable
basts is paracompact.

The manifolds which occur in this book are, by definition, Haus-
DORFF spaces with a countable basis [see 2.5, 3} and 4}]. They are there-
fore paracompact by Theorem 2.8.2. It is also true that every metric space
is paracompact and that every CW-complex is paracompact [Mogrira,
Math. Japon. 1,60—68 (1948) and Proc. Japan Acad. 30,711—717 (1954)].

Theorem 2.8.3 (Shrinking Theorem, DIEUDONNE [1], Théoréme 6).
Let U= {U;l;er be a point finite open covering of a normal space X.
Then there is an open covering B = {V ;};c1 with the same index set I such
that V,C U for alli € 1.

If ¢: X >R is a continuous function, the support suppe
= {x € X; ¢(x) + 0} is the smallest closed set outside which ¢ is zero.

Definition: Let U = {U}sc; be an open covering of the topological
space X. A system {@;};c of real valued continuous functions defined on
X is called a partition of unity associaled fo U if

1) gulx) 2 0 for z€ X,

2) suppp,C U,,

3) each point x € X has an open neighbourhood which meels suppg;
for only finitely many i€ I,

4) 3 @i{x) = 1 for all x ¢ X. [The sum can be formed because of 3).]

ier

Theorem 2.84. X is paracompact if and only if X is a HAUSDORFF
space and every open covering of X admils an assoctated partition of unity.

Proof: Suppose that X is paracompact and that ¥ = {U};¢r is an
open covering of X. Then X is normal (2.8.1) and U has a locally finite
(and therefore point finite) refinement W’ = {U};¢r. By the shrinking
theorem (2.8.3) there are open coverings B == {V };¢y and 8B = {Wi}er
of X such that W, V,; and V,C U;. By the Urvsoan lemma there
exists a real valued non-negative function p; on X which is continuous,
identically 1 on W; and identically ¢ outside ¥,. Since ¥ and W are
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locally finite coverings the sum g = }] ¢ is a never zero continuous
iel

function. The functions @; = @j/p satisfy properties 1), 2), 3), 4).
Conversely suppose any open covering U = {U };¢y of X admits an

associated partition of unity {g;};cs. Let V; be the interior of the closed

set suppg;. Then B = {V;};¢; is an open covering of X [by 4)], is a

refinement of U [by 2)], and is locally finite [by 3)]. Therefore X is

paracompact.

2.9. Cohomology groups for paracompact spaces

Let & be a presheaf over a topological space X and & the correspond-
ing sheaf (see 2.2). Let & be the canonical presheaf of & and 4: 6 - &
the natural homomorphism defined in 2.8. For each ¢ = 0 there is a
cohomology homomorphism &, : H (X, ) - H?(X, &) = H!(X, &)
defined by A.

Theorem 2.9.1. Let & be a presheaf over a paracompact space X
and let & be the corresponding sheaf. Then the natural homomorphism
hy: HU(X, ®) - HYX, &) is an isomorphism.

The above theorem shows that the cohomology groups of a para-
compact space with coefficients in a presheaf ® depend only on the
corresponding sheaf &. We first prove a preliminary lemma.

Lemma 2.9.2. Let X be a paracompact space, and & a presheaf
over X with the zero sheaf as corresponding sheaf. Let W= {U };c1 be an
open covering of X and f ¢ C1 (U, &). Thenthereis arefinement B = {V }ies
of Wand a map v J— I with V; C U, for all j € J such that the cochain
* f€CYDB, G) is zero.

Proof (see SERRE [2], p. 218): Let ® = {Sy, r}}. We first make the
following remark. Let U be any open neighbourhood of a point x € X
and let g € Sy. Then there exists an open neighbourhood ¥ of x such that
rfg=0. If VCU and g £ Sy the element 7¥ g will be referred to as
“g regarded as an element of Sy,

Now let U = {U;};c; be an open covering of X. A cochain f € C1(U, &)
associates to each (g + 1)-ple (¢, ..., 4,) an element f(4, ..., %, of
Swy, -+ nvy- We must now construct a refinement 3V = {Viliegof U
with the required properties.

Without loss of generality we may assume that U is locally finite.
By 2.8.1 and 2.8.3 there is an open covering I = {W };e; of X with
W;CU; Let J = X and let v: X > I be a map for which % ¢ W,,. For
each point x € X we choose an open neighbourhood V', of x which fulfils
the following conditions:

a) fxcU;then V,C U, Ifx€ W;then V,C W,

b) If V, n W,is non-empty then V,C U,.
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o ExcU,n---nU,then f(3, ..., %), regarded as an element
of Sy, is zero. [By a) the set ¥V, is contained in Uy n -+ N Uy, ]

Conditions a) and b) can be fulfilled because U and B are locally
finite coverings and W, C U,. By the remark at the beginning of the proof,
V . can then be chosen sufficiently small so that c) holds. Let B = {V },cx.

We shall now show that the cochain ©* f € C*(J, &) is zero, f.e.
that, for all (x,, ..., %), the element f(r %, ..., T%,), regarded as an
element of Sy, ...qv,y is zero. f V, N--+NV, is empty there is
nothing to prove. If not, then V, N V,, is non-empty for all 2 with
0<k=<gyg By a), V,nW,,, is non-empty and therefore, by b),
V., CU,,, for all k with 0 < £ < q. It follows from c) that f(z %, ..., T %),
regarded as an element of Sy, is zero. This implies immediately the
corresponding result for the smallerset V, n---NnV,. Q.E.D.

Remark 1: In the particular case ¢ = 0, Lemma 2.9.2 holds for an
arbitrary topological space X. It is sufficient to choose an open covering
B = {V, }rexand amapz: X — [ such that ¥, is an open neighbourhood
of x, V,C U,,, and f(z x) regarded as an element of Sy, is zero.

We now come to the proof of Theorem 2.9.1. The method is due to
SERRE.

Let & be the canonical presheaf of & and 4: & > & the natural
homomorphism. There is an exact sequence of presheaves

056> 6> &> 6">0 (19)

in which both &’ and &’ have the zero sheaf as corresponding sheaf.
Lemma 2.9.2 implies that H?(X, &) = HY(X, ®")=0 for all ¢ = 0.
Therefore hy : H1(X, ®) - H*(X, &) is an isomorphism by the corollary
to Lemma 2.7.1. Q. E. D.

Remark 2: In the particular case g = 0, Theorem 2.9.1 holds for an
arbitrary topological space X provided that &’ = 0 (that is, provided
that & is a monomorphism).

2.10. The exact cohomology sequence for sheaves
Consider an exact sequence
06 >&->6"->0 (20)

of sheaves over the topological space X. For each open set U of X there s,
in the notation of 2.4, an exact sequence

0~ I(U, &)~ T'({U, &) > Sy~0. (1)

Let ®, ® be the canonical presheaves of &, €', but let ®” be the
presheaf determined by the groups Sp. Then there is an exact sequence

0> E >G> 6">0 (22)
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which, by Lemma 2.7.1, gives an exact cohomology sequence. By
definition H?(X, &)= H*(X, @) and HY(X, G)= H*(X, &). The
sheaf constructed from &” is &”. If X is paracompact then by Theorem
2.9.1 the natural homomorphism H?(X, &) - H¢(X, &") is an iso-
morphism. The groups H*(X, ") can therefore be replaced by H*(X,&"")
in the exact cohomology sequence given by (22). Moreover the resulting
homomorphism
0L : H(X, ") > H1+(X, &)
is defined in a natural way. We therefore obtain
Theorem 2.10.1. An exact sequence

0> e" >0 (23)
of sheaves over a paracompact space X gives an exact cohomology sequence
0> H(X, ©) =, H(X, ©) 2 HO(X, &) LY HY(X, &) >~
s> HYX, €) B, H (X, &) 2 He(X, &") 4, HO+1(X, &) >« -

in which all homomorphisms are defined in a natural way.

Remark: The remarks in the previous section imply that, for an
arbitrary (not necessarily paracompact) topological space X, an exact
sequence (23) of sheaves over X gives an exact cohomology sequence

0->H%X, &)~ HX, &)~ HX, &") -~ H(X, &') > HY(X, &) > H{(X,&").

‘We now come to some applications of the exact cohomology sequence
which are used in Chapter Four. Let K be a field and let & be a sheaf of
K-modules over X (see 2.1). Then the cohomology groups H?(X, &) are
vector spaces over K. Let dimH?(X, &) denote dimension over K.

Definition: A sheaf & of K-modules over X is of ¢ype (F) if the
cohomology groups H?(X, &) are finite dimensional vector spaces over K
and if dim H¢(X, &) = 0 for all but a finite number of ¢ = 0.

If & is of type (F) the EULER-POINCARE characteristic y{X, &)
can be defined by the formula

(X, &) =q§) (-1} dmHYX, ©).

Theorem 2.10.2. Let 0 > & — &~ &" — 0 be an exact sequence of
sheaves over a paracompact space X. If two of the sheaves &', &, & are
of type (F) then so is the third, and

21X, ©) = x(X, &) + 1(X, &") .
Proof: By direct application of Theorem 2.10.1.
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Theorem 2.103. Let 056, > G, >G> > &, >0 be an
exact sequence of sheaves over a paracompact space X which are all of type
(FY. Then

"
é‘l =D z2(X,6)=0.
Prooi: Let R, be the kernel of the homomorphism from &, to &,
and apply Theorem 2.10.2 to the exact sequences

08>8, >R, >0.

2.11. Fine sheaves

In applications of sheaf theory results on the vanishing of cohomology
groups are of particular importance.

Definition: Let & be a sheaf over a paracompact space X. Then &
is a fine sheaf if for each locally finite open covering U = {U};c; of X
there is a system {%;};¢; of homomorphisms k; : & -» & such that:

1) For each 1 € I there is a closed set A; of X such that A;C U, and

hi(S,)=0 for x¢ A;, (S,=-stalkof G atx).

II) 3 h; is the identity. (The sum can be formed because U is locally

iel
finite.)

Theorem 2.11.1. Let & be a fine sheaf over a paracompact space X.
Then H? (X, ©) vanishes for ¢ = 1.

Proof (see CArTAN [4], Exposé XVII): Since X is paracompact it is
sufficient to prove that H?(U, &) vanishes for ¢ = 1 for any locally
finite open covering U = {U};¢;. We define for ¢ = 1 a homomorphism
(homotopy operator)

R:C U, &) = C1 (U, ©)

in the following way. Let f¢€C?(U, &). The cochain %7 f associates
to each g-ple (4, ...,%,_y) a section (k?f) (4, ..., 4,—;) of & over
U;,n+nU,_,. Foreachindex i ¢l let (i, 4, ..., 1,,) be the section
of Gover U, n---n U, _, which is equal to h(f(s, 4, . . ., {,—y)) Over
the smaller set U;n Uy, n -+ -N U, _, and is zero outside this smaller

ig—1

set. The k; are homomorphisms with properties I) and II). We define
BUf) (Bgs + « os Bg—q) = EZ; b5, 4, . ., Bgeq) -

The sum can be formed because U is locally finite. Let §¢ be the co-
boundary homomorphism C¢(3, &) - Ce+1{Ul, &). It is easy to prove
that, for ¢ = 1, the homomorphism k¢+! §¢ 4 §2-1 k% is equal to the
identity. This completes the proof.
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The above proof is a generalisation of the cone construction which is
used to prove that the cohomology groups of a simplex (with constant
coefficients) are trivial.

Now consider the sheaf €, over a paracompact space X (see 2.5,
Example 2)). Let 2 be a locally finite open covering of X. By 2.8.4,
U has an associated partition of unity {p;}:c;. The functions ¢; can be
used to define homomorphisms %;: €, - C, as follows. Let Sy be the
C-module of complex valued continuous functions defined on U. For
f €Sy define h;(f) = @;f. This defines a homomorphism #%;.from the
presheaf {Sy} to itself and therefore also a homomorphism 4; from €, to
itself (see 2.2). The homomorphisms k; satisfy properties I) and IT) of the
definition of a fine sheaf. This proves

Theorem 2.11.2. The sheaf €. of germs of local complex valued
continuous functions over a paracompact space X is fine.

Exactly the same proof shows that the sheaf of germs of local real
valued continuous functions over a paracompact space X is fine. Theorem
2.11.2 should be regarded as a typical example of a whole class of similar
theorems.

Now let X be a differentiable manifold [see 2.5, Example 8)] and
U = {U,};c; an open covering of X. Then it is possible to find an as-
sociated partition of unity {@;};cy in which the functions ¢; are dif-
ferentiable (pE Ruam [1], §2). With the help of such a differentiable
partition of unity it is possible to prove that many sheaves over X are
fine. For instance the sheaf €, of germs of local complex valued dif-
ferentiable functions is fine. Similarly the sheaf A? of germs of exterior
differential forms of degree p with real (or complex) differentiable
functions as coefficients is fine. The canonical presheaf of this sheaf is
obtained by associating to each open set U of X the R-module (or
C-module) of exterior differential forms of degree p defined on U (see
DE Ruam [1], §4).

2.12. Resolutions of sheaves. Theorem of DE Ruam

Consider an exact sequence

066,556 >25g X (@24
of sheaves over a paracompact space X. The sequence is called a resolution
of the sheaf & if the cohomology groups H¢(X, &,) vanish forg = 1 and
$ = 0. By Theorem 2.11.1 this is the case if each &, is a fine sheaf.
An exact sequence (24) with &, fine for all p = 01is called a fine resolution
of &. The exact sequence (24) defines a sequence

B!

ke r B P34
0-TX, 6 =>TI'X,8) >TI'X, &) —I(X, &)= -
(25)
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which in general is exact only at I'(X, @) and I'(X, &,). Since A1 AL = 0
the groups I'(X, &,), # = 0, and the hornomorphisms hﬁ form an abstract
cochain complex.

Theorem 2.12.1. Consider a resolution (24) of a sheaf S over a
paracompact space X. The q-th cohomology group of the abstract complex
{I'(X, &,), p = 0} is naturally isomorphic to the cohomology group He (X, &)
Jor g = 0. In other words

He(X, ©) = kernel (h])/image (b4~} forqg =1,

HY (X, S) = kernel (h}).

Proof: Clearly kernel (k) = I'(X, &) which by Theorem 2.6.2 is
the cohomology group H®(X, €). This proves the statement for ¢=0.
Let R, be the kernel of the homomorphism A? : G, ~ &, ;. The sequence
(24) gives an exact sequence of sheaves over X

0> R, G, 2> Rypy >0 (26)

for each p = 0. Since the cohomology groups H?(X, &,) vanish for
g = 1 the exact cohomology sequence of (26) gives natural isomorphisms

H X, Rypq) = HIX, Ry) for g2 2. (27)
Since R, = & repeated application of (27) gives
HX R _JxHYX, &) forg=1. (28)

The exact cohomology sequence of (26), with p replaced by ¢ — 1,
contains the exact sequence
e—1
HO (X, Goy) ~— HOX, R) + B (X, Rg—y) 0. (29)
Since H*(X, &,) is the kernel of 4%, and HYX, &,,) = I'(X, &,..;)
the theorem follows from (28) and (29).

Let X be a differentiable manifold [see 2.5, Example 8)] and let ?
be the sheaf of germs of differentiable p-forms over X (see the end of
2.11). If U is an open set of X then I'(U, 2A?) is the R-module of dif-
ferentiable p-forms defined on U. The exterior derivative 4 is a homo-
morphism from [(U, 9#) to I'(U, A#+1). In terms of local coordinates the
derivative of a p-form

o= fi.. 8% A Adx,
LR 7Y
is the (p + 1)-form
do= X @y, . . ,Adx, A Adx,.

B <y

Let R be the constant sheaf of real numbers, A the embedding of R in
the sheaf ¥° of germs of real valued differentiable functions, and
h?: AP — AP+ the homomorphism defined by the exterior derivative.
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Theorem 2.12.2 {(PoINCARE Lemma). The sequence

A A i p—1 ?
0-RSp Lop B . B o ¥,

1s exact.

Proof: Since dd = 0 it follows that A#*1A? =0 for p = 0. It is
therefore sufficient to prove the following result. Let @ be a p-form
(# = 1) defined on an open set U. If dw = 0 then there exists a (p — 1)-
form o defined on an open set ¥ C U such that w = daon V. This is a
local result, so we may assume that X is #-dimensional euclidean space.
The required result is then the classical form of the PoincarRE Lemma.
It can for instance be proved by induction.

Theorem 2.12.3 (DE RuAM). Let X be a differentiable manifold
and let A?, p = 0, be the R-module of differentiable p-forms defined on the
whole of X. Let Z? denole the kernel of the R-homomorphism d : A? — A#+1,
Then dA?-*C Z? for p = 1. There are isomorphisms

HY(X,R) = Z° and H?(X, R) o Z2}dA?-1, p = 1.

Proof: The exact sequence of Theorem 2.12.2 is a fine resolution
of the constant sheaf R. The homomorphisms 4% of Theorem 2.12.1 are
in this case the exterior derivative of forms, so that the result follows
from Theorem 2.12.1.

Remark: Exactly the same proof gives the corresponding result for
complex valued differentiable p-forms. Let A? be the C-module of
p-forms defined on the whole of X with local complex valued differentiable
functions as coefficients. Let Z? be the kernel of the C-homomorphism
d: A? — A?+1, Then there are isomorphisms

H(X,C) 2 Z° and H?(X,C) 2 Z?/dAP-L, p= 1.

§ 3. Fibre bundles

3.1. Let X be a topological space. A sheaf & = (S, n, X) of (not
necessarily abelian) groups over X is defined, as in 2.1, by properties I),
II) together with property III) in the following slightly modified form:

II1) Every stalk has the structure of a group. The group operations
associate, to points o, §in S, the elements a B, o f~1 in S,. a f~* depends
continuously on o and f. (It then follows that the identity 1, of the group
S, depends continuously on x and that « 8, «=* § depend continuously
on «, f.)

The definitions of presheaf, canonical presheaf, etc. carry over with
similar modification. As in 2.3 the group I'(U, &) of sections of & over
an open set U of X and the restriction homomorphisms 7§ are defined.
The identity of I'(U, @) is the section x - 1,. {If U is empty then by
definition I'(U, &) consists only of the identity element.]
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Cohomology groups H¢(X, &) cannot be defined in the non-abelian
case. It is nevertheless possible, for ¢ = 1, to define a cohomology set
HY(X, ©) with a distinguished element 1. If & is a sheaf of abelian
groups then the cohomology set H(X, &) agrees with the cohomology
groups defined in 2.6. The distinguished element then corresponds to the
zero element of the cohomology group. The cohomology set can again be
defined with coefficients in an arbitrary presheaf. For convenience we
formulate the definition only for the canonical presheaf, 7. e. for the
sheaf & itself.

The cohomology set H*(U, &).

Let U = {U};cy be an open covering of X. A U-cocycle is a function f
which associates, to each ordered pair 1,  of elements in I, an element
fi3 € I'(U; N Uy, ©) such that

fstin=1Fw m UsnU;n Uy forall 4,5,k ¢1.

Equations of this type are always to be understood as holding between
the restrictions of sections to a common domain of definition. It follows
from the definition that f; is equal to the identity element of I'(U,, &)
and that f;; = /3

The set of U-cocycles is denoted by Z* (U, &). Cocycles |, /' are said
to be equivalent if for each ¢ ¢ I there exists an element g; € I'(U;, &)
such that

fis=g" 158 in Usn U, forall 4,5¢1I.

The cohomology set H1(U, &) is the set of equivalence classes of 2U-co-
cycles. Let B = {V},¢; be a refinement of Y and let v be a map from J
to I with V,C U,, for all7 € J. A U-cocycle f defines a B-cocycle v* f by

&* s =Feryes 8 Ve Vg forall v, s¢ J.
The map 7* induces a natural map
&:H U, S) > HY(D, &)
with properties as in Lemma 2.6.1. If 'r is another map from J to [
with V¥, C U, then the sections g, = f., =, € I'(V,, ©) define an equi-
valence
('t* nr.s = g;l(z* f)r,sgs n V,.f\ Va ]‘07 all 7, s E]

between ‘v* f and v* f. Therefore the map # does not depend on the
choice of the map 7.

The cohomology set H* (X, @) is the direct limit of the sets H(U, &),
with respect to the maps #§, as U runs through all proper open coverings
of X (see 2.6 and the beginning of § 2). If O is a refinement of U it can be
shown that the map &} is one-one, and so H1(}, &) can be regarded as a
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subset of H1(B, &). If U and B are cofine then H'(U, &) is identified with
H*(B, ©) in a natural way. It follows that H1(X, &) can be regarded as
the union of all sets H* (U, &), as U runs through all proper open cover-
ings of X. The distinguished element 1 ¢ HY(X, &) is represented, for
any open covering U = {U};¢;, by the cocycle f;; = 1€ '(U; N U;, &).

We now consider the particular case in which G is a group and &
is a sheaf of germs of functions with values in G. The functions may be
continuous, differentiable or holomorphic depending on the structure
of X and G. These cases are distinguished by the symbols G, G, G, which
agree with those used in 2.5.

If X is a topological space and G is a topological group then G,
is the sheaf for which I'(U, G,) is the group of continuous functions
from U to G.

If X is a differentiable manifold (see 2.5) and G is a real LIE group
then Gy is the sheaf for which I'(U, Gy) is the group of differentiable
(s. e. C™-differentiable, see 2.5) functions from U to G,

If X is a complex manifold (see 2.5) and G is a complex L1 group
then G, is the sheaf for which I'(U, G,) is the group of holomorphic
functions from U to G.

Convention: If the sheaf G, over X is mentioned it will be assumed
implicitly that X is a differentiable manifold and G is a LiE group.
If the sheaf G, over X is mentioned it will be assumed implicitly that X
is a complex manifold and G is a complex LIE group.

The sheaf Gy, over X is a subsheaf of the sheaf G, over X. The sheaf G,
over X is a subsheaf of the sheaf G, over X. There are natural maps

HY(X, Gy > H(X,G), HYX, G,)~ H (X, Gy) (1

together with the composite map
HY{X, G,) - HY{X, G, .
If A: G~ G is a continuous (or differentiable, or holomorphic) trans-
formation of topological groups (or L1t groups, or complex LIE groups)
there are sheaf homomorphisms
Gi—> G, Gy — Gy, Goy—> G,
and natural maps
HY(X,G) - HY(X,G), H{X,Gy) -~ HMX,Gy), HY{X,G,) >~ H'(X,G,) .
2

If G’ = G, and 4 is the inner automorphism
h{g) = a g a(g¢G) determined by an element 2 € G 2%
then the natural maps (2) are all equal to the identity.
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3.2.a). Let X be a topological space, and let G be a topological
group with identity element ¢ € G. Consider an effective continuous
action of a group G on a topological space F. Here conisnuous aciion
means a continuous map GX F —~ F whichmaps gxX f€GxX Ftogf€F,
such that g, (g, ) = (g1 g&2) [ and e f = [ for all f € F. Effectsve means that
fgf=fforsomeg,andall f€F, theng=e.

Definition: A topological space W, together with a continuous
map (projection) 7w : W — X, is called a fibre bundle over X with structure
group G and (typical) fibre F if there exists a system of coordinate
transformations, that is )

1) an open covering U = {U;};c; of X and homeomorphisms
ki =Y (Uy) — Uy x F which map the “fibre” n—'(u) onio X F, and

I1) elemenis go; € I'(U; N\ U;, G) for all 4,7 €I such that

BBy (X =0uX guw)f for al uCU;N Uy, fEF. 3)

Remark: Since the action of G on F is effective, the element g;
is determined uniquely by &; and ;. The g;; clearly define a cocycle
g€22(U, G,) and bence an element of the cohomology set H1(U, G,).
For example consider the trivial fibre bundle with W= XX F and =
the product projection. Any open covering U = {U} ey satisfies T},
and the functions gy = 1€I'(U; N Uy, G} satisfy 1I). In this case g
defines the distinguished element of the cohomology set H(U, G,).

The definition of a fibre bundle over X will be complete once we
specify under what circumstances different systems of coordinate
transformations define the same fibre bundle. A homeomorphism
hy:aY(U)—~ Ux F, U open in X, is called an admissible chart for the
system of coordinate transformations I), II) if there are elements
8w, € (U N U, G for each i € I such that

(hohiV) (X f) =X gue(u) f forall ucUN U, fCF. (3%

Definition: Two systems of coordinate transformations make W
{together with the projection z) the same fibre bundle W over X with
structure group G and fibre F if and only if every admissible chart for
one system is an admissible chart for the other system.

Definition: Let W (projection z) and W’ (projection ="} be fibre
bundles over X with structure group G and fibre F. An isomorphism k
from W to W’ is a homeomorphism & : W — W’ such that, for each point
xeX,

I} the fibre = (x) maps onto the fibre '~ (x), and

II) there is an open neighbourhood U of x, an element gy € I'(U, G ), and
admissible charts hg: n=2(U) > UX F for W and hy: o2 (U)>UX F
for W’ such that

Bokhprux ) =u X gy(u) } forall uc U, fCF.
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Given an open covering U = {U;};¢; of X and a U-cocycle g = {g,;} €
€Z'(U, G, a fibre bundle W, over X with structure group G and fibre F
can be constructed. It is sufficient to form the disjoint union of the
cartesian products U; X F and to identify, for each % € U;n Uj, the
points X f€ U;x F and uX gy;(#) f € U;x F. The identification space
W, is a fibre bundle with projection induced by the product projections
UxF—-U.If gcZ'(Y, G) and s € 21D, G) then W, is isomorphic
to W, if and only if g and % represent the same element of the cohomology
set H1(X, G.). Every fibre bundle over X with structure group G and
fibre F is isomorphic to a fibre bundle W, for some g. We obtain

Theorem 3.2.1. The isomorphism classes of fibre bundles over X
with structure group G and fibre F (with a given effective continuous action
of G on F) are in a natural one-one correspondence with the elements of the
cohomology set H (X, G ). The trivial fibre bundle W = X X F corresponds
to the distinguished element 1 ¢ H (X, G,).

Fibre bundles in the isomorphism class corresponding to & € H*(X, G)
are said to be associated to & If F = G and the action of G on itself is
left translation, then fibre bundles with structure group and fibre G are
called principal bundles.

Convention: Elements of H1(X, G.) will be referred to as G-bundles.
On the other hand the words fibre bundle, principal bundle will refer to a
particular fibre bundle or principal bundle (as in the above definitions)
and not to an isomorphism class.

3.2. b). The definitions and results of 3.2. a) carry over to the dif-
ferentiable and holomorphic cases. Thus let X be a differentiable {com-
plex) manifold and G a real (complex) Lie group. For turther details on
Lie groups see, for instance, PONTRJAGIN [1]. Consider an effective
differentiable (holomorphic) action GX F — F of G on a differentiable
{complex) manifold F. In the remaining definitions it is only necessary
to replace G, throughout by the sheaf G, (G,) over X. A fibre bundle W
is then automatically a differentiable (complex) manifold. The projection
x is a differentiable (holomorphic) map. An isomorphism between two
fibre bundles is a differentiable (holomorphic) homeomorphism.

We speak of continuous, or differentiable, or complex analytic,
fibre bundles and G-bundles according as the sheaf G, or G, or G,,
is used in the definition. Let W be a continuous, or differentiable, or
complex analytic, fibre bundle over X with projection z. A section of W
over an open set U of X is a continuous, or differentiable, or holomorphic,
function s: U — W for which & s is the identity. If a section over the
whole of X exists, we also say simply that W has a section.

Remark: The pattern of 3.2 a) can be used to define many other
sorts of fibre bundle (e. g. real analytic, algebraic). One has only to
replace G, by another sheaf. In general one speaks of fibre bundles with
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structure sheaf (see GROTHENDIECK [1] and HoLMANN [1]). The sheaves
G,, Gy and G, suffice for the purposes of the present work.

3.2. ¢). Consider a continuous action of the topological group &
on the topological space F which is not effective. The elements 4 of G
which act trivially on F (that is & f = f for all f € F) form a closed normal
subgroup N of &. There is an effective continuous action of the topological
group G/N on F.

If G is a real L1E group then so is any closed subgroup N of G. There-
fore a differentiable action of G on the differentiable manifold F defines
an effective differentiable action of the real Lie group G/N on F.

If G is a complex Lie group then a closed subgroup of G need not
be a complex L1 group. It is, however, easy to prove that the closed
normal subgroup N, defined by a holomorphic action of & on a complex
manifold F, is a complex LIE group. There is then an effective holo-
morphic action of the complex LiE group G/N on F.

There are natural maps {see 3.1 (2}]

t: HY{X, G) - H(X, (G/N)), X a topological space,

t: H\(X, G,) > HY(X, (G/N),), X a differentiable manifold,

t: i{(X, G,)— H'(X, (G/N),), X a complex manifold.

Let W be a fibre bundle with structure group G/N and fibre I which
is associated to £ &, £ € H(X, G). In this case we also speak of W as a
fibre bundle with structure group & and fibre F associated to &. Similarly
for G, and G,

3.2. d). The following remarks apply to the continuous, differentiable,
and also to the complex analytic, cases.

Let E be a principal bundle over X with structure group and fibre G.
There is an effective action of G on E defined by right translation on each
fibre. With respect to the local product structure U X G of E (admissible
chart) the action of an element ¢ €G is given by (uX gla=uX ga.
This operation of 2 € G on E does not depend on the choice of admissible
chart because the coordinate transformations (3), (3*) are defined by
left translation.

Consider an action (not necessarily effective) of G on F. We now
show how to construct, from the principal bundle E, a fibre bundle
W over X with fibre F. Form the cartesian product E x F and identify
eax fwithex afforeacha €G,e€E, f € F. The identification space W
can be regarded in a natural way as a fibre bundle over X with structure
group G and fibre F. The fibre bundles W and E are associated to the
same G-bundle.

3.3. Let Y, X be topological spaces, ¢ : Y — X a continuous map,
and G a topological group. There is a natural map

g% H(X, G) ~ H\(Y, ). ()
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If £ is represented with respect to an open covering U = {U};e; of X
by a U-cocycle {g;;}, then p* & is represented with respect to the open
covering p~t U = {p=1 U;};c; of Y by the ¢~ U-cocycle {g; ¢}. ¢* & is
called the G-bundle induced from the G-bundle & by the map ¢.

Let W (projection ) be a fibre bundle over X with structure group G
and fibre F which is associated to &. The following construction gives a
fibre bundle ¢* W over Y which is associated to ¢* & Let ¢* W be
the subspace of Y X W consisting of all points yX w € YX W with
@ (y) = 7 {w). The projection of the fibre bundle p* W is induced by the
product projection Y x W - Y.

Let ¢:Y > X be a differentiable, or holomorphic, map of differen-
tiable, or complex, manifolds X, Y and let G be a real, or complex,
LiE group. There is a natural map

@* HY(X, Gy) > HU(Y, Gy) or ¢*: H'(X, G,) > H'(Y,G,). (4)

The definition of ¢* and the construction of the fibre bundle ¢*W
follows just as in the continuous case.

3.4.a). Let G’ be a closed subgroup of the topological group G.
Consider the space G/G’ of left cosets xG', x € G, and the map ¢ from G
to G/G’. Let ¢ € G be the identity element. The statement

a: G G/G' admiis a local section (5)

means that there is an open neighbourhood U of o(e) in G/G’ and a
continuous map s : U -» G for which o s is the identity.

Theorem 3.4.1 (see STEENROD [11, 7.4). If (5) holds then G can be
regarded in a natural way as a principal bundle over G|G' with structure
group and fibre G’ and projection o.

Theorem 3.4.2. Let G’ be a closed subgroup of the real L1E group G.

Then G’ is a real LiE group and G s G|G' adwits a local differentiable
(in fact, real analytic) section. G can be regarded in a natural way as a
differentiable principal bundle over G|G' with structure group and fibre G’
and projection o.

Theorem 3.4.3. Let G’ be a closed complex LIE subgroup of the complex

Lie group G. Then G 2 G|G' admiis a local holomorphic section. G can be
regarded in a natural way as a complex analytic principal bundle over GG’
with structure group and fibre G' and projection o.

The existence of the local differentiable (holomorphic) section s
which is asserted in Theorem 3.4.2 (Theorem 8.4.3) can be proved by
means of canonical coordinates in an open neighbourhood of e € G.
In the special cases which arise in this book it is actually easy to construct
s directly.
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3.4.b). The following exposition is valid in the continuous, dif-
ferentiable or complex analytic cases. X will denote a topological space,
differentiable manifold or complex manifold and G a topological, real
LiE, or complex LIiE group according to the case considered. Let G’
be a closed subgroup of G. In the continuous case it will be assumed that
{5) holds. In the complex analytic case it will be assumed that G’ is a
complex Lig subgroup of G.

Convention: Let W be a fibre bundle with structure group G and
fibre F which is associated to a G-bundle £ over X [see 3.2 a) and 3.2. ¢}].
Let h denote the natural embedding of the set of G’-bundles over X in
the set of G-bundles over X induced by the embedding of G’ in G (see 3.1).
If there exists a G'-bundle E over X with & 5 = & we say “‘the structure
group of W can be reduced to G'”. If such a G’-bundle arises naturally from
the context we say that the structure group can be reduced to G’ in a
natural way. v

Let E (projection @) be a principal bundle with fibre G which is
associated to a G-bundle £ over X. Let E/G’ be the identification space
obtained by identifying, in each fibre of E, points which correspond
under right multiplication by elements of G’ [see 3.2. d}]. Consider the
commutative -diagram

E-2s ElG

NS
X

Theorem 3.4.4. E can be regarded in a natural way as a principal
bundle over E|G" with structure group and fibre G’ and projection . Let i
denote the corresponding G'-bundle over E|G’.

E[G’ can be regarded in a natural way as a fibre bundle over X with
structure group G, fibre G|G’ and projection p (G acts on G/G’ by left transla-
ton; see 3.2.¢)). E[G’ is associated to the G-bundle &.

Let k be the map from the set of G'-bundles over E[G’ to the set of G-
bundles over E|G'. Then

RE=g*E. (6)

(After “lifting” by g the structure group of & can be reduced ip G' in a
natural way.) .

The proof follows from Theorem 3.4.1, Theorem 3.4.2 or Theorem
3.4.3 according to the case considered. We leave the first parts to the
reader and show only how to obtain equation (6). Let W be the subspace
of EJG" X E consisting of all points ¢ X 4 in E/G' X E with g(c) = n(d).
By 3.3, W is a principal bundle over E/G’ with fibre G which is associated
tog* £ By 3.2. d) there is a fibre bundle W over E/G’ which is constructed
from EX G by the identifications daxX a~1g=dx g for all a €6,
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d € E, g € G. W has structure group G’ and fibre G. The action of G’ on G
is left translation and therefore W can be regarded as a principal bundle
over E/G" with structure group and fibre G which is associated to 4 Ev
The rule 2(dx g) = o(d) X dg for A CE, g€ G gives a well defined map
k: W - W which is an isomorphism of principal bundles. This completes
the proof of (6).

In the following theorem the notations of Theorem 3.4.4 are used to
state conditions under which the structure group of & can be reduced
to G'. We also use the terminology of 3.2. b), so that a section is assumed
continuous, differentiable or holomorphic according to the case considered.

Theorem 3.4.5. The structure group of & can be reduced to G’ if and
only if the fibre bundle E|G’ over X has a section s.

If a section s of E|G' is given, then the G'-bundle

n=s*@
is mapped to & by the embedding G' — G. In this case there is an open

covering U = {U}icr of X and a system of admissible charts U; % G for E
such that the coordinate transformations

8ij ¢ Uif\ Uj—>G

map U; N Uj to the subgroup G’ of G and such that, with respect to every
chart U; X G, the section s assoctates to u € U, the point of E|G’ represented
by uX e (here e € G is the identity element). The cocycle {g;;} represents the
G-bundle £ if the g;; are regarded as maps to G, and represents the G'-bundle
0 tf the gy are regarded as maps to G'.

Proofs of the theorems in this section can be found in STEENROD [1]
and HorMaNKN [1]. The essential fact in the continuous case is the
assumption (5) that G/G’ admits a local section. In the other two cases
the analogous assumption is not necessary, because a local section
always exists.

3.5. The action of the complex Lie group GL(g, €) on the complex
vector space €, (see 0.9) is continuous and effective. A vector bundle
over X is a fibre bundle W over X with structure group GL (g, C) and
fibre C,. This defines continuous vector bundles over a topological
space X, differentiable vector bundles over a differentiable manifold X,
and complex analytic vector bundles over a complex manifold X [see
3.2.b)]. If ¢ =1, W is called a line bundle.

The coordinate transformations between two admissible charts
of W preserve the vector space structure on each fibre of W. Addition
of points on a fibre, and multiplication of a point by a complex number,
are therefore defined. Every fibre is a complex vector space. It follows
that addition of sections over an open set U, and multiplication of a
section over U by complex number, are defined. These operations remain
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within the domain of continuous, differentiable or holomorphic sections
over U according to the case considered [see 3.2.b)]. Therefore the
following sheaves over X can be defined:

I) €(W) = sheaf of germs of local continuous sections of a continuous
vector bundle W over a lopological space X.

The canonical presheaf of €(W) associates to each open set U of X
the €-module of all continuous sections of W over U. Similarly:

II) A(W) = sheaf of germs of local differentiable sections of a differen-
tiable vector bundle W over a differentiable manifold X.

1I1) Q(W) — sheaf of germs of local holomorphic sections of a complex
analytic vector bundle W over a complex manifold X.

The sheaf € (W) is fine if X is paracompact. The sheaf A (W) is fine.
In both cases local sections can be multiplied by the (continuous or
differentiable) functions @; of a partition of unity to define sheaf homo-
morphisms 4; (see 2.11).

Let W be a vector bundle associated to a (continuous, differentiable or
complex analytic) GL{g, €)-bundle & over X. The following construction
gives a principal bundle E over X with structure group and fibre GL (g, C)
which is associated to L:

The fibre of E over x € X is the set of all isomorphisms between the
fixed vector space €, and the fibre W, of W over x.

Vector bundles W with GL{g, R) or GL" (g, R) as structure group
and R? as fibre (see 0.9) are defined similarly. The construction of a
principal bundle E from W follows just as for vector bundles with fibre C,.

3.6.a). Let A, B be arbitrary finite dimensional vector spaces over
a field K. The direct sum 4 @ B and the tensor product 4 ® B are
again vector spaces over K of dimension dim (4 @ B) = dim4 + dim B
and dim(4 ® B) =dimA4 dimB. Vectors a¢ A, 8¢ B define vectors
a® b Ao Band a® b€ A ® B. The product ¢ ® b is linear in each
factor, and the vector space 4 ® B is generated by the elements of the
form 2 ® b. There is also a vector space Hom (4, B) over K, whose
elements are the homomorphisms (linear maps) from A4 to B. For each
finite dimensional vector space A over K the dual vector space A* of
linear forms is defined. 4* = Hom(4, K) by definition and dim(4¥)
= dim (4). The vector space 4?4 of p-vectors is also defined. Vectors
ay, g, - - -, a,€ A define a vector a; A a, A -+ A a, € A2 A, which depends
linearly on each factor. A permutation of the factors a,, a,, ..., &,
multiplies a4, A @3 A+ -+ A a, by the sign of the permutation and
@y naghe - pa,=0 if two factors agree. The elements of the form

@y Adg A+ Aay generate A2A. If dim(4) = ¢ then dim(A#A4) = (;)

(For full details of these definitions from multilinear algebra see Bour-
BAKI, Algebre, Chap. I1.)
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3.6.b). Let W be a vector bundle over X. The fibre W, over the
point x¢€ X is a complex vector space isomorphic to the typical fibre C,.
Let W’ be another vector bundle over X with fibre W, and typical
fibre €, (see 3.5).

It is possible to define in a natural way the vector bundles W o W’
(WHITKEY sum of W and W’), W @ W’ (tensor product), Hom (W, W),
W* (dual bundle) and A?W (bundle of p-vectors). The fibres of these
vector bundles over the point x € X are respectively the complex vector
spaces W, W,, W,® W,, Hom(W,, W), W# and 2*W,. The vector
bundle A2 (W*) is called the bundle of p-forms of W.

In terms of admissible charts UXx €, for W and U x €, for W’
the product U x (€, ® €,) is an admissible chart for W @ W’. Coordinate
transformations of W, W’ induce coordinate transformations of W@ W’
in a natural way. Similarly in the other cases. This is a general principle
formulated by MiLNOR (compare Lane [1], Chap. III, §4 or MILNOR,
Der Ring der Vektorraumbiindel eines topologischen Raumes, Bonn 1959,
lecture notes by P. DOMBROWSKI).

If W and W’ are both continuous, differentiable, or complex analytic
then so are the new vector bundles defined above. The following theorem
holds in the continuous, in the differentiable, and in the complex analytic
case.

Theorem 3.6.1. Let W, W', W'’ be vector bundles over X. There are

isomorphisms
WeW)oW'=We WeW', WeWxWeW,
WeW)e WiWe (We W, WeWWeWw,

WeW)eW' (WeWhe (We W',

(W 23} W')*% W* o (W’)* ) (W® W')*g W*e (W/)* )
Hom(W, W) W*e W', (WH)* = W .

I} W has typical fibre C,, then for all 0 < p < n,

(APW)* o2 A2 (W), 12 (W) ® A0W o An—2 (W) .

For the proof of Theorem 3.6.1 see the index of BOURBAKI, Algébre,
Chap. III under the heading Isomorphisme canonigue.

The operations of WHITNEY sum, tensor product, etc., defined in this
section for vector bundies with a complex vector space as fibre, can be
defined in exactly the same way for vector bundles with a real vector
space as fibre. Theorem 3.6.1 holds similarly.

3.6.c). Let £ be a continuous, differentiable or complex analytic
G L (g, C)-bundle over X and &’ a corresponding GL (¢', C)-bundle over X.
We now define a GL(g + ¢, C)-bundle ¢ @ &' (WHITNEY sum of £ and &),
and a GL(g ¢, C)-bundle £® & (tensor product of & and &'). These
bundles are again continuous, differentiable or complex analytic according
to the case considered.
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Let W, W’ be vector bundles associated to &, &. Then £ & is
defined asthe GL{g + ¢, C)-bundle determined by W & W’. It depends
only on £ and &'. Let Y = {U};c; be an open covering of X for which £,
& can be represented by U-cocycles {g;;}, {gis}.

8;:UinU;—~GL(g,€), g;:U;nU;>GL(¢,C).
Then the GL(g + ¢, C)-bundle £@ & is represented by a U-cocycle
{h:;} where

0 :
h)) = (547 ) €GLG+ 4.0 for x€UN T

Similarly £ @ &' is defined as the GL(g ¢, C)-bundle determined by
W @ W’. It is represented by a U-cocycle {k;;} where

his(%) = g5 (%) ® gi;(x) € GL{g ¢, €) for 2€U;n Uy
and where ® denotes KRONECKER product of matrices.
For each continuous, differentiable or complex analytic GL(g, C)-
bundle & over X the dual GL (g, C)-bundle £* and the GL ((ﬁ) ) C)-bundle

A# £ are defined. These are again continuous, differentiable or complex
analytic according to the case considered. Let W be a vector bundle
associated to & Then &* is defined as the GL(g, C)-bundle determined
by W*. If £ is represented by a U-cocycle {g;} then £* is represented by
the U-cocycle {g}}, where

&) = (g1 (x) € GL(g. C) for zc U;nU;
is the transpose of the inverse of the matrix g;;(x).
Similarly 2 & is defined as the GL((3), c) -bundle determined by 12 W.
1t is represented by the U-cocycle {g{¥} where

P = g5 (W@ EGL((3).€) for x€UNT,

is the $-th compound matrix (matrix of pX p minors) of the matrix
&i; (%)

A suitable U-cocycle can also be obtained as follows. Choose a definite
isomorphism which identifies the vector space A? C, with the vector
space C(z). [Which isomorphism is chosen will be immaterial by 3.1 (2¥).]

The group GL({g, C) operates on €, and hence on C(g), giving a holo-

morphic homomorphism g, from GL(g, €} to GL(( ) C) Then A% & is

represented by the cocycle v, (g:;).

We write C* = GL(1, C). Then A° £ is the trivial C*-bundle. For a
GL(q, €)-bundle & the €*-bundle A% § is represented by the U-cocycle
{g9} where g{9 (x) is the determinant of g;;(x) for all x¢ U, n U,.
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The definitions in this section carry over immediately for GL (g, R)-
and GL* (¢, R)-bundles.

3.7. In the case ¢ = 1 the group GL (1, C) = C* is the multiplicative
group of non-zero complex numbers. The tensor product £® & of two
C*-bundles &, & is again a C*-bundle. If &, & are represented by U-co-
cycles {g;;}, {gis} then £® & is represented by the U-cocycle {g; gi,}-
(The complex valued never zero functions gy, gi; defined on U, n U, are
continuous, differentiable, or holomorphic according to the case con-
sidered.)

The group operation in H*(X, C¥), HY(X, C§) and H*(X, C¥) in the
sense of sheaf theory (see 2.5 and 2.6} is therefore the tensor product.
If £ is represented by {g;;} then the inverse £-1 is the C*-bundle re-
presented by {g;'}. In fact &1 =£f*so that £® £* = 1.

3.8. We collect here some further remarks about the C*-bundles
considered in 2.5. If X is paracompact there is an exact cohomology
sequence

cer > HU(X, C) > HI(X, C¥) 2 H*(X,Z) > HA(X,C) .

By 2.11 the sheaf C, is fine and the groups H'(X, C) and H?*(X, C;)
are zero. Therefore d}, is an isomorphism between the group of continuous
C*-bundles over X and the second integer cohomology group of X.

If X is a differentiable manifold there is again an exact sequence
—~ HI(X, C) — HA (X, C) 2> H* (X, Z) > H*(X, Cy) .

By 2.11 the sheaf €, is fine and therefore J), is an isomorphism between
the group of differentiable C*-bundles and H?(X, Z). It then follows that
the natural homomorphism
(X, - H(X,CH
of 3.1 (1) is an isomorphism.
If X is a complex manifold there is an exact sequence

> H(X, C,) » H\(X, C%) 2> H (X, Z) > H*(X, C,) .

This sequence is discussed further in 15.9.

§ 4. Characteristic classes

Important special cases of the reduction of the structure group of
a fibre bundle are discussed in 4.1. The definition of CHERN classes of a
continuous U(g)-bundle in 4.2 depends on a fundamental theorem of
BoreL [2] on the cohomology of classifying spaces. The PONTRJAGIN
classes of a continuous O (¢g)-bundle are defined in 4.5.
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4.1. a). The following notations are used in addition to those of 0.9.
Let L, be the r-dimensional linear subspace of €, defined (with respect
to the coordinates z;, 2y, ..., 2Zg) DY Zyq=2yg=-"'=12,=0. The
invertible ¢ X ¢ matrices which map L, to itself form a subgroup
GL(r, g — r; €) of GL(g, €). Matrices 4 € GL(r, ¢ — r; C) have the form

‘A’ B
4= (0 A")
where A"€ GL(r,C), A”€GL(g — r, C) and B is an arbitrary complex
matrix with r rows and ¢ — 7 columns.

The subgroup GL(r,g—7;R) of GL(g, R) is defined similarly.
Matrices 4 € GL(r, ¢ — r; R) have the above form with A€ GL(r, R),
A"€GL(g—r,R) and B an arbitrary real r X (g —7) matrix. Let
GL*({r, g —7; R) be the subgroup of those A€ GL(r,g —7;R) with
A'CGLY(r,R) and A" € GLY (g — 7, R).

&(r,g—7.€)=GL(g O)/GL(r,g—7; O =U()/U()x U(g —7)

is the GrassMANN manifold of r-dimensional linear subspaces of C,.
Similarly the real GrRaAsSMANN manifolds

G(r,q—7;R) = GL(g, RJGL(r, ¢ — 7;R) = 0(9)/0()x O(g—7)
&*(r,q — 7;R) = GL* (¢, R)/GL* (7, ¢ — 7; R) = SO (g)/SO (r) x SO (g —7)

represent the r-dimensjonal linear subspaces of R? and the 7-dimensional
oriented linear subspaces of R respectively.

The invertible gx ¢ complex matrices which map L, to itself for
each 7 form a subgroup A{g, €) of GL(g, €). Clearly A(g, C) is the sub-
group of matrices in GL(g, C) which are triangular (all coefficients below
the diagonal are zero).

The group T?= A(g, C) N U(g) of unitary diagonal matrices is a
g-dimensional torus. F{g) = GL(g, C)/4(g, €) = U(g)/T¢ is the manifold
of “flags” in C,. Each such flag is a sequence 0 = E,CE, (- CE,= €,
of linear subspaces (dim E}, = &) of C,. Note that these descriptions of the
GrassMANN manifolds and the flag manifold refer to linear subspaces
(2. e. subspace through the origin of C,).

4.1. b). Certain results on fibre bundles over a topological space X
depend on the assumption that X is paracompact (see 2.8).

Let I denote the unit interval 0 £ ¢ £ 1. Two continuous maps
fo f: X — Y are homotopic if there exists a continuousmap F: X X I>Y
such that F(x, 0) = fo(x) and F(x, 1) = f,(x) for all x€ X. A cell is a
space homeomorphic to R¥ for some N.

1) Let X be a paracompact space, W a continuous fibre bundle over a
space Y, and fo, f,: X — Y homotopic maps. Then the induced bundles
fEW, fYW (see 3.3) are isomorphic.
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Proofs of I} can be found in DoLp [3], 7.10; in HoLMANK [1], VI. 2.3;
in CarTAN [1], Exp. VIII, for X locally compact and paracompact;
in STEENROD [1], 11.5, for X locally compact with a countable basis;
and in Ativas-Botr {1}, Prop. 1.3, for X compact and W a vector
bundle.

II) Let X be a paracompact space and A a closed subspace (possibly
empty) of X. If W is a fibre bundle over X with fibre a cell then every
section s of W over A can be extended to a section over X.

If it is assumed that the section s can already be extended to an open
neighbourhood of A (which is the case in most applications) then II)
is a special case of a theorem of DoLD [3], 2.8. Other proofs can be found
in Hormann [1], VI. 3.1; in CarTAN [1], Exp. VIII, for X locally
compact and paracompact; in STEENROD [1], 12.2, for X normal with a
countable basis; and in Ativau-BotT [1], Lemma 1.1, for W a vector
bundle.

Now let G be a real LiE group and G® a closed (LiE) subgroup for
which G/G° is a cell. The embedding G® C G induces [3.1 (2)] a map

HY(X,GY) - HY X, G). (1

11T} If X is paracompact the map (1) is bijective.

Proof (STEENROD [1], 12.7): By 3.4.2 and 3.4.5 the section extension
property II) implies that every fibre bundle over X with structure
group G is isomorphic to a fibre bundle W with structure group G°
Therefore (1) is surjective. Now suppose that W, W' are fibre bundles
over X with structure group G°® which are isomorphic as bundles with
structure group G. There is an open covering {U,};¢ s of X such that W,
W’ are given by coordinate transformations gy: U;n U; - G,
&is: Uy U; — G® and, for some continuous functions 4;: U; - G,

gii=htgyh;, in UnU; forall 4,5¢].
Now let I be the unit interval 0 < ¢ < 1, and U, U} the open sets in
X x I defined by
U={(*0)€XxI; x€U;, 0=t<1},
Ul={(xfHeXx I, z¢cU, 0<t = 1}.

Construct a fibre bundle W over X x I with structure group G and
coordinate transformations

g?}’: U n U}’—» G°
g1 ULA Ut s G0
g?}: U?n U} -G
byg?;-’(x, i) = ggi(ﬂﬂ%} (x,2) = gﬁ(x):g?} (%, 8) = h;(x) g5 (%) = gi; () Bs(x).
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Then W has structure group G, reduced to G® over the closed set
A=Xx {0} uX x {1} of X x I. By 3.4.5, and II) applied to the para-
compact space X X I and the closed subspace 4, the fibre bundle W is
isomorphic to a fibre bundle with structure group G® whose restriction
to Xx {0}, Xx {1} is W', W. Consider the maps f,, : X > XX I
with f,(x) = 2 X {0}, f,{¥) = » x {1}. By I), W is isomorphic to W'. There-
fore (1) is injective and the proof of III}) is complete.

If X is a differentiable manifold then X is paracompact (2.8.2).
Let G be a real LIE group and G® a closed (L1E) subgroup for which G/G°®
is a cell. There is [3.1 (1), (2)] 2 commutative diagram of maps

HY(X, G}) > H'(X, Gy)

| | (1%)
HU(X, G~ H\(X, G)) .

1IV) Each map in (1*) €s bijective.

Proof: The lower horizontal arrow is a bijective map by III).
A direct proof that the vertical arrows are bijective maps is given in
Hormawnw [1], VL. 1.1.

When G° is a compact subgroup of G an alternative proof that the
arrows are bijective maps can be given using the STEENROD approxima-
tion theorem (every combinuous section of a differentiable fibre bundle
over X can be approximated arbitrarily closely by a differentiable section,
SteewrOD [1], 6.7) and the classification theorem for fibre bundles with
structure group G® (for references see the bibliographical note to Chapter
One). The general case then follows by application of the theorem that
the quotient space of a connected Lig group modulo a maximal compact
subgroup is a cell (see STEENROD (1], 12.14).

Properties I1I} and IV) allow the sets in (1) and (1*) to be identified
in a natural way. They can be applied in particular for

G°=U(g), G=GL{gC)

C=UMrxU{g—7), G=GLr,g—7;C) or GL({r,C})x GL{g— 1, ()
GO =Te, G=A(g,C) or G=C*x---x C* g times
G*=0(), G=6L(g R)

G°=$0(g), G=GL*(g, R)

GC°=0nNx0{g—7), G=GL(r,g—7;R) or GL{r, Ry XGL(g—7,R)
G*=S0{r)xS0(g—7),G=GL(r,g—r;R)
or GL*(r, R)XGL (g —7,R).
4.1. c). The following results hold in the continuous, differentiable
and complex analytic cases.
Let A:GL{r,g—7;€)>GL(r,C)Xx GL{g—7,C) be the homo-
morphism defined by h(4) = A'X A" [see 4.1.a)]. The kernel of A
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consists of matrices of the form ((l) ]f), where B is a matrix with »

rows and ¢ — » columns, and can therefore be identified with a complex
vector space of dimension 7 (g — 7). This gives an exact sequence

0->Cpqp > GL(r, g —7;€ 2> GL(,() xGL({g—7,€ 0. (2)

By 3.1 (2) the homomorphism % associates, to each GL(r, g —r; C)-
bundle & a GL(r,C)X GL(g — 7, C)-bundle: that is, a pair (&, &)
where & is a GL({r, C)-bundle, called a subbundle of &, and &’ is a
GL(g —7, C)-bundle, called a quotient bundle of £.

Convention: The statement “the GL (g, C)-bundle & has subbundle &
and quotient bundle £’ means that there exists a GL (r, ¢ — 7; C)-bundle
which is mapped to & by the embedding GL(r,g — 7; C)CGL(g, €) and
which has subbundle & and quotient bundle &".

Let @,: A(g, C) » €* be the homomorphism which picks out the
k-th diagonal coefficient a,; of the triangular matrix 4 ¢ A(g, C).
By 3.1 (2) the homomorphism ¢; associates to each A(g, C)-bundle &
a C*-bundle £;. The ordered set &, &, ..., &, is the set of diagonal
C*-bundles of &.

Convention: The statement “the GL{g, C)-bundle & has diagonal
C*-bundles &, . . ., £, means that there exists a 4 (g, C)-bundle which is
mapped to & by the embedding A (g, C) C GL (g, C) and whose ordered set
of diagonal C*-bundles is &, . . ., &,

Theorem 4.1.1. Suppose that the GL(g, C)-bundle & has diagonal
C*-bundles &, ..., & and that the GL(q', C)-bundle & has diagonal
C*-bundles &, . . ., &y. Then

&* has q diagonal C*-bundles £7%, . . ., &1,

E® & has q + ¢ diagonal C*-bundles &, .. ., &, &, .. ., &,

£® & has q g’ diagonal C*-bundles &; ® &,

A? & has (i) diagonal C*-bundles &; ® -+ @ &, (1 =4, <+ - <1, < g).

Proof: Apply 3.6. ¢) and 3.1 (2%).

4.1. d). The following discussion is again valid in the continuous,
differentiable and complex analytic cases.

Let W be a vector bundle (fibre C,) over X and let E be the principal
bundle [fibre GL(g, C)] of isomorphisms from €, to W constructed in
3.5. By Theorem 3.4.4 there is a fibre bundle "1W = E/GL(r, g — 7; €)
over X with fibre the GrassMANN manifold &(r, ¢ — »; C). The fibre
Ir1W, is the GrASSMANN manifold of r-dimensional subspaces of the
complex vector space W ,. The fibre bundles W, E, I"IW are all associated
to the same GL(g, C)-bundle &.

Now suppose that [*1W¥ has a section s. Then s associates to each
x€ X a r-dimensional linear subspace W, of W, which depends con-
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tinuously (or differentiably, or complex analytically} on x. By Theorem
3.4.5 the section s determines a GL{r, g — r; C)-bundle with subbundle &
and quotient bundle &”. The union of all the W is a vector bundle W’
over X which is associated to the G L (r, €)-bundle &'. The union of all the
W, = W_ /W, is a vector bundle W’ over X which is associated to the
GL(g — r, C)-bundle &".

Remark 1: Every point x€ X has an open neighbourhood U over
which W is isomorphic to the product U X C,. The isomorphism can be
chosen so that W' is defined in U X C, by the equations z,4q = -+ = 2, = 0.
Here C, is the vector space of ¢g-ples z;, . . ., 2, and the form of the iso-
morphism follows from Theorem 3.4.5.

Let W, W be vector bundles over X. A homomorphism W —~ W is a
continuous (or differentiable, or holomorphic) map from W to W which
maps each fibre W, linearly to W,. A sequence of vector bundles and
homomorphisms

O-W->W->W'-0 (3)
is exact if for each x € X the corresponding sequence
0O-W,>-W,>W, >0 (3%

is exact. In this case we write W*” = W/W' and call W’ a subbundle,
W' a quotient bundle, of W.

Let W be a vector bundle (fibre C,) over X. A section s of the fibre
bundle [1W defines in a natural way an exact sequence (3) with a sub-
bundle W’ {fibre C,) and a quotient bundle W* (fibre €,_,). Conversely
any such exact sequence determines a section of W, If W', W and W”
are associated to the GL(r, C)-bundle &, the GL({g, C)-bundle & and the
GL{g — 7, C)-bundle &” respectively then there exists an exact sequence
{8) if and only if & has subbundle & and quotient bundle &”.

Remark 2: By Remark 1 an exact sequence (3) satisfies the condition:
every point x € X has an open neighbourhood U over which W', W and W"'
are isomorphic to Ux €,, UX €, and UX C,_, respectively and over
which the exact sequence (3) corresponds o the exact sequence

0-C—-CaC_,>Ci,~0.

The proofs of the following theorems are left partly to the reader
(see 3.6):
Theorem 4.1.2. Consider an exact sequence

O-W->W->W'—>0 (3)

of vector bundles over X, and let W be another vector bundie over X. Then
there are exact sequences

0 — Hom (W, W) - Hom (W, W) — Hom(W, W") >0 @)
O-WeW - WeW->WeW-0 (5)
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obtained in a natural way from (3). In addition there is an exact sequence
obtained by “‘dualising’” (3)

0> (W'*—>W*—> (W)*>0. 6)
Theorem 4.1.3. An exact sequence
O>F>W->W'=0

of vector bundles over X with F a line bundle determines in a natural way
an exact sequence

0> P 1W' @F > W12 W 0. 7)

Proof: There are natural homomorphisms A? W — A? W and
A1 W ® F — A? W. The latter is zero on the kernel of the natural homo-
morphism from A?-1 W @ F onto A#~1 W" ® F, and therefore induces a
homomorphism A#~* W @ F -~ A? W. This defines the homomorphisms
in (7) in a natural way. It is easy to check that (7) is exact.

By dualising the above theorem one obtains

Theorem 4.1.3*. An exact sequence
O-W >W->F->0

of vector bundles over X with F a line bundle determines in a natural way
an exact sequence

O MW > W 1WRF->0. (7%)

4.1. e). The following results are once again valid in the continuous,
differentiable and complex analytic cases.

We consider the situation discussed at the beginning of 4.1. d)
and construct from the vector bundle W (fibre C) a fibre bundle
4W = E/A(q, C) over X with structure group GL(g, C) and fibre the flag
manifold

F(g) — GL(g, €)/A4(g, ©) .

The fibre 4W, is the manifold of flags in the complex vector space W,.
The fibre bundles W and 4W are associated to the same GL(g, C)-
bundle &.

Now suppose that 4W has a section s. Then s associates to each
x€ X a flag s{x) in W, which depends continuously (or differentiably, or
complex analytically) on x. The flag s(x) is an increasing sequence
2lgC el 1T+ C Ly = W, of subspaces of W, with dim,L, =7 [see

4.1. a)]. For each 7 the union U L, is by 4.1. d) a vector bundle W,
xeX
over X with fibre C,. There are exact sequences

0- W(r) g W(r+1) -> Ar+1 -0
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with 4, a line bundle and 4, = W¢). We call 4,, ..., 4, the diagonal
line bundles determined by the section s. By 3.4.5 the section s determines
a A{g, C)-bundle which is mapped to £ by the embedding A{g, €)C
CGL(g, C). The line bundles 4,, ..., 4, are associated to the diagonal
C*-bundles of this 4(g, C)-bundle.

Remark: Every point x € X has an open neighbourhood U over which W
15 gsomorphic to the product U X €, and over which W, is defined in U X C,
by 2p4q =" =2q= 0 [see 34.5 and 4.1. d)].

4.1. f). The following two theorems hold only in the continuous and
differentiable cases. It is assumed that X is paracompact (in the dif-
ferentiable case this is no restriction, since every differentiable manifold
is paracompact by 2.8.2).

Theorem 4.1.4. If the GL(g, C)-bundle & over X has the GL(r, C)-
bundle & as subbundie and the GL (g — 7, C)-bundle £ as quotient bundle
then £ is equal to the WHITNEY sum of & and &'':

§‘= 5’ @ 5,’ .
Theorem 4.1.5. If the GL(g, C)-bundle & over X has diagonal
C*-bundles &, &, . . ., &, then -

§=El®§2®"'®§q-

Proofs: Both theorems follow from properties I1I) and IV) of 4.1b).
The set of GL(7, g — r; C)-bundles can be identified with the set of
U(7) X U{g — r)-bundles, and hence with theset of L {7, C) X GL (g7, C)-
bundles. This proves 4.1.4. The set of A{q, C)-bundles can be identified
with the set of T%bundles and hence with the set of C¥x C*x - - x C*-
bundles (g factors). This proves 4.1.5.

Remark: The following alternative proof makes it clearer why
Theorems 4.1.4 and 4.1.5 are false in the complex analytic case (ATIVAH
[8]). Consider an exact sequence (3) of continuous, or differentiable, or
complex analytic vector bundles over X. The exact sequence (4), with
W = W, defines a corresponding exact sequence of sheaves of germs of
local sections (see 3.5 and 16.1). Denote the corresponding cohomology
exact sequence by

HO(X, Hom (W, W")) - HO(X, Hom (W", W))
— HO(X, Hom (W", W")) % HI(X, Hom (W", W) .

The identity homomorphism W” — W’ defines an element I¢ H(X,
Hom (W”, W”)) and hence an element &% ()€ H*(X, Hom(W", W")).
The exactness shows that there is a splitting homomorphism W'’ — W
of (8) if and only if 89, (I) = 0. Therefore W is isomorphic to W’ @ W' if
8%{I) = 0. In the continuous and differentiable cases the sheaves
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C(Hom (W"”, W) and AHom (W, W) defined in 3.5 are fine and
therefore AY(X, Hom(W”, W'))=0. This proves 4.14. Repeated
application of the same result proves Theorem 4.1.5.

4.1, g). The results of 4.1 d), together with Theorem 4.1.4, also hold
in the real case and are summarised in

Theorem 4.1.6. Let & be a GL (g, R)-bundle over X and W an as-
sociated vector bundle with fibre R?. Consider the principal bundle E (fibre
GL(7, R)) of tsomorphisms from R? to W. The fibre bundle ["1TW =
E/GL(r,q— 7; R) has fibre "W over x € X the GRASSMANN manifold of
(unoriented) linear subspaces of W . If V'IW has a section s then the union of
subspaces s (x) of W, 1s a vector bundle W' over X associated to a GL(r, R)-
bundle &'. The union of the W ,[s(x) s a vector bundle W' over X associated
to a GL(g — 7, R)-bundle £"”. Moreover & is equal to the WHITNEY sum
E & &'; in other words W s isomorphic to W' & W”.

The theorem remains true if throughout GL is replaced by GL' and
unoriented is replaced by oriented. It is also true in the differentiable
case.

4.2. In this section we define the CHERN cohomology classes of a
continuous U (g)-bundle over an “admissible” space. A space X will be
called admissible if it is locally compact, the union of a countable number
of compact subsets, and finite dimensional. The first two conditions
imply (2.8.2) that X is paracompact. In the third condition we use the
following definition of dimension: the space X is of dimension < n if
every open covering U of X has a refinement B such that each point of X
lies in at most # + 1 open sets of V. Under this definition a #-dimensional
differentiable manifold (see 2.5) is of dimension #. In the sequel # will be
assumed that all bundles considered are defined over admissible spaces.

The CHERN classes will be defined as integral cohomology classes
of X. Unless otherwise stated the cohomology groups of X with co-
efficients in an additive group A are to be understood as the cohomology
groups of X with coefficients in the constant sheaf 4 [see 2.5, Example1)].
Then Hi(X, 4) is the i-th Ceca cohomology group (with arbitrary
supports) of X with coefficients in 4. The direct sum H*(X, 4) =
2 H{(X, A) is a graded ring with respect to cup product if 4 is a com-

mutative ring. The cohomology groups of X with coefficients in a sheaf &
can also be defined by “‘alternating cochains” (SErRrRE [2]) and hence
H*(X, &) =0 for i > n = dimX. In particular H*(X, 4) = 0 for i > n,
For X a locally finite polyhedron, and in particular for X a differentiable
manifold, H?(X, 4) is naturally isomorphic to the corresponding simpli-
cial cohomology group (EILENBERG-STEENROD [1], p. 250).

The unitary group U(N) = 1 X U(N) is a normal subgroup of U (g) x
X U{N). Therefore U(g + N)/U(N) is a principal bundle with structure
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group U(g) over the GrRassMANN manifold & (¢, N; €). The homogeneous
space U(g + N)/U(N) is the STiEFEL manifold of unitary-orthogonal
g-frames at the origin of €4y 5. The homotopy groups #;(U (g + N)/U(N))
are zero for 1 < 7 < 2N (StEENRrROD [1], 25.7). The fibre bundle
U(g + N)/U(N) is associated to a U(g)-bundle over G{g, N; C) which
is called the universal U (g)-bundle.

Let X be an admissible space with dimX < 2N. Then the classifica-
tion theorem (STEENROD [1], 19.4; CArTAN [1], Exposé VIII) implies
that the U(g)-bundles over X are in one-one correspondence with homo-
topy classes of continuous maps from X to G (g, V; C). More precisely,
every U(g)-bundle over X can be induced by such a map from the
universal U{g)-bundle, and two such maps are homotopic if and only if
they induce the same U (g)-bundle. In order to define the CHERN classes
of a U(g)-bundle over X it is sufficient to define the CHERN classes of the
universal U(g)-bundle over G (g, N; C). We adopt a slightly different
approach which gives “axioms”. for the CHERN classes together with a
proof of uniqueness and existence. This approach avoids any confusion
over signs (a comparison with other definitions of CEERN classes can be
found in Borer-HIRzEBRUCH [1]). '

Axioms for the CHERN classes:

Axiom I: For every comtinuous U(q)-bundle & over an admissible
space X and every inleger 1+ = 0 there is @ CHERN class c;(£) € H*(X, Z).
The class c4(E) = 1 1s the unit element.

We write ¢(&) = 2} ¢;(£). Since X is finite dimensional this is a
i=0

finite sum. The element ¢({£) of the cohomology ring H*(X, Z) is called

the (total) CRERN class of £. A continuous map f: Y — X induces a map

7 H\(X,U(g)) —~ H(Y, U(g),) and a homomorphism
f*H*(X, Z) > H*(Y, Z).
Axiom II (Naturality): c(f* &) = * ¢(8).

Axiom III: If &, ..., &, are continuous U (1)-bundles over X then
c(6,0 @ &) =cl&)-..c(&)-
Let (25:---:2,) be homogeneous coordinates for the complex

projective space P, (C). The open sets U, defined by z; & 0 form an open
covering of P,(C). Let 7, be the C*-bundle defined by the cocycle
{gis}={2; 27 }. Then 7, is complex analytic but can be regarded as a conti-
nuous C*-bundle and hence as a U(1)-bundle over P, (€). The hyperplane
2y = 0, with the induced orientation, is a P, (C) and represents a (25 —2)-
dimensional integral homology class of P,(C}). The corresponding co-
homology class [with respect to the natural orientation of P,(C)] is
denoted by A,. The class A, is a generator of H2(P,(C), Z) = Z.
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Axiom IV (Normalisation): c(n,) = 1+ h,.

Remarks: Let j: P,_,(C) > P,(C) be the embedding of a hyper-
plane. Then j* k, = h,_; and j* %, = 9,_, in agreement with Axiom Il
We give two geometrical interpretations of the U(l)-bundle 7,. Let
P,(C) be embedded in P,.,(C) as the hyperplane z,;, =0 and let

%4 € P11 (C) be the point (0:---:0:1). There is a continuous map
7 Py (€) — {o} > P, (C) defined by 7 (251 -+ + 12, 2509) = (g1 ° = * 1 20)-
Define a homeomorphism A4;: 7~ (U;) - U; X Cby
hi(zg:---: Zp'Zpyq) = (zo """ Zn 0) X :;H
Then h; A1 ((zg: -+ <1 2,: 0) X w):(zo ----- Zy O)X—Z—w

Therefore P, (C) — {%o} is a vector bundle H over P, (C) with structure
group €* and fibre € which is associated to the U{1)-bundle 7,
The second interpretation involves the continuous map 7 : €,y —

— {0} > P, (C) defined by =(2, . .., 2,) = (%91 - * * : 2,). Define a homeo-
morphism 4;: 7Y (U) > U; X C* by Az, .-, 2) = (291 -1 2,) X 2.
Then A Ai({zg: - -1z} X W) = (751 -+ "1 2,) X zi;w

Therefore C,,., — {0} is a principal bundle E with structure group C*
which is associated to the U(1)-bundle %, It follows that the principal
bundle U(n + 1)/U (n) over the GrRassMany manifold (1, #; €) = P,(C)
is associated to #;1. Thus #; is the universal bundle over P, (C).

Convention: By 4.1.b) (1) the continuous U(g)-bundles over X
are in one-one correspondence with the continuous GL (g, C)-bundles.
Differentiable U{g)- and GL(g, C)-bundles and complex analytic
GL (g, C)-bundles can all be regarded as continuous bundles [see 3.1 (1)].
Therefore CHERN classes are defined in these cases also. If W is a vector
bundle over X with fibre €, associated to a GL{g, C)-bundle &, we call
¢ (&) the (total) CHERN class of W and write ¢{W) = ¢(£).

Uniqueness of CHERN classes:

a) If £¢ HY(X, U(1),) there is, for n sufficiently large, a continuous
map f: X — P,{(C) such that &= f*, By Axioms II and IV, c(§)
= f*(1+ h,) is determined uniquely. In particular ¢;(&) = 0 for 7> 1.

b) Now let £¢ H'(X, U(g),). Construct a fibre bundle Y, — X with
fibre ¥ (g) = U(g)/TI¢ which is associated to &. The space Y, is again
admissible. By 3.4.4 and 4.1.5 the U(g)-bundle ¢* & is equal to the
WHITREY sum of g diagonal U(1)-bundles &, ..., &, over Y, whose
Caern classes c¢(£;) = 1+ p;, where y;€ H?(Y, Z), are determined
uniquely by a). Axioms II and III imply

¢t c(®) = clo* ) =g A+ ®
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A spectral sequence argument shows that g*: H*(X, Z) -~ H*(Y,, Z)
is a monomorphism {BOREL [2}; see also ROTHENBERG-STEENROD [1]).
Therefore ¢ (£) is determined uniquely. In particular we have shown that if
&is a U(g)-bundle ¢; (&) = 0 for £ > ¢.

Remark: By the induction argument used later in 18.3 it is actually
sufficient to know that g*: H*(X, Z) -~ H*(Y, Z) is a monomorphism
when g: Y - X is a fibre bundle with fibre P,_; (€} associated to a
U (g)-bundle (see GROTHENDIECK [4]).

Existence of CHERN classes:

The proof follows the same pattern as the proof of uniqueness.
The CHERN classes of a U (1)-bundle £ are defined by a). It must be proved
(from the classification theorem and the first of the remarks after
Axiom IV} that c(§) = f*(1 + h,) depends only on £ and not on the
choice of f and . It is clear that ¢{£) satisfies Axiom II for U (1)-bundles &.
The definition of ¢({£) for a U(g)-bundle £ follows with the help of {8):

Let E be a principal bundle with U(g) as fibre which is associated
to £ and let Y, = E/T¢ By 3.4.4 there is a T%bundle 5 over Y which is
mapped to g* & by the embedding T?C U(g). We denocte the diagonal
U(l)-bundles of £ by &, ..., £, and write c(&) =1+ y, Since
p*:H*(X,Z) > H*(Y,, Z) is a monomorphism, ¢{(§) can be defined
by (8) once it is shown that the elementary symmetric functions o; in
the ¢, lie in the image of p*.

Let N be the normaliser of T="T¢ in U(g). Thus N = {a€ U(g);
a1 T a = T}. It is known that N/T is a finite group @ isomorphic to the
group of permutations of ¢ objects. Each element a € @ (represented by
a¢ N) defines a fibre preserving homeomorphism &: Y, — Y, With
respect to a chart V' X (U(q)/T), where V is an open set of X, & is given
by right translation:

Glox gT)=vxXgaT=vxXgTafor veV, gcUlg, gTcU(g/T.

Since & is fibre preserving it defines an automorphism &* of the ring
H*(Y,, Z) whose restriction to o* H*(X, Z) is the identity. In addition
there is an outer automorphism ¢ - 4~ ¢ @ of T which depends only on «
and induces an automorphism o of H*(¥,, T, [see 3.1 (2)]. Since the
outer automorphism is a permutation of the diagonal coefficients of the
diagonal matrices (€ T, the diagonal U{1)-bundles of e £ are obtained
from &, .., & by the same permutation. It can be shown that o £
=& £ (where &* is induced from & as in 3.3). Therefore &* permutes the
diagonal U(1)-bundles &;, and the cohomology automorphism &* permutes
the y; [by Axiom II for U(1)-bundles which is already established]. In
this way @ acts as the full group of permutations of y,. . . ., y,. A neces-
sary condition for an element x¢ H*(Y,, Z) to lic in p* H*(X, Z) is
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that x remains invariant under all operations of @. By a fundamental
theorem of BorEL [2], which depends on a spectral sequence argument,
the elementary symmetric functions ¢; in the y; actually occur as images
under p*. The above condition is therefore also sufficient. The CHERN
classes of & can now be defined by g; = g* ¢;(£). Clearly they do not
depend on the choice of E and do satisfy Axioms I, IT and IV.

It remains to prove Axiom III. Let & be a U (g)-bundle over X which
is the WaITNEY sum of U(1)-bundles &, ..., & over X. Let & be the

i-th diagonal U(1)-bundle of £. Then the fibre bundle Y, has a section
s:X > Y,such that s* §; =&} fori =1, . . ., g. Therefore

g g
o(§) = * ¢* o(§) = * I (&) = [T o (&) -

Remark: For the universal U{g)-bundle & the spaces X = & (g, N; C)
and Y, are triangulable. Therefore if classes ¢(£) are defined for conti-
nuous U{(q)-bundles over triangulable spaces X which satisfy Axioms
I—IV these classes must agree with the CHERN classes. If X is triangul-
able, characteristic classes ¢;(£) € H*(X, Z) can be defined for a U(g)-
bundle & over X by obstruction theory (see STEENROD [1]). One con-
structs a fibre bundle E/U(Z — 1) associated to & with the STIEFEL
manifold &,, ;= U(g)/U(z — 1) of unitary (g — ¢+ 1)-frames in C, as
fibre. The first non-zero homotopy group of &, ; is 7m,; ;(S,,;) which
is infinite cyclic. This defines a first obstruction

c; (&) € H2(X, 75,1 (S, :))

to the existence of a section of E/U(f — 1) over the 24-dimensional
skeleton of X. In order to represent c;(£) as an element of H2#(X, Z) it is
necessary to choose an isomorphism between 7,; (S, ;) and Z. The
generator of my; 4 (S,,;) which will correspond to 1€ Z is defined as
follows. Choose a fixed (g — 7)-frame in C,. The complementary subspace
is a complex vector space C; which is oriented. The sphere $%-! of unit
vectors in C; is therefore oriented. Each point of this sphere can be added
to the fixed (g — #)-frame to define a (g — 7 + 1)-frame in C, and hence
a point of &, ;- The map from the oriented $%¢-1 to &,,; defined in this
way is the required generator of 7y, (&,,:). This defines the charac-
teristic classes of obstruction theory as elements of H2*(X, Z). A detailed
discussion shows that they satisfy Axioms I—IV and hence agree with
the CHERN classes.

4.3. Axioms I, II, III determine the CHERN classes uniquely once
¢;(8) is defined for & a U (1)- or C*-bundle (Axiom IV). In this section we
assume that the base space X is admissible and give two alternative
definitions for ¢, (&).
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Theorem 4.3.1. Let £€ H (X, C¥) be a continsuous C*-bundle over X.
If 8L HY (X, C¥) — H*(X, Z) is the isomorphism defined in 3.8 then
& (8) = 8. (5).

Proof: Since 8% commutes with maps it is sufficient to prove the
result &% (n,) = &, for the bundle %, of Axiom IV. For n = 2 the em-
bedding 5 : P,,_, (C}) — P,(C) induces an isomorphism f* : H*(P, (€}, Z) ~
> HA(P,,(€), Z). Since j* 84 (1) = 83(j* 1) and j* by = hyy it is
sufficient to prove that 8} (»,) = b, for the RIEMANN sphere $% = F, (C).

The cohomology class A, is by definition dual to the homology class
represented by a single point. In simplicial cohomology &, is therefore
represented by a cochain which associates the value 1 to one 2-simplex
(oriented by the natural orientation of S%) and the value 0 to all other
2-simplexes. There is a natural identification between simplicial co-
homology and CEcH cohomology. $? can be regarded as a complex plane
(closed by the point co) parametrised by z = z,/2,. Triangulate §? as a
tetrahedron so that z = 0 is a vertex and oo is in the interior of the face
opposite 0. Name the other three vertices A, B, C in positive direction
round the origin. The open stars S;, S4, Sz, S¢ of the vertices of the
tetrahedron form an open covering of $2 whose nerve is isomorphic to the
tetrahedron. This isomorphism induces the natural identification between
Cecr and simplicial cohomology. The C*-bundle 7, can be defined by
maps f,, from S, N S, to C*:

foa =for=foc =2; fa0=fBo=fco=2""; all other f,, = 1.
8% (n,) can by definition be represented by the cocycle

1
Crst = 2x%i (Ingr: + 10gfst + logftr)

where for each r, s we choose a branch log of the logarithm in the simply
connected domain S, N S,. For example choose logf, 4 arbitrarily and
choose logfyp, logfyc by analytic continuation of logf,4 in a positive
direction round the origin (logf4¢ = —1logfe4, - - .}. For r and s both non-
zero, logf,, = 0. Therefore cooq = 1, €53 =+ 1,(~ 1) for», s, £ an even,
(odd) permutation of 0, C, 4 and c,,; = 0 otherwise. But 0CA is a
positive ordering of a 2-simplex with respect to the natural orientation
of 8%, and therefore cy¢ 4 represents the cohomology class k;. This com-
pletes the proof of Theorem 4.3.1.

Let & be a U(l)-bundle over an oriented compact manifold X.
Consider an associated fibre bundle B> X with fibre the unit disc
lz] 1, 2z€ €. An element £2™% € U(1) operates on B by z—» e2™*%
The unit disc is oriented in a natural way. B is a manifold with boundary
with an orientation induced from those of X and of the fibre. Let S
denote the boundary of B. Then S+ X is a fibre bundle with fibre
8t which is associated to & Let s: X - B — S be the embedding of the
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manifold X as the zero section of B. Following TroM [1] consider the
GYSIN homomorphism

sy Hi(X, Z) > Hi}*(B—S,Z), i=0.

The second group is cohomology with compact supports. If Dy
denotes the PoINcARE isomorphism from the cohomology groups with
compact supports to the homology groups of dual dimension in X, and
Dy s denotes the corresponding isomorphism for cohomology and homo-
logy with compact supports in B — S, then s, (2) = D3 (s, Dx(a)) for
a€ H{(X,Z). Let B be the compact space obtained from B by collaps-
ing S to a point. There is a natural isomorphism g* from Hi (B — S, Z)
to H’(B, Z) forj > 0. The bundle & over B is trivial over B — s(X) and
can therefore be regarded as a bundle £ over B. In the above notations
we have

Theorem 4.32. Let 1€ H*(X, Z) be the unit element. Then, under
the above assumptions,

g* s (1) = 1 (8) and s* sy (1) =, (8) -
The second equation states that the CHERN class ¢, (&) is the restriction fo s (X)
of the cohomology class (compact supports) corresponding to the homology
class (compact supports) of B — S given by the oriented submanifold s(X).

Proof: The second equation follows from the first. The definition
given by TaoM [1] shows immediately that s, commutes with maps.
The first equation need therefore be proved only for the bundle %, over
P,(C). In this case (see the remarks after Axiom IV) B =P, (C),
S = 8§+ and #, = 9,4, The orientation of B induces the natural
orientation on P,.,(C). Since X is the naturally oriented hyperplane
P,(C) of Ppy(C) it follows that g*su(1)=Apps = & (tmes) = &1 (7).

Q.E.D.

4.4. In this section we show how to calculate the CHERN classes of the
bundles &*, £ @ &, £ ® &, A? & (see 3.6) from those of £ and £’. For this
purpose we prove a lemma which allows all such calculations to be
reduced to the case in which every bundle involved is a WHITNEY sum
of U (1)-bundles.

Lemma 4.4.1. Let &; be a continuous U (g;}-bundle over an admissible
space X (see 4.2) for a finite number of values i =1, ..., N. There is an
admissible space Y and a continuous map ¢ : Y - X such that

I} ¢*: H*(X, Z) » H*(Y, Z) is a monomorphism,

I1) @* & is a sum of U(1)-bundles forall =1, ..., N.

Proof: By repeated application of the construction in part b)
of the proof of uniqueness of CHERN classes (4.2).

Lemma 4.4.2. Let &, &, be two U(l)-bundles over an admissible
space X. Then ¢, (& ® &) = c1(&) + (&)

Proof: By 3.7 and Theorem 4.3.1.
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We adopt the following convention. Let ¢;, b, ¢;, ... (§=1,2,...)
be commutative indeterminates. We put g, =by=¢q=---=1 and
consider formal factorisations

&

k bl ”
XYoax= Il 1+ a2, 3 bxt= II (14 B;%), etc.
i=0 i=1 i—o i=1
Every polynomial which is symmetric in each of the sets of variables
a;, Bi» i ... can be written in a unique way as a polynomial in the
elementary symmetric functions «;, b, ¢;, ... . If particular values are
substituted for a;, &;, ¢;, ... then the polynomial takes a well defined
value. In applications the particular values will always be even dimen-
sional elements of a cohomology ring.

Theorem 4.4.3. Let & be a U(q)-bundle and & a U(q')-bundle over an
admissible space X. Consider formal facton'sations

Zoa@x= 10490, 2 a@)s= M +85.

Then, subject to the above conventions,

)gf; [(E%) i = g<1—y,x) ie 6 (8% = (— 1) cy(®).
q+q
m 3 et &)= <1+y,x) H(1+6kx)

i=1

ie clf@ &) =c(f)c(f).
m)g (6@ &) xt= _]kI(1+(y,-+ak)x), (1=sj=q1<k<q).
$=0 5 |

V) Ye(d &) at = IT(1+ (ys, + -+ + v3,) %)

where the product is over all (Z) combinations with 1 S j, <--+<j, S q.

Proof: By Theorem 4.1.1, Lemma 4.4.2 and Axiom III of 4.2 the
above formulae hold if &, & are sums of U(1)-bundles. Therefore by
Lemma 4.4.1 they hold in the general case.

Remark: Formula II) is the WHITNEY multiplication formula
{also called the ““duality formula’; see for instance CEERN [2]). Formula
IIT) with ¢’ = 1 implies a formula of KuNDERT (Ann. of Math. 54,
215—246 (1951)). If £ is a fixed U(g)-bundle over X, and &' runs through
the group of U (1)-bundles over X, then £ ® & runs through the set of all
U (g)-bundles over X which are identical to & as PU{g)-bundles [PU{g)
= projective unitary group]. Hence the CHERN classes of all these U(g)-
bundles can be calculated. But this is precisely the content of the formula
of KUNDERT.
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4.5. The PONTRJAGIN classes of a O{g) bundle & over an admissible
space X (see 4.2) are defined in this section in terms of the CHERN classes
of unitary bundles. By 4.1. b). IV) this defines also the PONTRJAGIN
classes of GL (g, R)-bundles over X. If W is a vector bundle over X with
fibre R¢ which is associated to &, the PONTRJAGIN classes of W are by
definition the PONTRJAGIN classes of &.

We use the following commutative diagrams of embeddings

Ulg) > 0(29) 0(g9) ~ U(g)
(9)
GL(7,C)>GL(24,R), GL(g,R)>GL(g,C).

In the first diagram the horizontal arrows denote the embeddings
obtained if every linear map of C, (coordinates z,, . . ., z,) isregarded as a
linear map of R2¢ {coordinates %y, . . ., Xy ) by WIting 2, = %54 + # %33.
In the second diagram the horizontal arrows denote the embeddings
obtained if every matrix with real coefficients is- regarded as a matrix
with complex coefficients.

The second diagram of (9) defines a map p from H:*(X, 0(g),) to
H'(X, U(g),) [see 3.1 (2)]. If &is a O(g)-bundle over X we define

&) =cx(®) =¢§; ci(p(€) € H*(X, Z) and $;(§) = (—1)* e:(y(£))

It can be proved, by considering the classifying space of 0(g), that
2¢9411 (9 (8)) = 0 (BorEL [2], ROTHENBERG-STEENROD [1]). The element
P:(§) € H4(X, Z) is called the i-th PoNTRjAGIN class of £. The sum

P(&) = 2. p:(§) is called the (total) PONTRJAGIN class of & The proper-
i=o

ties of the CHERN classes imply immediately that
) po(8) = 1.
I) B(f* & =7 P& for any continuous map f:Y > X and

O (q)-bundle & over X. .

D) P60 &) = p (&) B (&) for &€ HY(X, 0(g)) and &€
HY(X, 0(g,).), where & & &, is the WHITNEY sum of £, and &,.

Remark: The PONTRJAGIN class $ (&) does not satisfy the multiplica-
tion formula III). Tt is however true that

P&, ® &) = p (&) #{£;) modulo elements of order 2 in H*(X, Z) .

The first diagram of (9) defines a map p from H(X,U(g),) to
H\(X, 0(2¢),). If & is a U(g)-bundle over X then g (£) is an 0(2¢)-bundle.

Theorem 4.5.1. Let £ be a U(q)-bundle over X. Then

P(e(8) =1~ $1(e(8) + £a(e(8)) — Ds(e(&) + -~
=1+ (8) + @+ )M —ca(d) +eald)—-).
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If the ¢, are regarded formally as elementary symmeiric funciions in the y,,
then the p.(0 (%)) are the elemeniary symmeiric functions in the y} (see 1.3).

Proof: Consider the composite embedding U{g) - 0(2q) - U(29).
An element 4 ¢ U(g) defines an element of U(2¢) which, under a well

known automorphism of U(24g) independent of A, is mapped to (I; %) .

Since A is unitary the complex conjugate matrix 4 is equal to the
transpose of the inverse of A. Therefore y(p(£)) is equal to the WHITNEY
sum of £ and &* [see 3.1 (2*)]. The result now follows from the WHITNEY
multiplication formula (Theorem 4.4.3).

Remark: If & is a 0(g)-bundle the same argument implies that
o(p(8) = £@ &. If however £ is oriented it is easy to check that the
natural orientations on g(y(£)) and & @ & differ by a factor (—1)¥et-D,

4.6. Let X be a (not necessarily orientable) m-dimensional differen-
tiable manifold [see 2.5, Example 3)]. Let U = {Ug;c; be an open
covering of X such that each U; admits differentiable coordinates
&9, ..., x¥. The contravariant tangent GL (m, R)-bundle g8 of X is the
differentiable bundle represented by the U-cocycle f = {f;;}, where

fis = (:f;,,) U;nU,~GL(m,R). (10)
f is the jacobian matrix of the coordinate transformation from U; to U;.
The bundle g# is an element of the cohomology set HX(X, GL(m, R);)
and is called simply the tangent bundle of X.

An admissible chart » of X is a differentiable homeomorphism from
an open set U, of X to an open set V, of R™, Differentiable coordinates
are defined on U, by ». In particular one can consider the open covering
U = {U,}.c g where K is the set of all admissible charts of X, and the
T-cocycle f = {f;,} can be defined by (10).

The cocycle f can be used to construct, by 3.2. a), a vector bundle =z
over X with structure group GL(m, R) and fibre R™. g% is the vector
bundle of contravariant tangent vectors of X. By 4.5 (9) the f;; can be
regarded as maps from U; n U; to GL(m, €). The cocycle f then defines
a vector bundle g%¢ with fibre C, called the complexification of g&.

Definition: The PONTRJAGIN classes p;(X)€ H¥(X, Z) of a dif-
ferentiable manifold X are the PONTRJAGIN classes of the tangent bundle
ge of X.

An oriented m-dimensional differentiable manifold X can be covered
by open sets U, which admit a differentiable coordinate system %", . . .,
%% consistent with the orientation. (The orientation is associated with
the ordering x{”, . . ., x%).) The maps /,, defined by (10) for such a covering

givea cocycle
fis: UinU;— GLY (m, R)

which represents the contravariant tangent GL*{m, R)-bundle of the
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oriented manifold X. When regarded as a GL (m, R)-bundle this bundle
coincides with g0.

Now assume that s = 2# is even and that X is again oriented.

Definition: An almost complex structure on the oriented differentiable
manifold X is a differentiable GL (s, C)-bundle § over X which is mapped
to the tangent GL* (m, R)-bundle over X by the embedding GL (#, C) -
— GL* (27, R). If an almost complex structure on the oriented manifold
X exists and is specified then X is called an almost complex manifold with
tangent GL (m, €)-bundle 8. The CHERN classes ¢;(X) € H2/(X, Z) of X
are defined to be the CHERN classes of 0.

Note that an almost complex manifold is by definition oriented in
a particular way. Definitions of almost complex structure in the literature
vary slightly from that given here (e. g. STEENROD [1]). The above
definition is sufficient for the purposes of the present work. Theorem 4.5.1
implies immediately

Theorem 4.6.1. The CHERN classes c; of the almost complex manifold X
are related to the PONTRJAGIN classes p; of X (regarded as a differentiable
manifold) by the equation

P=2(Vpi= e N (—Vg.
+1=0 i=0 j§=0

4.7. Now let X be a complex manifold of complex dimension #
[see 2.5, Example 4)]. An admissible chart » of X is a holomorphic
homeomorphism from an open set U, of X to an open set V,, of C,,. The
chart x defines complex coordinates 2%, .. ., z{ on U,. Let U be the
open covering {U,},c g, where K is the set of all admissible charts of X.
The contravariant tangent GL(#, C)-bundle 6 of X is the complex
analytic bundle represented by the U-cocycle f = {f;,}, where

P

fu=(355): Usn Us> 6L(1,©) .
As in 4.6 (10), f;; is the jacobian matrix of the holomorphic coordinate
transformation from U; to U,.

By 3.2. a) the cocycle f can be used to construct a vector bundle &
over X with fibre C, which is associated to 0. € is the {complex analytic)
vector bundle of contravariant tangent vectors of X. Similarly the
cocycle f = {f;;} of conjugate matrices can be used to construct a (dif-
ferentiable) vector bundle & over X with fibre C,. The vector bundles
dual to € and ¥ [see 3.6.b)] are denoted by T and T. Here T is the
{(complex analytic) vector bundle of covariant tangent vectors of X.
Note that & and T are not complex analytic.

The complex manifold X is oriented in a natural way (see the remark
in 0.2). Therefore X can be regarded as an oriented differentiable manifold
with an almost complex structure given by 0.
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Definition: The CHERN classes ¢;(X)€ H¥(X, Z) of a complex
manifold X are the CHERN classes of the tangent bundle 6 of X.

For X regarded as a differentiable manifold the vector bundle &
over X with fibre C,, is defined as in 4.6. There are differentiable iso-
morphisms

Ec=Co % (11)

St=ToT (12)

IrgSt= Y MTeAT. (13)
pHq=¢

Here A? 7T is the (complex analytic) vector bundle of covariant p-vectors
of X and A¢ T — J¢T. The sum in (13) is in the sense of WHITNEY sum.

A differentiable section of the vector bundle Ar z&¥ is a differential
form of degree r with differentiable complex valued coefficients. The
WaiTNeEY sum (13) corresponds to the unique representation of such a
form as a sum of forms of degree r and type (p, ¢}, where p, ¢ = 0 and
pP+qg=r.

Finally we mention the (complex analytic) principal tangent bundle
of the complex manifold X. It is associated to the tangent GL(n, C}-
bundle 6 of X and is constructed by the method of 3.5. The fibre of the
principal tangent bundle at x € X is the set of all isomorphisms between
the fixed vector space C, and the complex vector space &, of contra-
variant tangent vectors to X at x.

4.8. Let X be a k-dimensional differentiable submanifold of an
m-dimensional differentiable manifold Y. Then by definition X is a closed
subset of Y with the property: each point x € X has an open neighbour-
hood U in Y with differentiable coordinates %;, u,, ..., %, for which
U n X is given by the equations sy =+ =2, = 0.

Let j: X - Y be the embedding and consider the contravariant
tangent vector bundle g€ of Y. Let L be the associated fibre bundle
over Y with fibre & (k& m — %; R) constructed in 4.1. g). The field of
tangent k-planes to X defines a differentiable section of j* L. Therefore by
Theorem 4.1.6 the restriction j* g0(Y) to X of the tangent bundle g6 (Y)
of Y admits a subbundle and quotient bundle in a natural way. The
subbundle is precisely the tangent bundle gf(X) of X. The quotient
bundle gy is called the normal bundle of X in Y. By Theorem 4.1.4

7*I(Y) =0(X) ® »v. (14)

The corresponding result holds if X and Y are oriented. The normal
bundle is then a GL* (m — k, R)-bundle. In the special case m — k = 2
the normal bundle can be regarded as a U (1)-bundle by applying 4.1. b)IV)
to the embedding U (1) = SO(2)C GL*(2, R) [see 4.5 (9)]. The CHERN
class of the normal bundle gy is therefore defined.
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Theorem 4.8.1. Letj: X —» Y be the embedding of an oriented compact
(m — 2)-dimensional differentiable manifold X in an oriented compact
m-dimensional differeniiable manifold Y. Let h€ H2(Y, Z) be the cohomo-
logy class defined, with vespect to the given oriemtations, by the (m — 2)-
dimensional homology class represented by X. Let gy be the normal bundle
of Xin'Y. Then

e (w) = . (15)

Proof: By 4.1.b)IV) applied to the embedding SO {m) C GL* (m, R),
the tangent GL" (m, R)-bundle of Y can be regarded as a SO (m)-bundle.
Hence Y admits a RIEMANN metric. This metric can be used to construct
a closed tubular neighbourhood B of X in Y. B is a fibre bundle with
fibre the unit disc |2| < 1, z€ €, which is associated to the U (1)-bundle gy
(Teom [2]). Let B be the compact space obtained from B by collapsing
the boundary S of B to a point. Equivalently B is obtained from Y by
collapsing the closed subset Y — (B — S) to a point. The map 7: Y -> B
defines a cohomology homomorphism 7* : H* (B, Z) - H*(Y, Z). Then,
in the notation of Theorem 4.3.2,

FEh=g*r*g* sy (1) = s* su (1) = ¢y () -

4.9. Let X = X, be a complex submanifold of the complex manifold
Y =Y, (k < n). Then by definition X is a closed subset of Y. Each point
%€ X has an open neighbourhood U in Y with complex coordinates
2i, Zg, - - % for which U X is given by the equations zp,,=---
=2,=0. Let : X > Y be the embedding and consider the tangent
GL(n, C)-bundle 9(Y) of Y. As in 4.8 [see the discussion in 4.1. d)] the
restriction j* §(Y) of #(Y) to X admits a subbundle and quotient bundle.
The subbundle is the tangent bundle 8(X) of X. The quotient bundle
» is the (complex analytic) normal bundle of X in Y. If all the bundles
are regarded as differentiable bundles then j* 6(Y) is the WHITNEY sum
of 0(X) and ».

Now consider the special case in which X = X, is a complex
submanifold of Y = Y,, of complex codimension 1. In this case X is
called a non-singular divisor of Y. There is a covering of Y by open sets U;
such that X n U, is given by an equation f; = 0. Here /, is a holomorphic
function defined on U; with non-zero partial derivatives at each point
y€ U;n X. The functions f;; = {; f;* are holomorphic and never zero
on U, n U,. The cocycle {f;;} determines a complex analytic C*-bundle
[X] over Y which depends only on the divisor X. For example the bundle
7. of 4.2 is determined by the non-singular divisor P,_,{(C) of P,(C}.
Clearly 7* [X] is the (complex analytic) normal bundle of X in Y.

Theorem 4.9.1. Let X be a non-singular divisor of the compaci
complex manifold Y, and let h ¢ H2(Y, Z) be the cohomology class represent-
ed by the oriented (2n — 2)-cycle X. Then ¢, ([X]) = h.
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Proof: We use the notations of the proof of Theorem 4.8.1. The
bundle [X] is trivial over Y — X and therefore there is a bundle [X] over
B such that [X] = r*[X]. As in Theorem 4.3.2,

ey([X]) =r* e ([]) = r*(g* su (1)) = .

Finally let X = X?* be an oriented differentiable submanifold of
an almost complex manifold ¥ = Y, (2% < 2#) and suppose that an
almost complex structure on X is given. Letj : X — Y be the embedding.

Definition: X is an almost complex submanifold of Y if there
exists a differentiable GL (# — %, C)-bundle ¥ over X such that

I) » is mapped to the normal bundle of X in Y (see 4.8) by the
embedding GL(n — k,C) » GL* (2n — 2%, R),

I #0(Y)=0(X) @ ».

This definition of almost complex submanifold is somewhat crude
but sufficient for our purposes. By 4.8, condition I) is always satisfied
in the case # — k = 1. Clearly a complex submanifold X of a complex
manifold Y is also an almost complex submanifold of Y.

4.10. The definition of the CHERN classes by obstruction theory
referred to at the end of 4.2 gives the following theorem (STEENROD[1],
39.7 and 41.8). Another proof is outlined in 4.11.

Theorem 4.10.1. Let V,, be a compact almost complex manifold and
ey € H3*(V,, Z) the n-th CHERN class of V.. The natural orientation of V,,
defines an integer ¢, [V, (see 0.3) which is equal io the EULER-POINCARE
characteristic of V,,.

The EULER-POINCARE characteristic of P,(C) is equal to # -+ 1.
This fact can be used to calculate the CHERN and PONTRJAGIN classes
of P, (C).

Theorem 4.10.2. Let b, € H*(P, (C), Z) be the generator defined in 4.2.

The CHERN class of the complex manfold By (€) s (14 bt = 3 (*F ‘) K.
izo

The PONTRJAGIN class of the differentiable manifold P, (C) is (1 + A2+l

Proot: By Theorem 4.10.1 the formula for the CHERN class is correct

for n = 1. Now suppose the formula is proved for P,_, (€} and consider

the embedding j:P,-,(C) > P,(C). By Theorem 4.9.1, the WHITREY

multiplication formula, and the fact thatj* &, = k,_; (see 4.2), 7* ¢(P,(C))

= 0 (Pay (O). 7* (1 + ho) = 7* (1 + ho)n+%. But j*: H¥ (P, (C), Z) >
H%(P,, (C), Z) is an isomorphism for ¥ < n — 1, and therefore

¢(Pa(€)) = (1 + k)™ modulo H™»(P,(C), Z).

By Theorem 4.10.1, ¢, (P,{C)) = (» + 1) &}. This completes the proof by
induction of the formula for the CHERN class. The formula for the
PoNTRJAGIN class follows immediately from Theorem 4.6.1.
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4.11. Let X be a compact oriented manifold and & a SO (g)-bundle
over X. The construction of Theorem 4.3.2 can be used to define the
EuLErclass e(§) € H1(X, Z) of £ Let B — X be a fibre bundle associated

q
to & with the disc D?= {(xl, o %) €ERY Y at < 1} as fibre. B is a
i=1
manifold with boundary with an orientation induced from the orienta-
tions of X and R?. The boundary S of B is a fibre bundle over X with
fibre §7-1. Let s: X -~ B — S be the embedding of X as the zero
section of B. There is a Gysin homomiorphism

se H(X,Z)>H}Y(B-S,Z), i=0

defined as in 4.3. Let X’ be another compact oriented manifold and
f: X’ - X a continuous map. Then B’, S’, s’ can be constructed as above
from the SO(¢)-bundle f* £ and there is a natural mapf: B’ — S’ —
— B — S. With these notations we have

Theorem 4.11.1 (TuoM ([1]). The GYSIN homomorphism s, is an
tsomorphism for + = 0 and the diagram

Hi(X,Z) £, H{(X', Z)
b
Hf,*;q(B —-5,Z) — Hf,;q(B' - S, Z)
1s commulative.

Let 1€ H%(X, Z) be the unit element. The EULER class e(£)
of £is defined by e (£) = s* s, 1. By 4.1. b) the EULER class is defined also
for any GL* (g, R)-bundle £ over X.

Theorem 4.11.2. Let X Y be compact oriented manifolds, .Y — X
a continuous map, & a SO (q)-bundle over X and & a SO (q')-bundle over X.
Then

1) 2¢(&) =0 ¢f q is odd,
IT) e(f* &) = f* e(é),

III) e(é @ &) = ¢(£) e(&"),

IV) e(@) = ci(d) if ¢ = 2.

Proof: The definition of s, implies that s,(s*b-¢) =b-s, ¢ for
be Hi,(B —S8,2Z), c€c H} (X, Z). Therefore s,(2e(f)) = 25,(s*s,1)
=25, 15, 1 =0 for g odd since cup product is anticomrmutative. Since s,
is an isomorphism, 2¢(&) = 0 for g odd. This proves I). II) follows from
Theorem 4.11.1. To prove III) let B, B’ be the unit disc bundles of
& & and C the unit disc bundle of f@-¢. Let t: B—~C, {': B> C
be the embeddings defined by the direct sum é@ &' and u=ts=1¢'s"
the embedding of X in C induced by the zero section. By Theorem 4.11.1,
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sp 8" 1=1*1, 1 and therefore s, 1 =1, 54 1 =1to(s, s* 1) = £, #* (£, 1)
=6 1.4 1
Hence u* u, 1 =s%*(, 1) - s* #* (1, 1)
= 5¥5,(s'* 1) - s"* 5, (s* 1) by Theorem 4.11.1.

Therefore e(é @ &) = ¢{&) e(&') as required. IV} follows from the iso-
morphism S$0(2) ~ U(1) and Theorem 4.3.2.

Now let 5 be a U(g)-bundle over X. The embedding U(g) » S0(29)
of 4.5 (9) defines a SO (2¢)-bundle p(n) over X. It follows from properties
II), I1I}, IV) of 4.11.2 and from the splitting method (compare the proof
of uniqueness of CHERN classes in 4.2} that

e(e(n)) = co(m) - (16)

Theorem 4.11.3. Let §: X — Y be the embedding of an orienied

compact k-dimensional differentiable submanifold X in an oriented compact

m-dimensional manifold Y. Let h¢ H™~*(Y, Z) be the cohomology class

which corresponds to the oriented cycle X and gy the normal 6L (m — &, R)-
bundle of X in Y. Then

e(w) = j* h. (17)

Proof: The definition of the EULER class shows that the proof of
Theorem 4.8.1 also applies to give (17).

Consider the following particular case of Theorem 4.11.3. Y is the
product manifold X x X, 5: X - X x X is the diagonal embedding-and
g¥ is equal to the tangent bundle g8 of X. An algebraic calculation, due
to LEFscHETZ, shows that

k
(hUB) XX K] = 2 (~1)B(X)

is the alternating sum of the BerTi numbers of X. Theorem 4.11.3
therefore implies that

e(wf) [X]=7*h{X]= (huh) [Xx X]=E(X)

is the EULER-POINCARE characteristic of X. This proves

Theorem 4.11.4. Let X be a compact oriented differentiable manifold
with tangent bundle gf. Then e(g0) [X is equal to the EULER-POINCARE
characteristic E (X)) of X.

Theorem 4.11.4, with (16), gives a proof of Theorem 4.10.1. Theorem
4.11.3, with (16), gives the following generalisation of Theorem 4.9.1:

Let §: X » Y be the embedding of a compact complex submanifold X
in a compact complex manifold Y of complex codimension q. Let h€
H*(Y, Z} be the cohomology class represented by the orsenied cycle X and
v the complex normal bundle of X in Y. Then

) =7*h. (18)
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Remarks: 1). The definition of the EULER class, Theorem 4.11.1,
and Theorem 4.11.2, actually hold for a §0(g)-bundle £ over an arbitrary
admissible space X (see 4.2). Therefore (16) is valid in this case also.

2). If £is a O(g)-bundle the definition of s, fails because the disc
bundle B is no longer oriented in a natural way. If all cohomology groups
are taken with coefficients Z, then Theorem 4.11.1 remains true in this
case and s*s, 1€ HY(X, Z,) is the g-th WHITNEY class w,(§) of &

The total WHITNEY class (&) = Z,' ®;(£) can be defined. It satisfies

I) For every continuous Q (g)- bundle & over an admissible space X and
every integer + = 0 there is a WHITNEY class w;(£) € H (X, Zy). wg(&) = 1
is the unit element.

) w(f* &) = f* w(é).

) w(é® &) = w(f) w(f).

IV) w(n,) = 1+ h,, where n, is the O(1)-bundle over n-dimensional
real projective space P*(R) defined similarly to the U (1)-bundle n, of 4.2,
and hy, is the non-zero elemept of H'(P*(R), Z,).

If X is a differentiable manifold with tangent bundle gl the WHITNEY
class w(X) = w(gl) is sometimes called the STIEFEL-WHITNEY class.

The proofs of existence and uniqueness of WHITNEY classes are
precisely analogous to those for CHERN classes in 4.2. There is also a
definition of w, like that of ¢, in Theorem 4.3.1. The exact sequence

1->8S0(g) > 0(g) > Z,~1

defines a homomorphism g, : HX(X, O(g)) - H*(X, Z,) such that
04 (&) = w, (). Hence a differentiable manifold X is orientable if and
only if (X)) =0

3). The embedding SO{q) > O(g) defines the WHITNEY class and
PoNTRJAGIN class for a SO(g)-bundle &. In this case w,(£) is ¢ (&) reduced
mod 2. If now & is a SO(2¢)-bundle then (see 4.5} the SO (4q)-bundle
oy (&) differs from E ® &bya change in orientation (— 1)¢ and therefore

De(8) = (1) caq((€)) = (—1)*7e(E @ §) = ((£))*.

Finally, if £ is a U(g)-bundle over X then g (&) is 2 SO(2g)-bundle.
In this case w,,;(p (£)) is the reduction mod2 of ¢;(£) and w;:4,((£)) = 0.

Bibliographical note

Proofs of Lemma 1.5.2 and Lemma 1.7.3, together with applications of multi-
plicative sequences to cohomology operations can be found in ATivAuH-HIRZEBRUCH
[43.

The treatment of sheaf cohomology in §2 is entirely in terms of Cecu cohomology
theory, and the exact cohomology sequence is established only for paracompact
spaces X (Theorem 2.10.1). The first definition of sheaf cohomology groups which
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satisfy the exact cohomology sequence for arbitrary spaces X was given by GROTHEN-
pieck [2]. These groups are defined by homological algebra or, equivalently,
by flabby resolutions (GopeEMENT [1]). For X paracompact the GROTHENDIECK
cohomology groups are isomorphic to the Cecm groups. For general X the two
cohomology theories are related by a spectral sequence (GopEMENT [1], Chap. II,
5.9.1).

The books by SteENrROD [1], HOLMANN [1] and HusEMOLLER [1] give fuller
accounts of the theory of fibre bundles. It is very convenient to replace all conditions
on the base space (paracompact, admissible etc.) by suitable conditions on the bundle.
Such an exposition, in terms of numerable bundles, has been given by Dorp [3];
moreover fibre bundles are treated as a special case of more general (not necessarily
locally trivial) fibrations. The results of § 3 have been generalised in other directions
by GROTHENDIECK [1], FRENKEL [1], and HoLMaNN [2].

Let G be a topological group, E a principal bundle associated to a G-bundle 7
over a paracompact space Y, and {X, Y] the set of homotopy classes [see 4.1. b)] of
continuous maps X — Y. Consider the property:

(%) the map T :[X, Y HUX, G) given by T(f) = f*n is a natural equi-
valence. -

Then (*) holds for all paracompact spaces X if and only if E is contractible
{(Dowrp [3], 7.5). In this case Y is unique up to homotopy equivalence and called the
classifying space B(G) of G. Such spaces always exist (MiLNoRr [1], DoLp [3], 8.1).
E is called the universal principal bundle. In general the classifying space
has infinite dimension. For example

B(U(q)) = lim G (g, N; C) and B(O(*) = lim &k, N:R).

Suppose that E is arcwise connected and the homotopy groups m;(E) vanish
for 1 =< i = ». In this case proofs that (x) holds for X have been given by DoLp [3],
7.6, for X paracompact and locally the retract of a C W-complex of dimension < n;
CARTAN [1], Exp. VIII, for X locally compact, paracompact and of dimension < x;
and STEENROD [1], 19.4, for X a finite cell complex of dimension < 5. The principal
bundle E is then said to be n-universal. If G is a compact LIe group such bundles
always exist with a finite dimensional differentiable manifold as base space (STEEN-
®op [1], 19.6). For example the bundle U(g + N)/U(N) over B(g, N; C) is 2ZN-
universal (see 4.2) and the bundle O(k + N)O/(N) over &(k N;R) is (N —1)-
universal.

The basic theorems on WHITNEY classes and CHERN classes are contained in
SreENrOD [1] and HuseMoLLER [1]. The WHITNEY classes of a manifold can be
defined, without reference to any differentiable structure, by means of STEENROD
operations and are therefore topological invariants (TuoM [1]). The PONTRIAGIN
classes are not topological invariants (MiLwor [6]). However Novikov {1] has
recently proved that the rational PONTRJAGIN classes in H* (X, Q) are topological
invariants. Definitions of the rational PONTRjAGIN classes of a combinatorial (not
necessarily differentiable) manifold X have been given by TuoM [3] and RoHLIN-
Svarc [1]. For applications to algebraic geometry over more general fields it is
important to avoid homotopy theory and classifying spaces as was done to some
extent by the axiomatic approach in 4.2. The exposition by GROTERENDIECK [4]
also defines ¢; (&) in terms of ¢; (§) by means of splitting methods. A GL{(g, C)-
bundle £ determines, in the notation of 13.1 c), a fibre bundle 'R X —» X with fibre
Pq__x {C) and an exact sequence -

O>na>p*frf>0
of bundles over X, Since * @ £isa GL(g — 1, C)-bundle we have

0= @ =*@v*H =y + 3 ly*c(8) +- - +9* (8
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where y = —¢; (). Since y* is a monomorphism this formula (the ‘“formula of
Hirscr) may be taken as the definition of the ¢;(§) for £ > 1. The same method
applies to WHITNEY classes and to other characteristic classes which occur in
algebraic geometry (GROTHENDIECK [4]).

An excellent presentation of characteristic classes, which is formulated through-
out in terms of singular cohomology theory and includes the combinatorial
PONTRJAGIN classes has been given by MiLNOR {Lectures on characteristic classes.
Notes by J. STASHEFF. Princeton University 1957).



Chapter Two

The cobordism ring

In this chapter all manifolds are compact, orientable and differen-
tiable of class C*. Several results from the cobordism theory of THOM [2]
are stated. They are used to express the index of a manifold M** as a
polynomial in the PoNTRJAGIN classes of M%* (Theorem 8.2.2). This
result is needed in 19.5 to provide an essential step in the proof of the
RiemanN-Rocu theorem.

§ 5. PONTRJAGIN numbers

5.1. Let ¥* be an oriented compact differentiable manifold. The
value of an n-dimensional cohomology class x on the fundamental
cycle of V* is denoted by z[V"*]. If 4 is a (constant) additive group,
and x¢ Hn(V" A) then x[V"]1¢ A. This definition extends naturally
to give x[V*]€ A ® B whenever x¢ H*(V*, A} @ B for some additive
group B. The value of x[¥*] depends on x and on the orientation of V*;
if V* is connected it is determined by % up to sign.

Now let n = 4k be divisible by 4 and let ;€ HY(V%* Z) be the
PONTRJAGIN classes of V4* defined in 4.6. Every product p; ;... #,,
of weight k= j; + 7, + * -+ + 4, defines an integer p; p;, ..., [V4*].
If n(k) is the number of distinct partitions of %, there are m (k) such
integers; they are called the PONTRJAGIN numbers of V4*, Consider the
ring B of 1.1. The module B, has a basis consisting of products of weight
k. To each such basis element is associated a corresponding PONTRJAGIN
number of V4% and therefore ¥4* defines a module homomorphism
from B, to the coeflicient ring B under which a € B, maps to ¢ [V**] € B.
If the dimension # of V" is not divisible by 4 all PONTRJAGIN numbers
are defined to be zero.

5.2. Let ¥, W™ be two oriented manifolds, and let ¥* x W™ be the
product manifold oriented by the orientations on the ordered pair
V», Wm. Then

ROV X W™) = fR6(V7) © g8 (W™)

where f: V* XWm - V% and g: V" X W™ - W™ are projection maps
and gf (V") denotes the tangent G L (n, R)-bundle of V" (see 4.6). If the
PONTRJAGIN classes of ¥, Wm, ¥ x W are denoted by p,, #;, p; then
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by 4.5 the following equation holds modulo torsion in the cohomology
ring of V2 X W™:

Ly i+ =+ bt et U+h+ht+ ). (1)
By using an indeterminate z we can write (1) as a ““polynomial equation”
\ ZO,Z Py = fj‘; *(p) 2 Zo,': g* (#}) # mod torsion. 2

In addition_we have the_ equation -
(P () IV xWm] =z [V} - y[W™] @

forall x¢ H*(V*, Z) ® Band y€c H* (W™, Z) ® B.

If V4* W4t are oriented manifolds with dimension divisible by 4,
equations (2) and (3) can be used to calculate the PONTRJAGIN numbers
of V4 x W4T in terms of the PONTRJAGIN numbers of V4% and W*r.
The result is most easily expressed in terms of the m-sequences of § 1.

Lemma 5.21. Lat {K;i(py, ..., p;)} be an m-sequence (K;CB; as
in 1.2). Then :

Ky [V X W] = K, [V**] - K, [W2].

Proof: Equation (2) and 1.2, (3) and (4), imply (mod torsion)
k+r

k r
EE o #) 7= Sl B 2 5 KB ) 7

i=0 =
Equating coefficients of 2*+* gives

Kyie(Bys o oo B84 n) = *(Balbrs - - 24) - 8 (K, {1, - - 21) -
The result now follows from (3).

Definition: If {K;{($;, ..., $;)} is an m-sequence let K(V%F¥)
= K, [V4*]. If » is not divisible by 4 let K(V*) = 0. Then K(V*) is
called the K-genus of the oriented manifold V.

By (2) and (3), the PONTRJAGIN numbers of ¥* x W™ vanish unless
both 7 and m are divisible by 4. Therefore Lemma 5.2.1 can be restated as

Lemma 5.2.2. The K-genus is multiplicative:

KV X Wm) = (V") - K(Wm) .

Consider in particular the m-sequences {L;} and {4,} defined in 1.5
and 1.6. The L-genus and the A-genus of V" are rational numbers which
are denoted by L (V") and 4 (V7).

Remark: We will show (Theorem 8.2.2) that the L-genus of V*#
is equal to the “index” of V** and hence that L{V*¥) is an integer.
It can also be proved that 4 (V4¥) is an integer. These integrality proper-
ties are highly non-trivial: look at the denominators which occur in the
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definitions of L, and A4, in 1.5 and 1.6! The integrality of L implies
that for every manifold V4* certain integral linear combinations (with
coprime coefficients) of PONTRJAGIN numbers are divisible by the
integer (L) defined in 1.5.2. As a consequence, there are conditions
which a set of z (%) integers must satisfy in order to occur as the set of
PONTRJAGIN numbers of a manifold V4%,

§ 6. The ring @ ® Q
6.1. If V», W are oriented manifolds of the same dimension, define
the sum V* 4 W* to be the disjoint union of ¥ and W=». The sum is
oriented in a natural way, because each connected component is oriented,
either by the orientation of ¥ or by that of W*. There is also an oriented
manifold —V" defined by reversing the orientation of ¥* For each
partition (4, 7a, . . ., J,) of 2 we have

i Diy - D5, (VAR + WAR = by Dy, oo 55, (VAR + B4, 85, - - - 55, [WH]. (1)

Since PONTRJAGIN classes are independent of orientation (4.6),

Pi by PR [V = —py b5, . - 05, [VAH]. (2)

It follows that the K-genus defined by an m-sequence {K;(p,, ..., #;)}

satisfies
KV + W™y = K(V*) + K(W®) (1%
K(-V")=—-K(™). (2%

6.2. We now introduce an equivalence relation between #-dimensional
oriented manifolds:

V' ~ W*if and only if each PONTRJAGIN number of V* is equal to the
corresponding PONTRJAGIN number of W=. (Note that, if 5 5= 0 modulo 4,
there is only one equivalence class, since by definition all PONTRJAGIN
numbers vanish.)

By 6.1 the equivalence relation ~ is compatible with the operations
+, —, and the equivalence classes form an additive group & If n== 0
modulo 4 then * — 0. Let £ be the direct sum of all the groups & so

that each element a¢ £ is uniquely expressed in the form a = Y a,
”n =10

with a, € {* and a,, = 0 for » sufficiently large. Then
F= 3= 3y, 3)
%=0 k=@

By 5.2 the equivalence relation ~ is compatible with cartesian
product. This defines a product on & for which

Gn O ¢ Smam 4
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The direct sum decomposition (3) defines a grading on £ and we have
Lemma 6.2.1. 3 is a graded commutative torsion free ring.
6.3. Recall that the total PoNTRJAGIN class of V4* may be written,
using an indeterminate z as in 4.4, in the form
k

Lhprz+pe2+ -+ pp2b= I (1+ B;2). (5)

i=1
We then define the integer s(V4¥) for an oriented manifold V4* by the
formula

s(V4R) = (B + Bz + - -+ + Bi) [V*H].

Definition: A sequence {V**} (k= 0, 1,2,. . .) of oriented manifolds
is a basts sequence if s(V4%) == 0 for all %.

Theorem 6.3.1. Let {V4%} be a basis sequence of oriented manifolds
and let B be a ring containing the ring of vational numbers. Then to each
sequence a, of elements of B there corresponds one and only one m-sequence
{K;(py, - - ., 23)} with coefficients in B for which K (V*F) = a,.

Proof: The m-sequences are in one-one correspondence (see 1.2)
with power series Q(2) = 1 + b,z + by 2% + + - - with coefficients in B.
Therefore it is sufficient to show that there is exactly one power series
Q(2) such that, for each V** in the sequence with PONTRJAGIN classes
written in the form (5),

B
a; = K; [V4*], where K, = coefficient of z*in J7 Q(B;2) .
i=1

This equation can be written
a; = s(V4%) b, + polynomial in by, by, . .., by—; of weight 2.  (6,)

The polynomial in {6,) depends only on V4% and has integer coefficients.
The coefficients b; can now be determined uniquely by induction.

Remark: The proof shows conversely that, if {V4*} is a sequence
of oriented manifolds for which the conclusion of 6.3.1 holds, then {V4%}
is a basis sequence.

Theorem 6.3.2. The 2k-dimensional complex projective spaces Py (C)
form a basis sequence, because s(Py (C)) = 2k + 1.

Proof: Let A¢ H3(P,;(C), Z) be a generator. By 4.10.2 the PonTr-
JAGIN class of Py,(C) is (1 + A#?)2#+L The m-sequence of the power
series 1 4 2* defines a “genus” (5.2) which for V** has the value s(V2%)
and which clearly takes the value 2% + 1 on Py, (C).

6.4. In this section we determine the structure of the ring 3@ Q.
Every oriented manifold V4¥ determines an element (V**) of ** @ Q.
The definition of tensor product implies that every element of e Q

can be written in the form % (V4* where m is an integer. The PoNTr-
JAGIN numbers, the K-genus, and the integer s(V*4¥) are all defined in a
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natural way for elements of J ® Q. (In the case of the K-genus it is
necessary to assume that the coefficient ring B contains the ring of
rational numbers.) The PONTRJAGIN numbers of an element of 4*@ Q
are in general non-integral rational numbers. Two elements of J¢*g @
are equal if and only if their corresponding PONTRJAGIN numbers are
equal. :

Theorem 6.4.1. Let {V**} be a basis sequence of oriented manifolds.
For each partition (§) = (1. fa, - - - Jr) Of &, lek

Vip =V x Vi - x V4,
Then every element o (8% @ Q can be represented umiquely as a sum

a=Yroy(Vy), r»€Q @

over all partitions () of k. Moreover, to each system a; of rational numbers
there corresponds an element o€ {14* @ Q whose PONTRJAGIN numbers
satisfy py [a] = ag)- '

Proof: By elementary facts on linear simultaneous equations it is
sufficient to prove that a sum 3 7 (V) over all partitions (§) of % is
zero if and only if ry = 0 for each (7). Suppose that )] r() (Viy) = 0.
Let ¢y, 45, 95, - . . be a sequence of indeterminates. By 6.3.1 we can find
for each integer £ = 0 an m-sequence which takes the value ¢} on V4%
This implies that

%’ 6 ¢n =0, @)

where ¢(; denotes the product ¢;,¢;,...4; for ()= (4. Ja -- - F)-
Since the g(; are pairwise distinct, (8) implies that each r(; vanishes
(VANDERMONDE determinaunt). Q. E. D.
We also prove the following complement to Theorem 6.4.1.
Theorem 6.4.2. Let {V4} be an arbitrary sequence of manifolds.
Then 1) the relation a = ] vy (Vig), 7(n € Q, implies

s(@) = ry s(V4¥) (7*)

and I1) if, for all k, every element a € (4% ® Q can be represented as a sum
=314 (Vi) 7 € Q. then {V*4%} is a basis sequence.

Proof of I): Let {K,} be the m-sequence of the power series 1 + 2%
This m-sequence takes the value s(x) on elements «¢ 4% @ Q and the
value 0 on elements of 47 ® Q with 1 < § < k. This implies (7*).

Proof of II): Suppose that, for some %, s(V*?) = 0. Then, by I},
s(a) = 0 for all a€ 4*@ Q. But s(Py,(€)) = 2% + 1 by 6.3.2. Contra-
diction.

An immediate corollary to 6.3.2 and 6.4.1 is

Theorem 6.4.3. The graded ring {3 ® Q is isomorphic to the graded
ring Qlz,, 25, . ..] of polynomials in indeterminates z, with rational coef-
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ficienis. The group {4* @ Q is mapped onto the group of products of weight k.
Amy sequence of elements a,€ G4 @ Q with s(a) =0 (i=1, 2, ...)
defines by a; — z; an isomorphism of 3 ® Q on to Q[z, 2, . . .1, and every
isomorphism of 3 ® Q on 1o Qlz, 2, ...] can be obtained in this way.

Remark: Theorem 6.4.1 implies in particular that to each system of
integers a¢;, where () runs through all partitions (jy, ..., 7,) of &, there
corresponds a positive integer N, which depends only on %, such that
the system of integers N, - ay) occurs as the system of PONTRJAGIN
numbers of an oriented manifold V4*. We have already noted in 5.2
that not every system a; occurs in this way. This suggests the question:
what is the smallest positive integer N, for which every system N, - a(y
with a(; integral occurs as the system of PONTRJAGIN numbers of a V4%?
It follows from work of MILNOR [3] that in fact N, is equal to the deno-
minator g (L) of the polynomial L, (see Lemma 1.5.2).

6.5. In this section we consider homomorphisms from the ring 3 ® Q
to the ring Q of rational numbers. Let {K;(#,, . . ., $;)} be an m-sequence
with rational coefficients, and let K (V") be the corresponding K-genus
of an oriented manifold ¥*. The K-genus K(a) is defined for any
a¢ O®Q and 522 and 6.1 (1*), (2*) imply that there is a homomor-
phism & ® Q - Q defined by & — K ().

Conversely, any homomorphism 4: 3 ® Q — Q arises in this way.
Let h(V**) be the values of # on a basis sequence {V**}. By 6.3.1 there
is a unique m-sequence {K,} with K (V*¥) = h(V%¥). The elements (V*¥)
generate the ring £J ® 0, and therefore K («) = () for every «€ @ ® Q.
This proves

Theorem 6.5.1. The homomorphisms 2@ Q->Q are in one-one
correspondence with the m-sequences {K;(py, . . ., p;)} with yational coef-
ficients, and are therefore also in one-one correspondence with formal power
series with rational coefficients starting with 1.

§ 7. The cobordism ring 2

In §6 we formed a ring from the set of all oriented manifolds by
introducing an equivalence relation ~ compatible with the operations +,
—, X. This equivalence relation is very artificial, and the results of § 6
consist mostly of formal algebra. The only geometrical fact used in § 6
is the existence of a basis sequence of oriented manifolds (Theorem 6.3.2).
We now need a deep result from the cobordism theory of Trom which
states that the equivalence relation ~ has a direct geometrical signifi-
cance.

7.1. Recall that the definition of oriented differentiable manifold (2.5)

can be extended to include oriented differentiable manifolds with
boundary. If X*+! is a compact oriented differentiable manifold with
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boundary 8 X»+1, then 8 X*t! is a compact manifold with an orientation
and differentiable structure induced from that of X»+1,

Definition: An oriented differentiable manifold V" bounds if there
exists a compact oriented differentiable manifold X' with oriented
boundary X"t = V% Two manifolds V», W=* are cobordant if
V» 4 (—W*) bounds.

The relation ¥* is cobordant to W®, V® ~ W", is an equivalence
relation compatible with the operations +, —, X defined in §6.1. The
equivalence classes of oriented #-dimensional manifolds form an additive
group " whose zero element is the class of manifolds which bound. As
in 6.2 we can define the direct sum

Q- Yo,
%=0

In this case
POncQvim oand o f= (— 1" g-a for a€ O, S (1)

and therefore £ is a graded anti-commutative ring, called the cobordism
ring. It is not necessary, for the present application, to know the precise
structure of £2. The original results of THOM are sufficient, and are quoted
in the next section.

7.2. We wish to construct an isomorphism Q ® @ -~ 2 ® Q between
the cobordism ring “modulo torsion” and the ring £ ® Q defined in §6.
The first step is contained in the following theorem of PONTRJAGIN [2].

Theorem 7.2.1. If V* bounds then all the PONTRJAGIN numbers of V*
are zero.

Proof: The PONTR]JAGIN numbers of V* are by definition zero unless
7 = 0 modulo 4. Suppose that V** is the oriented boundary of X4*+1,
and that j: V4% - X4*¥1 js the embedding. Let p,€ H4(X4*+1 Z) be
the PoNTRJAGIN classes of the tangent bundle gf (X4*+1) of X4¥+1,
Note that this bundle is also defined over points of V4*; in fact, if 1
denotes the trivial line bundle,

FROXMY) =1 o 20(V1¥)

where g0 (V**) is the tangent bundle of V4. By 4.5 I1I) the PONTRJAGIN
classes of V** are j* $, and every PONTRJAGIN number of V4* is the
value of a 4k-dimensional cocycle of Xt*+1 on the cycle V4% But V4
bounds and therefore every PONTRJAGIN number of V4* is zero. Q. E. D.

The theorem of PONTRJAGIN states that the equivalence relation
~ of 7.1 implies the equivalence relation ~ of 6.2. Therefore there is a
ring epimorphism 2 -» £ which induces a ring epimorphism

9p:200-009Q. 2
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The central result of THoM, on which all subsequent work on the co-
bordism ring is based, is contained in the following theorem.

Theorem 7.2.2. (TroM [2]) The groups 2% are finite for 1 == 0 modulo
4. The group (1* is the direct sum of 7 (k) (= number of distinct partitions
of k) groups Z and a finite group.

We are not able to give the proof of this theorem here, but make the
following remarks. TroM’s proof divides into two parts

I) Construction of a complex M (SO (%)) and an isomorphism between
the group £* and the homotopy group m,..(M(S0 (%)), i < &.

II) Calculation of m 4 ;(M(S0 (%)) modulo finite groups by use of the
C-theory of SERRE.

The proofs in I) use isotopy and deformation arguments. Let B(SO (%))
be the classifying space of the group SO (%) (see the bibliographical note
to Chapter One). Associated to the universal $O (%)-bundle over B(SO (k))
there is a bundle with fibre D¥, the k-dimensional disc in R* defined by

k
{(xl, .ow%); X2 #? < 1, and bundle space 4 (SO(k)). Let M (SO(k)

=1
be the complex obtained by identifying the boundary of A (SO (%)) to a
point. The homomorphism .Q‘—>:rz,~+k(M (SO(k))) can now be defined.
Let V* be an oriented differentiable manifold. Since 7 < % there is an
embedding of V* in the (¢ + %)-dimensional sphere §it*, An isotopy
argument shows that two such embeddings have isomorphic normal
bundles, and hence that there is a map f: N - A (S0 (%)) of a tubular
neighbourhood N of V* in §*+* which maps V? into the zero section of
A (SO (%)) and which maps the boundary 0N of N into the boundary of
A(SO{®)). Now consider the composite map

S+ N A(SO(R)

S+* N~ 3N  34(SO()

This map defines an element of ;. ,(M (SO (%))) which actually depends
only on the cobordism class of V*. Deformation arguments are now used
to show that the homomorphism £* - 7,4, (M (SO(k))), ¢ <%, is an
isomorphism.

The proofs in IT) depend on a computation of the cohomology of
M (SO(k)) and use properties of EILENBERG-MACLANE complexes and the
STEENROD algebra.

Explicit results for ¢ =< 7 are:

Pz NP0, H=Z P=2Z, P=0"=0.

Theorem 7.2.2, together with the formal algebra of §6, implies
immediately

Theorem 7.2.3 (THoM [2]). The homomorphism ¢:20 Q@ Q
s an isomorphism, and the structure of the ring 2 @ Q is therefore deler-

Si+k

— M(SO(R).
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mined by Theorem 6.4.3. Two oriented mansfolds VA* and W4* have the same
PONTRJAGIN numbers if and only if some integral mulliple of VA» 4 (— W)
bounds.

We can also state Theorem 6.5.1 for the cobordism ring. This is
important for subsequent applications and can be reformulated as
follows:

7.3. Let ¢ be a function whick associates a rational number p(V*)
to each compact oriented differentiable manifold V*, which is not ideniically
zero and which has the properiies:

D) p(¥+ W) = (V™) + (W), p(=V") = —p(V")
I0) p(V* X W) = p(V") - p (W)
111} if V* bounds then (V") = 0.
Then w{V") is zero unless # is divisible by 4, and there is one and only

one m-sequence {K,;(Py, . . ., 9;)} with rational coefficients such that, for all
oriented manifolds V4¥, ‘

v (V%) = Ky (ps, - - - £a) [V*¥],

that is, p coincides with the K-genus associated to the m-sequence {K,}.

By § 1 the m-sequence {K;} corresponds to a uniquely determined
power series Q(z) =1+ b, z+ by 22+ - -+ . The coefficients b, of this
power series can be calculated inductively using a basis sequence of
oriented manifolds. For instance, the sequence of 2k-dimensional
complex projective spaces Py,(C) can be chosen as a basis sequence
(Theorem 6.3.2). )

Remark: Property II) is implied by I), III) and the following
special case I1¥*) of II):

I1*) There is a basis sequence {V**} such that, for each product of
mansfolds V43,

P(VE X VX - oo X V) = (V) (V) - - - (V)

§ 8. The index of a 4k-dimensional manifold

8.1. Let Q(x, ¥) be a real valued symmetric bilinear form on a finite
dimensional real vector space. If % is the number of positive eigenvalues
of Q(x, y), and p~ is the number of negative eigenvalues, the difference
p* — p7 is called the index of Q(x, ¥).

8.2. It is well known that there is a symmetric bilinear form associated
to every compact oriented 4 k-dimensional manifold: if x, yc H**(M**, R),
the cup product xy defines a real number x y[M**] as in 5.1. The
bilinear form x y [M**] is defined on the real vector space H3*(M** R)
and is a topological invariant of the oriented manifold M**. The index
of this form is called the index of M** and denoted by 1(M*#). The index
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of a manifold whose dimension is not divisible by 4 is defined to be zero.
We now prove that the function 7 satisfies the properties set out in 7.3.

Theorem 82.1.

Iy z(Vr+ W) =2(V*) + (W), t(—V*) = —7(V7)
I z(Vrx W™ =1 (V™) - ¢ (W™)

IIT) if V* bounds then =(V") = 0.

Proof: I) follows immediately from the definitions of V* - W=
and —V*.

II) is known (THOM [2]) but is given there without proof. We there-
fore prove II) in full. Let M4* = V» x Wm. Then

2k
H**(M** R) =~ Y H*(V* R) ® H**~*(W™ R). (1
s=0

Elements x, y € H2*{M*% R) are said to be orthogonal if x y [M*4*] = 0.
Introduce bases {vj} for H*(V* R) and {w}} for H*(W™, R) such that

vf o} S [Vn] = &, for s =|=%and wh W [Wm] = §,; for ¢ + —’;— .

Now consider the group 4 =H?*(V*» R)® H®* (W™ R), taking
A = 0if # and m are odd. Then 4 is orthogonal to the subgroup B of
H2**(M** R), which consists of all elements of the summation (1) in
which no elements of 4 occur. As a basis for the group B we can take

{ri® wi*, (O <s<mns #%) Now

(v ® ) (vF ® w2 ) (M4 = Llifs+s' =ni=4,j=74.
= 0 otherwise.
It follows that, with respect to this basis, the restriction of the bilinear
form x y[M**] to B is represented by a matrix with blocks + ((1) (1))

down the diagonal and zero elsewhere. Therefore the index of the restric-
tion of x y [M**] to B is 0. Since 4 and B are orthogonal, 7 (M*¥) is equal
to the index 7(4) of the restriction of the bilinear form x y [M*%] to A.
There are now two cases to consider. If » and m are not divisible by 4
then v(4) = 0. If # and m are divisible by 4 then 7(4) = z (V") - ¢(W™).
This completes the proof of II). A more detailed proof can be found in
CHERN-HIRZEBRUCH-SERRE [1].

11T} is proved by Troum [1]. The proof can be summarised briefly
as follows. Suppose that V** is the oriented boundary of X**+! and
that j: V4% —» X*¥1 s the embedding. THoM considers the diagram of
homomorphisms

Ha* (Xlk+1’ R) L HSh(VA k’ R) > HAR+1 (X4k+1 mod V4k' R)

l s |

Hypaa (X4 mod V4%, R) > Hyp (V44 B) T H,, (X1, R)
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Here the rows are part of exact homology and cohomology sequences,
and the vertical arrows are isomorphisms, defined by PoINCARE duality
for V4* and X**+1, which make the squares commutative.

Let A%* be the image of 4* in H**(V*% R) and let K,; be the kernel
of §, in H,, (V4* R). Then A2* is dual to H,, (V4% R}/K,, under the
duality between H2**(V4% R) and H,,(V** R). On the other hand, the
diagram implies that, for x ¢ H2* (V4% R),

2xC A = i(x) € K,y .
Therefore, if by, = dim H, (V4% R) is the 24-th BETTI number of V,

dimA?* = dim K, = by — dim K,
and

. 1
dim A%* = - by . @

If x = j* y ¢ A%*, and v is the fundamental cycle of V4% then x? [V4¥]
= (* 98 [v] = (¥?) [J« 2] = 0. Therefore the cone {x¢ H**{V4* R);
%3 {V4*] = 0} contains the linear subspace A%* of dimension %b, » It
follows that the bilinear form x y [V'4*] has p* = $ (8.1) and hence that
(V4% = 0. This proves III} and completes the proof of Theorem 8.2.1.

Theorem 7.2.3 and 7.3 now imply that the index 7 can be identified
with the K-genus of an m-sequence {K;}. For complex projective space
7(P33(C)) = 1 for all k. The only m-sequence which takes the value 1
on each Py, (€) is the sequence {L;(p,, . . ., $;}} (Lemma 1.5.1 and Theorem
4.10.2).

Theorem 8.2.2. The index ©(M**¥) of a compact oriented differentiable
manifold M** can be represented as a linear combination of PONTRJAGIN

nmumbers. If {L;} is the m-sequence corresponding to the power series tanV;_ "

then T(M*¥) = Ly (py, . . ., P2) [M2*¥]. ( A list of the first few polynomials
L,is given in 1.5.) )

Remark: By the remark at the end of 7.3 it is possible to prove
property II) of 8.2.1 by using III) and the fact that the index of any
product P,; (€) X « - - X Py, (C) is 1.

§ 9. The virtual index

9.1. Let M™ be a compact oriented differentiable manifold and let
j: V"% M® be the embedding of an oriented submanifold V% of
M=, If gB(V™-*), g9 (M™) are the tangent bundles of V*—% M* respec-
tively and » is the normal bundle of V»-* in M" then, by 4.8,

TROM™) =0 (VN ar.
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Let p(V7—¥), p(M") be the (total) PONTRJAGIN classes of V—F, Mn,
Then by 4.5 II), III) we have

7* P (M) = p (V™ # p(v) modulo torsion. (1)

Note that, in a commutative ring of cohomology classes whose odd
dimensional components vanish, every element whose 0-dimensional
component is 1 has a uniquely determined inverse. This means that, if
the PONTRJAGIN classes of M™ and of the normal bundle » of V% in M*»
are known, the PONTRJAGIN classes of V#~* can be calculated. For
instance, if 2 = 1, since V*—! and M" are both oriented, » is trivial and
$:(V*Y) = ¢* H,(M") (compare the proof of Theorem 7.2.1).

9.2. For the applications the case k=2 is particularly important.
Letj: V-2 M beasin 9.1 and let v € H2(M*, Z) be the cohomology
class dual to the homology class represented by ¥»—2 In this case,
by Theorem 4.8.1,

() =7*(1+v%)

(V%) =7*[(1 + o)1 p(M")] .
Since {L;(py, ..., P;)} is the m-sequence which corresponds to the

and therefore

power series F}jyz: the definition of m-sequences in 1.2 implies that

oo . t u}l oo
B Ly, 7o) = i [ B2 S Ly 0000
@

We are now in a position to obtain a formula for v(V*-2). We need
the fact (PoINCARE duality) that if x€ H*—2(M», 4)® B, with 4, B
additive groups then

@) V2 = v x[M"]. 3

Theorem 8.2.2, together with (2) and (3), now gives

2y = [tanho B L(p 00, g0 @

In (4) we use the abbreviation »* for the first time. It is used con-

stantly from now on and is defined by the rule:

Let u™ Bbe the n-dimensional component of an element u€ 3 H*(M",
k=0

A) ® B. Definex™[u] = v [M*»]. (5)

If # == 2 modulo 4 formula (4) is trivial, since the left hand side is

then zero by definition, while the right hand side is got by evaluating the

n-dimensional component %™ of an expression # which contains no

terms of dimension #, so that x*[#] = 0. In the first few non-trivial



88 Chapter II. The cobordism ring

cases (4) gives:
n=2 (V% =19[M?]

n—6, (V=g (—0*+pyv) M
7= 10, T(V8) = o (60 — 5, 1% + (Tpy — 1) 1) [M™].

9.3. Let M" be a compact oriented differentiable manifold as in 9.1
and let v;, v,, . . ., v, be elements of the group H*(M*, Z). It will be as-
sumed that v, represents a (compact oriented differentiable) submanifold
Vn—2 of M", that the restriction of v, to ¥»~3 represents a submanifold
V=t of V72 ..., and finally that the restriction of v, to V»-23¢-1
represents a submanifold V"3 of V»—3(—1, In this case formula (3)
of 9.2 can be generalised: if x¢ H#—27(M", A) @ B with A, B additive
groups and j: V37 » M7 is the embedding then

FE V¥ =v0p. . 02 [M"]. (3)

Successive applications of (2) and (3') give the following generalisation
of (4):

T(Vr-21) = 3 [’canhv1 tanhwv, ... tanhv,f Li(p(M™),..., p,(M”))] .
i=0

4)
According to TroM [2], every 2-dimensional integral cohomology class
of a compact oriented differentiable manifold M™ can be represented
by a submanifold ¥"~* of M*™. Successive applications of this theorem
show that the above assumptions are justified, so that (4') holds. As a
corollary we see that 7(V"-2r) depends only on the (unordered) set of
cohomology classes vy, v, . . ., 2, We denote the right hand side of (4')
by (v, . . ., 9,), the virtual index of the set (v,, . . ., v,). The theorem of
TrOM just quoted then implies that every virtual index occurs as the
index of a submanifold of M* and is therefore an integer.

We recall that tanh satisfies the functional equation tanh (s + v)
= tanh(#) + tanh (v} — tanh (%) tanh(v) tanh(s + ) and deduce from
():

Theorem 9.3.1. The virtual index is a function which associates
an integer T{vy, vy, ..., v,) fo each {(unordered) r-ple (v, v4 ..., v,) of
2-dimensional integral cohomology classes of a compact oriented differentiable
manifold M™. The function v is zero if n — 27 == 0 modulo 4, if 2r > n,
or if one of the classes v, is zero. It satisfies the functional equation

T{vy .o, Uy, 4+ ) (6)
=ty .. VT, .. 0,0 — (v, . .Y, %, 0, %+ V).
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In particular, if n = 4k + 2,
T+ v)=tW) +7{0) — (% v,41+v). 6"
9.4. Consider, as an example for Theorem 9.3.1, the product
MR —F X FyX *++ X Fapiq

of 2% + 1 compact oriented surfaces F;. Let x,€ H?(M4%+3, Z) be the
cohomology class which represents the submanifold

FIX F,;X"'XFiX "'XF2k+1

of M4*+2 (where F'; means that the factor F is omitted). We can calculate
T{ay % + a3 %3 + * * * + @341 %ap+1), Where the g, are integers, by using
(4). Since all the PONTRJAGIN classes of M**+2 except for p, = 1 are zero,

T(@ % + Gy Xy + * ¢ -+ Bagis Xar+)

=x**+2[tanh (a; % + * * - + Gap+1 Xar+)]
tanh@®*+(0)
TR+ l)f W@ % + 0 0+ Gapr Fapp+1) 2P

=a; 8. ..0554, tanh@*+D(0) |

This proves that, 5f V% s a compact oriented differentiable manifold
embedded in the product of (2k + 1) copies of an oriented 2-sphere S? which
has intersection number 1 with each factor, then T (V) is the value at 0 of the
(2% + 1)th derivative of tanh (x). By the theorem of THOM quoted in 9.3,
such manifolds exist for all %.

Bibliographical note

The results on cobordism used in this chapter are all due to Tuom [1], [2].
Actually the differentiability assumptions of THow are slightly different, but it can
be shown that all his results (in particular Theorem 7.2.2) remain true when
“differentiable” is taken to mean *C%-differentiable”’. A complete exposition of
cobordism theory from this point of view has been given in lectures of MILNOR
(Differential Topology, mimeographed notes, Princeton 1958).

(o]
TroM also defined the non-oriented cobordism ring N = X A*. Here A" is
8=20

the group of compact non-oriented differentiable manifolds of dimension # under
the equivalence relation: ¥* ~, W= if V* 4+ W* bounds a compact non-oriented
manifold X**1. The STIEFEL-WHITNEY classes w,¢ HY(V*, Z,) define STIEFEL-
WHITNEY numbers @y, ;, . . . @y, [V*]€ Z,. Toou proved that V* ~, W* if and
only if V*, W* have the same STIEFEL-WHITNEY numbers, that 91 is a polynomial
ring Z,[%,, %,, ¥, %, %3, %, - - -] Over Z, with one generator x; for each { =27 — 1,
and that the real projective spaces P,, (R) give the even dimensional generators x,,,
(TaoM [2]). An explicit construction for the other generators of 9 was given by
Dotrp [1] (see also MiLNOR [7]).

The complete structure of the cobordism ring 2, and of the graded ring Q
defined in 6.2, is now known. MILNOR [3] proved the following more precise version
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of Theorem 6.4.3: Q is isomorphic to the graded ring Z[z, 2, .. .], and an iso-
morphism Z{z, z,, . ..] >0 is given by associating to 2z a compact oriented
differentiable manifold ¥*f such that

s{(V4) = £+ 1 if 24 4 1is not a prime power,

s(V*) = 4 g if 2i + 1is a power of the prime g.
The cobordism ring £2** can be represented as a direct sum

O — ﬁ'u@ T

where T7 is the group of elements of finite order in Q¥ (and 79 = Q¥ if j == 0 mod 4).
MILNOR [3] proved that 77 has no elements of odd order and gave explicit generators
for (A%, Subsequently WaLL [1] proved that 77contains no elements of order 4 and
found a complete set of generators for Q. His results show that V* ~ W* if and
only if ¥*, W* have the same PONTRJAGIN and STIEFEL-WHITNEY numbers. For a
survey of generalisations of the cobordism ring and further developments see ATIVAH
[4], ConnERr-FLOYD [1], MiLNOR [4] and WaLL [2].

The index theorem (8.2.2) gives corollaries on the behaviour of the index of an
oriented differentiable manifold V. For example, let f: W — V be a differentiable
covering map of degree n. Then p;(W) = f* $;(V) and the index theorem implies
that v (W) = n v (V). Does this result remain true if V, W are (non-differentiable)
topological manifolds? Let E, B, F be compact connected oriented manifolds (not
necessarily differentiable). Let E — B be a fibre bundle with typical fibre F for
which the fundamental group =, {B)} acts trivially on the cohomology ring H* (F, R).
Then there is a direct topological proof that 7(E) = t(B) t{(F) (CHERN-HIRZE-
BRUCH-SERRE [1]). Examples of Ativam [12] show that for a general fibre bundle
©(E)+7(B) 7(F).

The index theorem implies that the L-genus of an oriented differentiable
manifold M depends only on the oriented homotopy type of M. According to Kaun [1]
the L-genus is, up to a rational multiple, the only rational linear combination of
PONTRIAGIN numbers that is an oriented homotopy type invariant. Far reaching
generalizations of the index theorem (applying to differential operators and to
finite groups acting on manifolds) have been obtained by ATivam and SINGER.
These are discussed in the appendix (§ 25).
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The Topp genus

In this chapter M,, will be compact, differentiable of class C* and,
in addition, almost complex. The tangent GL(n, C)-bundle of M,
(see 4.6) is denoted by 0 (M,)). We investigate the “genus’’ associated with
the m-sequence {T;(c,, . . ., ¢;)} of 1.7 as well as the “generalised genus”
associated with the m-sequence {T;(y;¢,, . . ., ¢;)} of 1L.8.

§ 10. Definition of the Topp genus

10.1. Let X be an admissible space (see 4.2) and let & be a continuous
GL (g, C)-bundle over X with CHERN classes ¢; ¢ H2#(X, Z). The (total)
TopD class of £ is defined by

td(f)ig Ty - - ) )

where {T;(c;, ..., c;)} is the m-sequence of 1.7. If & is a continuous
GL(¢', C)-bundle over X then, by 1.2, the ToDD class satisfies

td(f @ &) =td(f) td(&) . @

If g=1and ¢, (&) = d € H*{X, Z) then
da
tdf) =y—p= -
Note that td(&) is a series starting with 1 and therefore, since X is
finite dimensional, the inverse (td(£))~? exists. The total Topp class
can also be defined by means of a formal factorisation: if

q q LA ¥
Y o= [ (L+y;%) then td(&) = IT ;

A 1—e?s
§=0 i=1 i=1
In a similar way the (total) CEERN character of & is defined by
q
ch() = 3 e%. 3
i=1

By 4.4.3 the CHERN character satisfies
ch(f® &) = ch(£) + ch(&),
ch(¢® &) =ch(§) ch(¥).
If g=1and ¢;{§) = d € H}(X, Z) then ch(§) = ¢

“
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In general ch(&) = ¢ + 3 ch, (&) where
k=1

chy(d) =2 cHMX, 2)9 Q and s,— 3t (k2 1).
=1

The symmetric functions s; and ¢; are related bz NewroN formujde

[compare 1.4 (10)] £ -C A+ + (0¥ e, 2 + 0 k=D,

Sp— Gy Syt o ()P k=0 (R=1).

The CHERN character is related to the TopD class td by

Theorem 10.1.1. Let ¢ be a continuous GL(g, C)-bundle over an
admissible space X. Then

2 (-1 char £ = ()M @)
Proof: If zq' ¢;(8) & = ﬁ (1 + y; %) then by 4.4.3
f=0 i=1

chir g% = % 8——(‘)‘;‘1; )

where the sum is over all combinations 4;, ..., 4, with1 £ 4, <--- <
< %, < ¢. Therefore

S (—1)rchar gt = IT (1~ )
r=0 i=1
! {—e¥

=(7'1"'7’¢)££II R

= (td () e (8) -

10.2. Let M, be an almost complex manifold (4.6). The almost com-
plex structure defines a particular orientation of M,,. If ¥ ¢ H*(M,) and
#@™ is the 2n-dimensional component of 4 we write x, (¥) = ¥®[M,].
Let ¢; ¢ H*(M,, Z) be the CHERN classes of 0(M,). Every product
€, ¢4 ...¢;, of weight n=35 +4,++--+j, defines an integer
5, Gy, - - - €4, [M,]. If m(n) is the number of distinct partitions of # there
are @ (n) such integers; they are called the CHERN numbers of M,,. For
example (Theorem 4.10.1) the CHERN number ¢, [M,] is precisely the
EuLER-POINCARE characteristic of M. Consider the ring®B = B¢y, ¢y, . . .]
of 1.1 {see also 1.3). As in 5.1, each element b ¢ B, determines an element
5[M,] € B.

The cartesian product ¥V, X W,, of two almost complex manifolds is
almost complex in a natural way: the tangent GL(n + m, C)-bundle
of the product is the WHITNEY sum f*(0(V,)) ® g*(6(W,,)) where
F:VaxWyu—>V, and g:V, x W,,—> W,, are projection maps. As in
5.2 we have
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Lemma 10.2.1. Let {K;(c,, .. ., ¢;)} be an m-seguence (K; €B;, as in
1.2, 1.3). Then
Kyt [VaX W] =K, [Va]* Kn (Wl -

K,[M,] is called the K-genus of M,. Now consider the m-sequences
{Tiley, - - e}y {Ts(yien -6}
defined in 1.7, 1.8 and associated to the power series

x N #(y + 1)
00 =T U =T—mo Ty %7

The rational number T,,[M,] is called the Topp genus (or T-genus) of
M, and written T (M,}. Thus

T (M n) =¥y [td(e (Mn))] .

By 1.8, T,(y;¢4, ..., ¢,) [M,] is a polynomial of degree » in ¥ with
rational coefficients. It can therefore be written in the form

T,(M,) =?§; To(M,) 5.

The polynomial T,(M,) is called the generalised Topb genus (or T,-
genus) of M,,. By definition, T(M,) = T°(M,) = T (M,).

Lemma 10.2.1 implies that T, (V,X W,)) = T,(V,) T,(W,) and in
particular that T(V,X W,,) = T(V,) T{W,,). By 1.8 (13) the rational
numbers T#(M,) satisfy the “duality formula”

T*(M,) = (—1)* T**(M,) .
By 1.8 (16), together with Theorem 8.2.2,

T_,(M,) =p§; (—1)? T2(M,) = 0, [M,] , (%)
T,(M,) =P§; ToM,)  =t(My). ©)

Thus T_, (M,,) is the EULER-POINCARE characteristic of M,, while T; (M,,)
is the index of M, [notice that the above “‘duality formula” shows that
T, (M,) = 0 for n odd].

10.3. The (total) CHERN class of the complex projective space P, (C)
is (1 + A,)*+* by Theorem 4.10.2. Lerama 1.7.1 and Lemma 1.8.1 there-
fore imply

Theorem 10.3.1. The T-genus is the only genus associated to an
m-sequence with rational coefficients which takes the value 1 on every
complex projective space P, (C). The T,-genus is the only one associated
lo an m-sequence with coefficients in Q[y] which takes the value 1 —y -

+5% =+ (~ 1)y on By(0):



94 Chapter II1. The Topp genus

11. The virtual generalised Topp genus
gen

11.1. Let V,_; be a (compact) almost complex submanifold of the
almost complex manifold M,, and §:V,,_; - M,, the embedding. By 4.9
there is a normal GL(%, C)-bundle » over V,_, such that j*6(M,,)
=0(V,_ ® v By 4.4.3,1II)

j* C(Mn) = C(Vn—k) C(‘V) .

Consider the special case k= 1. Theorem 4.8.1 gives c(y) =14 j%v
where v € H3(M,,; Z) is the cohomology class determined by the fun-
damental class of the oriented submanifold V,,_;. Therefore

P46 (Vay) + €a(Vag) + -+
=7*[(1 + ¢ (My) + ¢ (Mn) + - -7} (1 +2)71].
It is now possible to calculate the T'y-genus of V,,_;. This genus is

0

associated with the power series Q(y; %) = T;'_x)_ where
¥ty D g
R(y;X) = ex(y+1 +y (2)

R(1; %) =tanhx, R(—1;%) =x(1+ %)%, R{0;x)=1—¢*.
Then (1) implies

Pl AR MPIUAR S LLCCRSE LA ) I

and hence, as in 9.2,
T,(ys) = e [R(y; ) ET05 a4, (M»)] L@

In the case y = 1 formula (4) is {in view of 1.8 (16)] exactly 9.2 (4).

In the case y = — 1 it gives a formula for the EULER-POINCARE charac-
teristic E(Vy_y) = €41 (Vaa) [Vasl:
n—1
(—D* 1 E (Vo) = 2/ (=1 on~ (M) [M,]. ®)

§

Formula (5) can naturally be obtained directly from (1). In the case
y=0 we have

T (Va-r) = #a[(1 — =) ta(8(M))]. 6)

11.2. We now come to the definition of the virtual T,-genus. For
vy, ..., 0 € H3 (M, Z) let

Tyt o 92 = [R(y;va...R(y:v,) Z 10 cl(M,.),.-J]- @

Here the subscript M denotes the manifold in which the virtual genus is
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defined; in subsequent paragraphs this subscript will be omitted if it is
clear from the context which manifold is meant.

By 1.8, T,(vy, - .., 1) is 2 polynomial of degree » — 7 in y with
rational coefficients. T (v, . . ., 9,)ar = 0 for » > n because R(y;«x) is
divisible by . For r =, T,(v;, ..., v)y =09, ...v,[M,]. We call
Ty(vy, ..., vy the (virtual) T,-genus of the r-ple (v, ..., 7). It is
independent of the ordering »,, . .., v,. An unordered r-ple of elements
of H*(M,, Z) is also called a virtual almost complex (r — 7)-dimensional
submanifold of M,,. We write

Ty(oy - - v =P§) T*(vy, .., v)my? - (8a)
The rational number
T )y=Tolvr, .- s 0)ar=T%(2y, - . ., V)ms (8b)

is called the virtual Topp genus of the virtual submanifold (v, .. ., v,}.
The duality formula

T?(vy, .., 0)y= (=D TTP"#(v,...,0)y ©)

holds, and Formula 11.1 (8) implies immediately

Theorem 11.2.1. Let V,,_; be an almost complex submanifold of M,,
v € H¥(M,,, Z) the cohomology class determined by V,_, andj:V, > M,
the embedding. Let vy, . .., v, € HX(M,, Z). Then T,(j* vy ..., 7*v)v
=T, (v, v,, - . ., v,)u In particular

L(Vaa) =L(0)n -

11.3. The functional equation of the index [9.3 (6)] is a special case

of a functional equation satisfied by the virtual T,-genus. If a, y are
indeterminates and R (%) = —:—:—:—;—; then

R(u+v)=R(u)+R(v)+(y— 1) R(#) R(v) — yR(¥) R(v) R(x +v). (10)
The substitution & = 14 y then yields a functional equation for R (y; x).
Fory = 1 thisis the functional equation of tanhzx, for y = 0 the functional
equation of 1 —e % and for y= —1 the functional equation of

x{1 4+ x)~L. As a corollary we have
Theorem 11.3.1. The virtual T ,-genus satisfies the functional eguation

Ty(vy, .o 0t +v)=Tyvy, ... 0,9 + Tylvy, ..., 0, 0) +
F (- Ty(vy .00 4,0 —yT, (00, ..., v, 4,0, %+ )

where vy, . . ., v,, %, v are elements of H*(M,,, Z). In the special caser =0
the equation becomes

Ty+v)=T,(8) + Ty(0) — (y ~ 1) Ty(w,v) — 3Ty (s, v, 4 + v).
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For y = 1 this isnplies that the virtual index satisfies
Tto)=1u)+z(v)—T(H v,u4+v),
for y = O the virtual ToDD genus satisfies
Tw+v)=T(w)+ T — T(sv),
and for y = — 1 the virtual EULER-POINCARE characleristic satisfies
T ,+0)=T ) +T () — 2T (%, v) + Ty (%, v,%+7).

§ 12. The T-characteristic of a GL (g, C)-bundle

12.1. Let & be a continuous GL(g, C)-bundle over M,. Any dif-
ferentiable, or complex analytic, GL (g, C)-bundle over M, can also be
regarded as a continuous GL(g, C)-bundle so that the results of this
paragraph apply, in particular, to these cases. Let

o(M, =,-§’:, o c@=23 4, )

i=0
where ¢;, d; € H*(M,, Z) and ¢y =dg= 1.
The Topp class of §(M,) and the CHERN character of & (see 10.1)
are used to define the rational number

T (M n 5) = "n[Ch (S) td(e (Mn))] . (2)

T(M,, &) is called the Tcharacteristic of the GL (g, C)-bundle § over M,,.
In the special case where & is a C*-bundle with CHERN class 1+ d,
d ¢ H} (M, Z), equation (2) becomes

T (My, &) = xa[e* td(6(M.))] - @)

Now the C*-bundles over M, are in one-one correspondence with
elements 4 of H*(M,, Z) by 3.8 and Theorem 4.3.1. Therefore we may
write T (M, 4) for T(M,, &) in (3). The definitions imply

TM,d)=TM) - T(—d)y. (4)

If £is a GL(g, C)-bundle and &' is a GL(g’, C)-bundle over M, then
the first equation of 10.1 (4) gives

T(Mm E@ El) = T(Mm S) + T(Mm 5') . (5)

If £is a GL(g, C)-bundle over V,, and 5 is a GL(r, C)-bundle over
W,, then 10.1 (2) and 10.1 (4) give

T(VaX W, f*6) @ *m) = T (Ve ) T(Wa, %), (6)

where f and g are projection maps as in 5.2.
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12.2. In order to extend the results of 12.1 to apply to a T',-charac-
teristic T, (M, &) it is necessary to consider the dual tangent GL (%, C)-
bundle 0* = 6 (M,)* of M,,. Let i?(0*) be the p-th exterior product (3.6)
of G*. Consider the formal factorisations [see 12.1 {1)]

” ” q q
D= JT A +y:x) and 3 d;a= JJ (14 8;%).
i—o i=1 j=0 i=1

Then the CHERN classes of 0* are the elementary symmetric functions in
the —y; and, by 4.4.3, the CHERN classes of 1?(6*) are the elementary
symmetric functions in the formal roots —(y; + y;, + -+ i)
Then 1.8 (15) implies that

T(M,, 3#(6%) = T*(M,) . )

Now consider the tensor product 1# (6*) ® & We denote the rational
number T(M,,, 2#(0*) @ &) also by T?(M,, &) and define

T,00,, 8) = 5 T004,, &)y ®
Equations (2) and 10.1 (4) imply that
T#(M,, &) = #y[ch(§) ch(4*(6%) td(6(M.))] . )

A trivial generalisation of the argument used to prove 1.8 (15) gives

q n
L0 8 = [( Ze0)( En0ie )] 0

i=1 j=0
Notice that, if ¥ = —1, the number T_, (M, £) does not depend on the
CHERN classes of £ but only on the rank g of £. In this case T_,(M,, &)
= g E(M,) where E(M,) is the EULER-POINCARE characteristic of M,,.
Substituting-;— for v in (10) and multiplying both sides of the equa-

tion by (—)*, we can rewrite the right hand side of (10) as

and obtain, applying Theorem 4.4.3, the duality formula
(M, §) = ()" T, (M, §%) .

Therefore
T*(M,, &) = (— 1) T** (M, &%) (11)
and, in particular, when $ =0
T(Mm §) = (_’ l)n T(Mn: l"(e*) ® 5*) . (12)

In fact it is possible to deduce (11) from (12): replace & by § ® A# (0*)
in (12) and recall that, by Theorem 3.6.1, A*(6*) ® (¢ ® 42(6%))*
=& @ 1n(0%) ® I7(0) = £* ® 1"*(6%).
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The bundle 2*(6*) is a C*-bundle, and is called the canonical C*-
bundle over M,,. By Theorem 4.4.3 it has (total) CHERN class 1 — ¢, (M,,).

Let chg, (§) € H*(M,, Z) ® Q[y] be defined by the equation
chyy (8) = e@ 98 o oo o090

where the CHERN classes of & are the elementary symmetric functions
in é,, ..., 6, Then, as in 10.1 (4),

chey) (£ ® &) = chyy (£) + chgy (&) and che, (§ @ &) = chy (§) chi ().

These equations imply that

T,(M,, £ &) =T,(M,, &) + T,(M,, &) (13)
and
L(Vax W, (&) ® g*(m)) = T, (Va, &) T, Ww, ) - (14)

In equations (13) and (14) we use again without comment the notations
of equations (5) and (6) of 12.1.

12.3. Let £ be a GL(g, C)-bundle over M,. Ifv,, ..., v, are elements
of H*(M,, Z) then the virtual T ,-characteristic of & with respect to the
“virtual submanifold” (v,, ..., v,) can be defined by the following
generalisation of 11.2 (7):

T0n. ) Ea = [Chm @ [R50 3 Tlyies 1), .)] . (15)

As in 11.1, the subscript M will be dropped if it is clear which mani-
fold is meant. If & is the trivial GL(g, C)-bundle then T, (v, ..., v}, &)
=g T,(vy, . . ., v,). Naturally we write, when y =0,

Towy, - 00, &) =T(v,...,0,), 8

and call T(v,, . . ., v,|, &) the virtual T-characteristic. As a generalisation
of Theorem 11.2.1 we have

Theorem 12.3.1. Let V,,_, be an almost complex submanifold of M,
ve HX(M,, Z) the cohomology class determined by V,,_, and j:V, > M,
the embedding. Let vy, . . ., v, € HX(M,, Z) and lei £ be a GL(g, C)-bundle
over M. Then

L(* vy .- wf* 0. 7* v =T, (v, vy, .. ., v, E)e -
In particular
L(Varg* &) =T, (0], E)u -

The functional equation of Theorem 11.3.1 can also be extended
to apply to the virtual T-characteristic.
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Theorem 12.32. Let & be a GL(g, C)-bundle over M,. The virtual
T y-characteristic of & satisfies the functional equation
Ty v u+ 0, Ou=T,(vy, - . ., v, #], E)pr +
+ L@ 00 u+ (v = D Lo, v 4, 0], £ —
—y T, (0 - s 0y %, 0, %+ v, &)y

where vy, . . ., U, %, v are elements of H2(M,,, Z).

The proof uses the functional equation 11.3 (10) and the remark that
the expression inside the square brackets [ ] of (15), %, of which is the
T,-characteristic, always contains the factor chg, (§).

T,(vy, . . ., 2.}, &) i is a polynomial of degree » — 7 in y with rational
coefficients. It is identically zero for » > n. If » = # then

Ly, - vl =9 (1. .. v [Ma]) .

The duality formula, in the case of “virtual submanifolds”, becomes
Loy oo Oy = (-1 L0y 0], 8. (16)
-4

Theorem 12.3.3. Let n be a C*-bundle over M, with total CHERN
class 14+ v, ve HX(M™, Z) and let & be a GL(g, C)-bundle over M,.

Let vy, . . ., v, be clements of H2(M™, Z). Then
Ly ot u=T 00 0,0, Ou+ L. 0 @9 ) +

+3yT0y...,v,v, E@ V.

Proof: In formula (15) for the T,-characteristic the expression in

square brackets [ ] contains the factor ' T;(y;e¢;(M,),...). This
i =0

factor is the same for each of the four T ,-characteristics which occur in
the equation to be proved. Similarly, each of the four terms contains the
r

factor JT R(y;v) and, since chgy (& ® 77 = chyy (&) chyy ()~ the
i=1
factor chy,, (£). It is therefore sufficient to prove the equation

1=R(y;v) + chey (™) + yR(y; v) chey (077) -
But chy, (1) = e~ @+ ¢ and therefore this equation follows from 11.1(2).

Consider the special case of 12.3.3 in which7=0andj:V,_ ;> M,
is the embedding of an almost complex submanifold of M,. Let
v € H3(M,, Z) be the cohomology class determined by V,,_; and let 5 be
the C*-bundle with CHERN class 1 + v. Then by Theorem 12.3.1,

T,(My, 8) =T, (Vor, j* &) + (M, @ ) + y L, (Vo f* (€@ 97Y) (17)
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and, equating coefficients,
(M, &)
=TVar* )+ TPMuE@ 7)) + TP (V¥ @ 17Y) . (18)

In (18) it is understood that T#(M,,, &) = O for p < 0and p > #, and that
T*(V, 1,7*8) =0 for p<0 and p>n — 1. Formula (4) of 12.1is a
special case of (18).

§ 13. Split manifolds and splitting methods

13.1. The discussion in this section is valid for continuous, differen-
tiable or complex analytic buncles (cf. 3.1, 3.2). It is to be understood
in these cases that X is respectively a topological space, differentiable
manifold or complex manifold.

Let £be a GL (g, C)-bundle over X. We consider a principal bundle L
over X associated to & with GL(g, C) as fibre and construct the fibre
bundle

E=L|A(q,C) [cf. 3.4.b)and4.1.a)]

with the flag manifold F(g) = GL{g, C)/4 (g, C) as fibre:
g:E—- X, fibreF(g). (1)

The tangent principal bundle of the complex manifold F{g) will be
denoted by T(g):
T(g) ~ F(g), fibre GL(m,C). 2

Here m = ¢ (g — 1)/2 is the complex dimension of F{g).

The group GL(g, C) operates by left translation on F(g) and hence
also in a natural way on T (g). The method of 3.2.d) therefore allows us to
construct, from the action of GL (g, C) on the cartesian product L xT(g),
a fibre bundle €(g) associated to &:

€(g) > X, fibre T(g). 3)

&(g) is a principal bundle over E with GL(m, C) as fibre. The result is
the following commutative diagram in which each arrow is the projection
map of a fibre bundle.

fibre GL {m, C)
—

€9 E

“)

fibre T(g) ¥/ fibre Flg)

X

Over each point of X the situation is as in (2).

The GL(m, C)-bundle over E which is associated to the principal
bundle €(g) will be denoted by &4 and called the “bundle along the
fibres F{g) of E”.
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The bundle ¢* £ over E admits the group A4(g, €) as structure group
in a natural way (Theorem 3.4.4). By 4.1. ¢) this defines an ordered
sequence &, &, . . ., & of g diagonal C*-bundles over E.

Theorem 13.1.1. In terms of the above notations: The GL(m, C)-
bundle £4 over E admils A(m, C) as structure group in such a way that the
m diagonal C*-bundles are the bundles &, ® & (1> j) in the following
order: £, ® &1 is before & @ &5 if either § >4 or (j=4 and i < 7).

The proof will be by induction on ¢. The theorem is trivial for ¢ = 1.

a) Construct the fibre bundle X = L/GL(1, ¢ — 1; C). The fibre of X
is the complex projective space P,_, (€), since by 4.1. a),

6(1,¢g— 1,0 =P, (€) = GL(g, O/GL(1,¢— 1;C). (5)
A matrix of GL(1, ¢ — 1; C) has the form [see 4.1. a)]

[ [T IR P
a=( ).
o] 4~
The homomorphism A:GL(1,g — 1;C) > GL(g— 1,C) which as-

sociates to 4 €GL(1,¢— 1;C) the matrix 4” €GL(g— 1, C) maps
A({g, C) on to 4(g — 1, C). Therefore

GL(1,g—1;C)/4(¢.C)=6GL(g—1,0/4{g—-1,0)=F(g—1). (6

b) Clearly E is a fibre bundle over X with

Flg— 1) =GL(1,¢—-1;C)/d4(g, Q)
as fibre and GL(1, ¢ — 1; €) as structure group [cf. 3.2. ¢)]. Since the
kernel of the homomorphism 4:GL(l,¢g—1;C - GL{g—1,C)
operates trivially on F(g — 1) it follows [cf. {6)] that E admits the group
GL(g — 1, C) as structure group in a natural way.

If X is a point then E = F(g), X = P,_,(C). In this case the conclu-
sion is that F{g) is a fibre bundle over P,_,(C) with F(g — 1) as fibre
and GL (g — 1, €) as structure group:

n:F(g) > P,_,(C), fibreF{g—1). (7)

There is a commutative diagram
fibre F(q—-l) X

e \ / ®
(C4] fibre Py, (C)

Over each point of X the situation is as in (7).

¢) The structure group of y* £ can be reduced to GL(1,¢—1, C)
in a natural way; let 7 be the resulting C*-sub-bundle over X and let E
be the GL(g — 1, C)-quotient-bundle over X. The fibre bundles E and X
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over X are both associated to & while the fibre bundle E over X is
associated to £. The bundle @* £ over E admits A(g — 1, €) as structure
group in a natural way. The corresponding diagonal C*-bundles are
given by the sequence &,, &, . . ., &, Moreover g* 7 = §;.
d) Now consider the principal tangent bundle T of the complex
manifold P,_, (€):
T—P,;(C), fibre GL{g—1,C). 9)

The group GL(g, C) operates on P,_; (C) and hence also in a natural
way on T. It can be shown that GL(g, C) operates transitively on T;
that is, given any two points y;, ¥, of T there is an element of GL(g, C)
which sends y; to y,. Therefore T can be represented as a quotient space
GL(g, €)/H of GL(g, C), where H is the subgroup which leaves fixed
a given point ¥, of T. If an element of GL(g, C) leaves y, fixed then it
must also leave fixed the whole fibre of (9) through y,. We represent
P,_,(C) as a quotient space by (5) and choose as ¥, a point which lies in
the fibre of (9) over the point of P,_;{C) corresponding to the coset
GL(1, ¢ — 1; C). The required group H is then a subgroup of
GL(1, ¢ — 1; C) and it is now easy to show that H is actually the sub-
group of matrices of the form

0

H is a normal subgroup of GL(1,¢ — 1; C), and is the kernel of the
homomorphism GL(1,¢— 1;C) > GL(g — 1, €} which, in the nota-
tion of a), maps A to a~! 4”. Now dividing the “numerator and de-
nominator” of (5) by H we obtain

(6L(g, O/H)/(GL(1,9 — 1; C)/H) = P, (C) .
It follows that (9) is identical to the fibre bundle given by

T=6GL(¢. O)/H —~ (GL(g. C)/H)/(GL(1,¢ — 1; C)/H) . (9%
¢) From the principal bundle L over X we can construct the space
L/H. There is a commutative diagram
o GLig-1,0) -

\ A Pes(©

Over each point of X the situation is as in (

L/H is a principal bundle over X. By c) and d) it is associated to the
bundle -1 ® & over X. We call 71 @ £ the “bundle along the fibres
P,_,(C) of X [see (8)].

GiBig o« vy OBy
( : - ) I = identity matrix.
a
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f) We now carry out construction (1)—(4) for the GL{g — 1, ()-
bundle £ over X, marking everything which arises from £ by adding
a bar. Thus let W= (g —1)(g—2)/2. Then m=q(g— 1)2=m +
+ (g — 1). It is easy to show that the structure group of the GL(m, C)-
bundle &4 [bundle along the fibres F(g) of E] can be reduced to the
group GL(#, ¢ — 1; C) so that £4 [bundle along the fibres F{g — 1) of E]
is the corresponding subbundle and @*('® &) the corresponding
quotient bundle. Here 7' ® £ is the bundle along the fibres P,_;(C)
of X.

We assume that the theorem is proved for ¢ — 1. The diagonal C*-
bundles of @* £ are &,, ..., & in that order. Therefore £4 admits the
group A(#, C) as structure group in such a way that the diagonal
C*-bundles &; ® &* (¥ > j = 2) are in the order given by the statement
of the theorem. But

PForredH =41k,

Therefore * (p~* ® £) admits the group 4{(g — 1, C) as structure group
with the diagonal C*-bundles

£2®£I11"'1 Eq@ 51_1.

This completes the proof forg. Q. E.D.

13.2. Theorem 13.1.1 holds in the complex analytic case. Since this
fact will be particularly important in the sequel, we restate it as a
separate theorem.

Theorem 13.2.1. Let X be a complex manifold, & a complex analytic
GL(q, C)-bundle over X, and L a complex analytic principal bundle
over X assoctated to . Consider the fibre bundle E = L|A(g, C) with the
flag manifold F(q) = GL(g, C)/4(q, C) as fibre:

¢:E->X, fibre F(g). (%

E s a complex manifold and @ is a holomorphic map of E on to X. The
structure group of the complex analytic bundle ¢* & can be complex analyti-
cally reduced to the group A(q, C) in a natural way. Let &, &, . . ., &, (in
that order) be the q diagonal complex analytic C*-bundles. The bundle &4
along the fibres of (1*) is a complex analytic GL(m, C)-bundle
[m = q{g — 1)/2], whose siructure group can be complex analytically reduced
to A(m, C); in this case the m diagonal complex analytic C*-bundles are
the bundles &, ® &t (i > j) in the order specified in Theorem 13.1.1.
Remark: The proof of Theorem 13.1.1 given in the previous section
is direct, but left a number of details to the reader. It has been pointed
out by A. BorgL that the fact that the structure group of the bundle £4
can be reduced to A{m, €) follows immediately from a theorem of LiE.
The statement of the theorem {see for instance C. CHEVALLEY: Théorie
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des groupes de Lie, Tome III. Paris: Hermann 1955, especially p. 100
and p. 104) is:

Let H be a solvable connected complex L1E group and p: H — GL (m, C)
a holomorphic homomorphism. Then there is an element a € GL (m, C)
such that a p(H) a2 C A(m, C).

The statement about the structure group of £4 is deduced as follows.
Let ¢, €F(g) = GL{g, C)/4(q, C) be the point corresponding to the coset
A4({g, C). The group GL (g, C) operates on F(g), and 4(g, C) is the isotropy
group of ¢, [4. e. the subgroup consisting of all elements of GL({g, C)
which leave ¢, fixed]. A(q, C) operates on the contravariant tangent
space €, (¢,) of ¢, € F(g) and this operation defines a holomorphic homo-

morphism (g, €) > GL(m, €), m = +g(g — 1). Since A(g, C) is solvable

the theorem of Lie implies that there is in C,,(¢,) a flag of linear sub-
spaces LyCL,C* - +CL, = Cpuley) such that each L; is mapped into-
itself by every element of the group A(g, C), 4. e. the flag is invariant
under the operation of the group. Now GL(g, C) operates transitively on
F(g) so that the flag can be transplanted to any point of F(g). This
transplanting is unambiguous because the flag remains invariant under
the operation of the isotropy group. The conclusion is that F(g) admits
a tangential complex analytic field of flags which is left invariant, 4. e.
goes over into itself under the operations of GL(g, C). The required
statement about £4 now follows. For generalisations of Theorem 13.1.1
and for its connection with the theory of roots of L1E groups we refer to
BoreL-HirzeBrUCH [1].

13.3. Let X be a (differentiable) almost complex manifold of complex
dimension # and & a differentiable GL(g, C}) bundle over X. The con-
struction of 13.1 yields a differentiable manifold E which is a fibre bundle
over X with fibre F(g) and differentiable projection map ¢: E - X.
It is clear that E admits an almost complex structure, whose tangent
GL (% + m, C) bundle 8(E), m = ¢g(g — 1)/2, has the “bundle along the
fibres” &4 as subbundle and the bundle g* 6(X) as the corresponding
quotient bundle. Let £; (=1, ..., g) be the diagonal C*-bundles of
@* & over E, and let ¢(&) =1+ 1y, y;€H*(E,Z). Theorem 13.1.1
implies that the total CHERN class of E is given by

c(E)y=¢*c(X) IT (I+ypi—7y). (10)

gix>ji2l

If in particular & is chosen as the tangent bundle 6(X) of X we denote
the almost complex manifold E by X4. In this case ¢* & = ¢* 6(X)
admits the group A(n, ) as structure group, the corresponding #
diagonal C*-bundles are &, ..., &, and 6(E) admits the group
A(n(n+ 1)/2, C) as structure group with the #(n -+ 1)/2 diagonal bundles
E®EYL &, ..., & (m24i>7 = 1). The total CHERN class of X4 is
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therefore given by

”

cXN=ITQ+y) I (I+y;—7). (11)

i=1 nZix>fat

13.4. The discussion of the previous section can be carried over to the
complex analytic case. Let X be a complex manifold of complex dimen-
sion 7 with complex analytic tangent bundle 6(X) and let & be a complex
analytic GL (g, €)-bundle over X. Then E is in a natural way a complex
manifold of dimension #+m, m=¢(g—1)/2, and ¢:E-X is a
holomorphic map. E is a complex analytic fibre bundle over X with
fibre F(g) and projection map ¢. The complex analytic tangent
GL(n -+ m, €)-bundle 6 (E) admits GL (m, #; C) as structure group in a
natural way, since £ admits a complex analytic field of complex m-
dimensional plane elements (the field tangent to the fibres of E). The
complex analytic subbundle is the GL(#, C)-bundle &4, and the
corresponding complex analytic' quotient bundle is the GL(xn, C)-
bundle ¢* §(X). The CHERN class of the complex manifold E is given
by (10). In the special case in which & = 0(X) we again write E = X4. In
this case both the subbundle £4 and the quotient bundle g* £ = ¢* §(X)
admit the corresponding group of triangular matrices as complex analytic
structure group. This shows that the structure group of the complex
analytic bundle 6(X4) can be reduced complex analytically to the
group A4 (n(n 4 1)/2, €), and that the corresponding #(n + 1)/2 diagonal
C*bundles are §;®@ &%, &, ... L n=zi>jz= ). Heg)=1+y;
then the total CHERN class of X4 is given by (11).

13.5.2) An almost complex manifold X of complex dimension # is
called a split manifold if the (differentiable) tangent GL(xn, C)-bundle
0(X) admits the group A4(n, C) of triangular matrices as structure
group. This defines # diagonal bundles &, .. ., &, € H*(X, C}) and in fact
6(X) is the WHITNEY sum of the bundles &;. If c(&;) = 1+ a,, 2, € H*(X, Z)
then

o(X) = g (1+a). (12)

b) A complex manifold X of complex dimension # is called a complex
analytic split manifold if the complex analytic GL(#n, C)-bundle 0(X)
admits the group A(n, C) of triangular matrices as complex analytic
structure group, 1. e. 0(X) is an element in the image of the map

HY(X, A(n, €)p) > H'(X, GL(n, C),) .

This defines » diagonal bundles &, .. ., &, € H(X, C¥). In general §(X)
is not the complex analytic WHITNEY sum of &, ..., §,. Nevertheless,
if all bundles are regarded as continuous (or differentiable) bundles,
then 0(X) is the WHITNEY sum &, @ - -+ @ &,. The CHERN class of X is
therefore given by (12).
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The process described in sections 13.3 and 13.4 therefore associates to
each almost complex manifold X an (almost complex) split manifold X4,
and to each complex manifold X a complex analytic split manifold X4.
This fact will be of decisive significance in the sequel. It will appear
that certain theorems hold for X whenever they hold for X4, and there-
fore need to be proved only in the case that X is a split manifold.

13.6. Let X be a compact almost complex split manifold of complex
dimension #. We use the notations of 13.5 a) and derive a formula which
will imply that the Topp genus T'(X) can be expressed in terms of
virtual indices:

A+ T(X) =Yy Y T, .. .a)x- (13)
I=0 1Zh<<fisn

For the proof we recall the definition of the virtual T,-genus in

11.2 (7), apply (12), and obtain for the right hand side of (13)

Y ‘é A+ yR(y; a)) ’_é Q(y:a.-)]

= | 1 @i @) + a3)]

i

N - 1+ a
=¥ IJ, l“exp(—‘(l-{—J’)“a)]

(e | [ | = 0+ T

=1

For y = 1 the virtual T,-genus becomes the virtual index:

2 T(X)= Z X T(a;, ... 8)x - (13%)

=0 1gh<--<iign
Since the virtual index is an integer (Theorem 9.3.1) a corollary is
Theorem 13.6.1. The TopD genus of a compact almost complex split
manifold multiplied by 2" is an integer.
Formula (13) can be generalised to apply to the virtual T-genus.
Ifth, ... b,cH}X, Z), {r < n), then

(49 T by e
= | TTROIB) 0+ YR 0 [T (1 + 3RO ) [T 000

This formula, and the definition of the virtual T,-genus, imply that
{145 "T(b, ... b)y can be expressed as a sum of terms each of
which is a virtual 7,-genus multiplied by a polynomial in ¥ with integral
coeflicients. If y = 1 then 2% T'{b,, .. ., b,)x is expressed as a sum of

(14)
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terms each of which is an integral multiple of a virtual index. This
proves:

Theorem 13.6.2. Let X be a compact almost complex split manifold,
and let by, ..., b, be elements of H*(X,Z). The virtual ToDD genus
T(by, ..., b)x multiplied by 27 is an inleger.

§ 14, Multiplicative properties of the Topp genus

14.1. Some algebraic remarks: Let K be a field of characteristic 0,
and let ¢, . . ., ¢, be indeterminates. We consider the field K(c,, . . ., c,)
and an indeterminate x, and adjoin elements y,, . . ., y, to K(cy, . . ., ¢,)
such that

ldgxt+ 42 =(01+pyx)...(1+y45).

The field K(cy, ..., ¢;) (Y1, - .-, vn) is then an algebraic extension of
K{cy, ..., cn) of degree n!. The n! elements pf 5.y (0 g; <
= n —4) form an additive basis for the extension field. It is easy to
prove the following lemma:

Lemma 14.1.1. Every formal power series P in y, ..., y, with
coefficients in K can be expressed uniquely in the form:

P= Y Quopeeon V1V ¥R )
0= sn—i

where the 0, q,...q,_, @re formal power series in cy, ..., ¢, with coef-
ficients in K. If P has integer coefficients then each p,,,...q,_, has integer
coefficients.

We define the “indicator” g(P) by

Q(P) = (" .1)"(“-1)/2 On—-1,n—2,.. 4,1+
If s:(yy Y2 -« o ¥0) = (Vi V4o -+ Vi) IS @ permutation there is an
expression corresponding to (1)
Pe 3 e ViV ¥ (1,5)

0L =n—1%

and the s-indicator of P is defined by
oW (P) = (1= g8 o

The n! elements pfpf...90-0 (0= a; < n—14) form another
basis for the extension field, and it is clear that all of these elements have

indicator 0 with the exception of y7 72y 7%. ..y,  which has indicator
+ 1. Therefore
e® (P) = o(s(P)) = Le(P) &)

where s{P) denotes the power series got by applying the permutation s
to P.
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Lemma 14.1.2. If P remains invariant under the inlerchange of y,
and y; for some i = § then the sndicator p (P) of P is zero.

Proof: It is sufficient to prove the lemma for P a polynomial.
Suppose that P remains invariant under the interchange of y; and y;,
(¢ + 7). By {2) we can assume, without loss of generality that i =n — 1,
j=n. Now Garois theory implies that P is an element of the field
extension of K(¢;, ¢,, . . ., ¢,) generated by 9, ..., Ypy. Therefore the
indicator g (P) is zero.

Corollary: Let s be the permutation (ys, Ya, - - - Vu) = (Vi Vi -+ =
¥3)- Then

eI YE R yn) =sign(s) oSO YR ) - (B)
Proof: It is sufficient to prove (3) for the case where s is an inter-
change (4, 7). In this case
yi._l y 71:—1 + Yi 1— Y;:— Q£

remains invariant under s, and the result follows from Lemma 14.1.2.
It is now easy to give a formula for g (P). By (2) and (3)

o (P) = sign(s) - g® (P) = sign (s) - ¢(s(P)) - (2*)
nlg(P)= 9(32 sign (s) 'S(P)) @

where the summation is over all #! permutations s. The expression
X sign(s) - s{P) is clearly alternating. The quotient

q(P) = (52 sign (s) * s(P)) I)Ij s — )

This implies

is therefore symmetric and hence a power series in ¢y, . . ., ¢,. This gives
n!g(P) =e(_l'l,(7«-~7'f)) “q(P). (4%)
If P = yp-t 922 ... pp_, then p(P) = (— 1)~/ and
?Slgn (8)-s(P) = (= )”"‘"’/",g e — i) -

Now (4) implies that p (]I (y: — y,)) =mn! and (4*) then gives the
$>1

required formula for an arbitrary power series P:
= (Zf sign(s) * s(P) / _11 vi—vs) - (5)

4.1 S ¢ Bkt LS
Lemma 14.1.3. Let P = i],exp(y, prop

Proof: Let 24 = Z (v¢~ v4). Then by 1.7

+>¥

. Then o(P) = 1.

¥
= ,g 2511111((7«" 0]
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and by (5)
e(P) = (,2 sign (s) e"“’) /’I>I’ 2sinh((y; — 7,)/2) -

Let x; = exp(—y,/2). Then

ety .. 2" = (YD L AR,
and
2%, %; sinh ((y; — ;)[2) = 2} — «% .

The result now follows (VANDERMONDE determinants).

14.2. We now return to the flag manifold F(») = GL (n, C)/4(n, C).
Theorem 13.2.1, with X a point, shows that F(») is a complex analytic
split manifold. The (total) CHERN class of F (#) is

c(F(n) = ‘_g T+yi—y). 6
The elements y, € H3(F(n), Z) satisfy c(&)=1+p; (see 13.2) and
M+7)=1. )

i=1
According to BoreL [2] the cohomology ring H*(F(n), Z) is generated
by the y; with (7) as the only relation:

H*(F(”)’ Z) = Z{yl’ R 7n]/1+(01: . Ca)

where 9y, ..., y, are regarded as indeterminates and where IT is the
ideal generated by the elementary symmetric functions ¢, ..., ¢,
in the y;. Applying the results of 14.1 we see that the #! elements
YrYe.. v, 0= a;, < n—4, lorm an additive basis for the co-
homology ring H*(F(n), Z). A polynomial P in the y; with integer
coefficients defines an element of the cohomology ring. To express this
element in terms of the given basis use the expression (1) obtained in the
previous section: the coefficients g in (1) are equal to their constant
terms modulo the ideal I*,

The EULER-POINCARE characteristic of F(n) is ! since H*(F(n), Z)
contains only elements of even degree. Therefore (6) and Theorem 4.10.1
imply that

nl= II_ (i — v3) [F(m)]. @

In 141 it was shown that ¢ ( 1T (y: y,)) = n!. Therefore

(—1)r (=12 -1 om-2 | 4, . is the generator of H™(F(n), Z),
m=nn— 1)/2, determmed by the natural orientation of F (n).
Finally Lemma 14.1.3 and (6) give the Topp genus of F(#):

T(F(n) =1.
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14.3. We now return to the situation discussed in 13.3.

Theorem 14.3.1. Let & be a differentiable GL (g, C)-bundle over a
compact n-dimensional almost complex manifold X and let L be a principal
bundle associated to &. The fibre bundle E = L|A(q, €) has the flag manifold
F(q) as fibre and can be regarded in a natural way as an almost complex
manifold of dimension n + %q(q —1). Let tbea GL (¢, C)-bundle over X
and let ¢ E — X be the projection. Then the T-characteristic of { satisfies

TEe;)=TXOTF@)=TX,1). )
Let b, ..., b, € HYX, Z). Then the virtual T-characteristic satisfies
T(g*by,....9*b [ ¢* =Ty, ... 5} 0x- (10)

Proof: Since (9) is a special case it is sufficient to prove (10). Let

g .

clg*é)=1+g*a+ -+ g*ce= Il (1 +y)andletm=q(g—1)/2.
i=1

Then the definition of the virtual T-characteristic, 12.3 (15), together
with 13.3 (10) gives

T(p*by,....0* 0., ¢* O

T
— * . _ obi) . N ¢ St « SN
Hntm [tp (chC 4(—.11(1 %) td(X));g exp(y’__y‘)_l] 3
We denote the first factor ¢*( ) of the expression in [ ] by ¢* 4 and
the second factor JJ by P. Now apply the algebraic remarks of 14.1

>
with n replaced by 7q and the indeterminates ¢;, ..., ¢, replaced by
@*cy, ..., 9* cg. Then P is of the form 14.1 (1). The coefficients g, q,...q,_,
are polynomials in g* ¢, . . ., p* ¢, We have to take the terms of complex
dimension % 4 m in ¢*(4) + P and note that any term of the form ¢* x
withx € H*(X,Z) ® Q is zero if it has complex dimension > ». Therefore

”n-!-m{(p* (A) *Plg= xn+m[("‘ nm ?’*(A) - Q(P) yg_l }’3“’ v 7¢I-1] .

Now by Lemma 14,13, p(P) =1, and by 14.2 the restriction of
(—1)™ 9§t y2-2 ... ., to a fibre F(g} is the natural generator of

H™(F(g), Z). Therefore s, n{p*{A4) - Plg = x,[A]x and the proof of
(10) is complete.

Formulae (9) and (10) imply respectively that the Topp genus of X
is equal to that of E, and that the virtual Topp genusof (b, ..., b,) in X
is equal to that of {¢*b,, ..., ¢* &,) in E. If X is an arbitrary compact
almost complex manifold we can choose E to be the split manifold X4
{see 13.3). Therefore Theorems 13.6.1 and 13.6.2, together with Lemma
1.7.3 imply
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Theorem 14.3.2. The ToDD genus of a compact almost complex mani-
fold X multiplied by 2% is an integer. More generally the virtual ToDD genus
of (by, ..., by, b; € HYX, Z), muliiplied by 25" is an integer.

14.4. Formula (10) of Theorem 14.3.1 can be generalized:
LAg* by - -, 0 byl 9* O =Ty (b, - - . 8,],0) - TL(F(g)) - (10%)

In the proof of Theorem 14.3.1 it is sufficient to generalise Lemma
14.1.3 as follows:

Let y be an indeterminate over the field of rationals, and replace the

groundfield K of 14.1 by the ring of polynomials in y over the rationals.
If we let

P=‘_g Qs ve— i)

+1
where Q(y; %) = l—e)fp(%'—x (; Ty *Y then
I—(—1)y* 1 —(=hrtym? 1—yt
e(P) =~y Ity Ty (11)

Therefore T, (F (n)) is precisely the formula given in (11}, that is
T, (F(n) = T,(By 1 (C) - T,(Pn_2(0)) - . . T,(P,(0)) -

More generally let {K;(c,, ..., ¢;)} be an m-sequence with charac-
teristic power series B (x) = K (1 4 %). Then the proof of Theorem 14.3.1
can be used to prove the equation

K(E) = K(X) - K(F(g))

provided that g( IT Bly;— yj)) is an element of the groundfield,
g2i>j =1
and so independent of ¢, . . ., ¢, It is then clear that this element is
equal to K(F(g)). (We are using the notations of 14.1, with » replaced
by ¢.)
The T,-genus, as a genus in the sense of 10.2, has the property

T,(V X W) = T,(V) T,(W) .

By (10%), if E is a fibre bundle over X with the flag manifold F(g) as
fibre then the 7,-genus behaves multiplicatively

L(E) = T,(X) T,(F(9) -

This raises the question: for what fibre bundles E over X with a
given fibre F is it true that T,(E) = T,(X) T, (F)? It is naturally
assumed that E, X, F are compact almost complex manifolds and that the
fibration is “‘compatible with the almost complex structures”. We give
a special case in which the T,-genus does behave multiplicatively:
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Let £ be a differentiable GL (g, C)-bundle over a compact almost complex
manifold X, and let L be a principal bundle associatedto &. E' =
LIGL(1,q — 1;C) is a fibre bundle over X with fibre B,_, (C) associated
to L, and has a natural almost complex structure. Them T,(E’) =
T,(X) T, (By_y (C))-

Proof: E=L/4(¢q,€C) is a fibre bundle over E’ with F(g — 1) as
fibre [see 13.1 (8)]. Since 7, behaves multiplicatively for fibre bundles
with flag manifolds as fibre

L(E)=T,(X)T,(F(g) and T,(E)=T,(E)T,F(g—1).
But T, (F(g)) = T(F (¢ — 1)) T, (P, (0)) and therefore [since T, (F(g— 1))
starts with 1]
L(E) = T,(X) T,(Pe 4 (C)) - (12)

For further results on multiplicative properties of the T,-genus we
refer to BoreL-HirzeBrucH [1].

Bibliographical note

The analogue for almost complex manifolds of the cobordism ring is due to
Mirnor [3]. It can be defined using the concept of weak complex structure (BOREL-
HirzeBrUcH (1], Part III). A weak complex structure of a real vector bundle &
consists of a trivial bundle « and a complex structure for §@ «, i.e. a complex
vector bundle # and a specific isomorphism g() = £® a (see 4.5). A compact
differentiable manifold X is weakly almost complex if its tangent bundle g6 has
been endowed with a weak complex structure. In this case (1) = gf@® « and ¢ ()
is called the total CaERN class of the weakly almost complex manifold X. The weak
complex structure induces an orientation on X and the integers ¢ ¢y, . - . ¢, [X],
204 + iy + - -+ + 4,) = dim X are called the CRERN numbers of X.

The definition of weakly almost complex extends to manifolds with boundary
and can be used to define an equivalence relation ¥ ~ W between weakly almost
complex manifolds. The equivalence classes form the complex cobordism ring I
For a treatment which generalises immediately to other structures on manifolds see
Mirnor [4]. Results of Novikov and MiLNor [3] imply that V ~ W if and only
if ¥V, W have the same CHERN numbers. In particular the Topp genus T°(V) is an
invariant of the complex cobordism class of V.

Minor [3] proves that I' is isomorphic to Z[y,, y,,...]. An isomorphism
Z{y1, ¥y, - - -1— I'is given by associating to y, a compact almost complex manifold
Y, satisfying the following conditions:

Y, has tangent GL (s, C)-bundle 0 and, in the notation of 10.1,

s{Y,) =s5,(0) [Y,]= +1 if » + 1 is not a prime power,

s(Y,) = s5,(6) [Y,] = 4 q ifn 4 1is a power of the prime g.

" In fact the manifolds Y, can always be chosen to lie in a particular set generated
by taking inverses, sums and products of manifolds of the following type (HirzE-
BRUCH [6]): complex projective spaces P,(C) for which s(P,(C)) ==r 4 1, and
hypersurfaces H, , of degree (1,1) in P, (C) X P,(C), r > 1, # > 1, for which s(H, ,)

= — ('j’) - Thus it is possible to choose generators Y, of I'which are linear combina-
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tions of algebraic manifolds. The manifolds Y,, provide generators for the torsion-
free part £2 of the cobordism ring £ (see the bibliographical note to Chapter Two).

It is a corollary of Theorem 20.2.2 that the ToDD genus is an integer for every
algebraic manifold, and hence for every linear combination of algebraic manifolds.
So the above results imply that T(X) is an integer for every compact almost
complex manifold X. The second part of Theorem 14.3.2 holds similarly without
reference to 2*~’, and can be generalised to include the T -characteristic of a
continuous GL(g, C)-bundle § over X : the virtual T -characteristic T, (b, . . ., 4,}.8),
b, € H*(X, Z), is a polynomial in y with integer coefficients. For further integrality
theorems, which can be deduced from the integrality of the Topp genus, see Parts 11
and III of BoreL-HIRzEBRUCH [1]. For another approach to the integrality theo-
rems for arbitrary differentiable manifolds see ATivau-HIrzEBRUCH [1, 2] and the
appendix (§ 26).



Chapter Four

The Rmann-Rocu theotem for algebraic manifolds

In this chapter ¥ is a complex n-dimensional manifold. The proof of
the RIEMANN-RoOCH theorem depends on results on compact complex
manifolds which are due to CARTAN, DOLBEAULT, KODAIRA, SERRE and
SPENCER. These results are summarised in § 15. At two points in the
proof it becomes necessary to make additional assumptions on V: first
that V is a KAHLER manifold (15.6—15.9) and then that V is algebraic.

§ 15. Cohomology of compact complex manifolds

15.1. Let W be a complex analytic vector bundle over V¥, and let
L2(W) be the sheaf of germs of local holomorphic sections of W (see 3.5).
The cohomology groups of ¥ with coefficients in (W) will be denoted
more shortly by H*(V, W). The groups H#(V, W) are complex vector
spaces. It will be shown that they are zero if 1 is greater than the complex
dimension of ¥ and that they are finite dimensional over C if V is
compact. If W, W' are isomorphic vector bundles then Q(W), Q(W’)
are isomorphic sheaves and it follows that the cohomology groups
H*V, W), H(V,W') are isomorphic. (For this reason isomorphic
vector bundles will often be identified.)

The trivial line bundle is denoted by 1. The sheaf £2(1) is just the
sheaf €, (see 2.5 and 3.1) of germs of local holomorphic functions on V;
it will also be denoted by Q.

H¢(V, W) is the complex vector space of all global (. e. defined on
the whele of V) holomorphic sections of W. In particular, H%(V, 1)
is the vector space of all holomorphic functions defined on the whole of V.
The dimension of H%(¥V, 1} is equal to the number of connected com-
ponents of V if V is compact.

15.2. Consider the sheaf C¥ of germs of local holomorphic never zero
functions on the complex manifold V (see 2.5). The complex analytic
C*-bundles over ¥ form the abelian group H1(V C*) in which the
addition is given by tensor product of bundles (see 3.7).

A divisor D of V is traditionally defined by a system {};} of mero-
morphic “place functions” on V:

Let W= {U}ics be an open covering of V. For each 51 let f, be a
meromorphic (not identically zero) function defined on U, such that on
U; N Uy the function ff}; kas nesther zeros nor poles.
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It is then necessary to state under what circumstances two such
systems of meromorphic functions define the same divisor. This can of
course be done in the usual way. Alternatively, the divisors of ¥ can be
defined by means of sheaves:

Let ® be the sheaf of germs of local meromorphic (not identically
zero) functions. The sheaf multiplication in & is the usual multiplication
of germs. €% is a subsheaf of & and so there is a sheaf ® = &/C¥ defined
by the exact sequence

0-CE->6->9->0. (1)

The divisors are the elements of the abelian group H®(V, ®). We
write this group additively: if U = {U};c; is an open covering and
D, D' are divisors defined by meromorphic functions f;, f; on U, then
D + D' is the divisor defined by the meromorphic functions f; f; on U,.
The exact cohomology sequence of (1) gives

BV, 6) 2 mwo) S my,c) . @)

H%(V, ®) is the multiplicative group of meromorphic functions on ¥V
which are not identically zero on any connected component of V. A
meromorphic function f € H°(V, ) defines a divisor (f) = & f which is
called the divisor of the meromorphic function f. Two divisors are said
to be linearly equivalent if their difference is the divisor of a mero-
morphic function f ¢ Ho(V, ®). It follows that the divisor classes (with
respect to linear equivalence) are represented by elements of the abelian
group HYV, D)hHO(V, ). By the exactness of (2), this group is iso-
morphic to a subgroup of HX(V, C%).

1f D is a divisor we denote by [D] the complex analytic C*-bundle
(83 D)-1. The complex analytic line bundle determined, up to iso-
morphism, by [D] is denoted by {D}. If D is represented, with respect
to some open covering U = {U;}, by meromorphic place functions f;
then [D] is given by the cocycle

fis = Hlls (fis: Uin Uy > %) . 3

A divisor D is said to be holomorphic if it can be represented by place
functions f; which are all holomorphic. Clearly this property depends
only on the divisor D.

Remark: In the literature holomorphic divisors are called “non-
negative” or, if at least one place function has zeros, *“positive”. We
avoid this terminology because the word “positive” is given a different
meaning in 18.1.

A holomorphic divisor D is said to be non-singular if, with respect to
some open covering U = {U,}, it is represented by place functions j;
with the property:
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Either f,=1 or U, admits a sysiem of local complex coordinales for
which |; is one of the coordinates.

Let D be a non-singular divisor and dim ¥V = #. The set of all points
% € V such that f;(x) = 0 for at least one i with x € U,, and hence for all ¢
with x € U}, is a complex manifold of dimension # — 1. We denote this
complex submanifold by the same symbol D, in agreement with the
terminology used in 4.9.

Now let D be an arbitrary divisor of V defined by place functions f;.
Consider the set L(D) of all meromorphic functions g on ¥ for which the
functions g f; on U, are holomorphic. Note that we do not require that
g€ H*(V, ®). The set L(D) depends only on the divisor D. Addition of
meromorphic functions defines the structure of a complex vector space
on L (D). We can now state the

RiemManN-RocH problem: Determine the dimension of L (D).

Theorem 152.1. Let D be a divisor of a complex manifold V. The
complex vector spaces L(D) and HO(V, {D}) are isomorphic.

Proof: HO(V, {D}) is the vector space of global holomorphic sections
of the line bundle {D}. Let D be represented, with respect to an open
covering U = {U,}, by place functions f;. Then by (3) and 3.2 a) the line
bundle {D} is got from U(U; x €) by identifying 4 X € U; X € with

#X ;:i:; BcU,;x C for ucU;n U,;. A section s of {D} is given by
holomorphic functions s; on U, such that s; = I s;on U; N U,. Associate

]
to s the global meromorphic function

S __ 5
h(s) = W——;EL(D) .
Then the map A :H°(V, {D}) - L(D) is an isomorphism.

Remark: Let {D] be the complex projective space associated to the
vector space H(V, {D}). It is obtained by identifying ¢4 and a for
a CHYV,{D}), a=0,c€C, ¢+ 0. Then dim [D{ + 1 = dimH*(V, {D}).
The proof shows that, if V is compact and connected, the points of |D|
are in one-one correspondence with the holomorphic divisors contained
in the divisor class of D.

Theorem 15.2.1 suggests a generalisation of the RIEMANN-RocH
problem. Let W be a complex analytic vector bundle over ¥ and let
H*(V, W) be the vector space of holomorphic sections of W introduced
in 15.1.

Generalised RIEMANN-RoOCH problem: Determine the dimension of the
vector space H*(V, W).

15.3. a). Let dimV = 2 and let 4* T be the complex analytic vector
bundle of covariant tangent p-vectors (see 4.7). Then T = 2 T is the
vector bundle of covariant tangent vectors and A° T is the trivial line
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bundle. A* T is also a line bundle; it is called the canonical line bundle
of ¥ and denoted by K.

If V admits a meromorphic #-form with divisor £ then X is associated
with the complex analytic C*-bundle [E], so that K = {E}.

If W is a complex analytic vector bundle over ¥ we shall also denote
the cohomology groups H¢(V, W ® A7 T) by H»¢(V, W). Thus

HO9(V, W) = H(V, W).

15.3. b). Given a complex vector bundle W over V, the conjugate
vector bundle W over V can be defined by the following construction. Let

8iji: U.'f\ UJ'—>GL( ,C)

be coordinate transformations which define W by identifications on the
disjoint union U (U; X C,). Then W is defined by coordinate transforma-
tions

g2::U.nU; > GL(g, €) .

Here g;;(x) € GL(g, C) denotes the matrix obtained from g; (%)
by the conjugation of every coefficient.

If W is complex analytic then W is no longer complex analytic, but
is regarded as a differentiable vector bundle. As differentiable vector
bundles W, W are “anti-isomorphic”. That is, there is a differentiable
homeomorphism % : W -~ W which maps fibres W, into fibres W, such
that ’

x(a + &) = x(a) + x(a’), x(ca) = &x(a) for a,a’ € W,, ccC.
In terms of the local product structure U; x €, the anti-isomorphism
%:W > W can be represented by conjugation. Clearly, if W, W' are
isomorphic vector bundles then so are the vector bundles W, W

15.3. ¢). Let W be a differentiable vector bundle over X given, for
some open covering U = {U;}, by differentiable coordinate transforma-
tions

fi;:U;nU;—>GL(g, C).
Then the structure groups can be reduced to U(g). That is [see 4.1. b)],
there are differentiable maps
ki:U;—>GL(g,C)
such that
hi(%) fi;(x) B (x) €U(g) for x€U;NT;.

Let 1 denote transposition of matrices and define
gi=hih:U;—~GL(gC).

The dual vector bundle W* can be defined by the coordinate trans-
formations
;)1 UinU;~>GL(g. C) .
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In terms of the local product structure U; X C, we can define an anti-
isomorphism
y:W > W*
by
puxt)=uxgw-t, uwclU, tcC,.

We call yp the “hermitian” anti-isomorphism defined by the above
reduction of the structure groups. y defines a hermitian metric on each
fibre W, of W. The corresponding (positive definite) hermitian form is
given by y{a) - 4. Here a € W, and y(a) - a is the value of the linear
form w(a) on a. Similarly there is a hermitian anti-isomorphism
pl: Wr> W,

15.4. In this section we sketch results on the cohomology groups
H? 4V, W) due to DoLBeauLT [1,2], KopAIRA [3] and SERRE [3].

Let ¥r.2 be the sheaf of germs of local differentiable differential
forms of type (p, g) on the complex manifold ¥. Then A ¢ is precisely
(see 4.7) the sheaf of germis of local differentiable sections of the
(differentiable) vector bundle A? T ® A* T. Note that, by 15.3 b),
BT =2T.

The operator 4 on differential forms can be written as a sum

d=0+0

where 0 = differentiation with respect to the z-variables,
9 = differentiation with respect to the Z-variables,
and 990=00=20 + 92 =0.
The operator § transforms forms of type (p, ¢) into forms of type
(¢, ¢ + 1) and therefore induces sheaf homomorphisms

5:me s rart,

The kernel of 0: Q7% %P1 is the sheaf Q(4* T) of germs of local
holomorphic p-forms, since for a form of type (p, 0) the statements
“0 vanishes” and “holomorphic” are immediately equivalent. The
embedding of 2(A? T) in AP together with the homomorphisms d,
gives the following sequence of sheaves over V:
().,Q(AvT).,Q(p,O_,Q(p,I_,...__,Q(v,q_,.... (4)

It has just been shown that the beginning of this sequence is exact.
A “PoOINCARE lemma’” first proved by GROTHENDIECK shows that the
whole sequence (4) is exact (see CARTAN [4], DoLBEAULT [1]).

Now let W be a complex analytic vector bundle over V with fibre C,.
We consider the differentiable vector bundle W@ 1? T® AT and
denote the sheaf of germs of local differentiable sections of this vector
bundle by A7¢(W). Thus 2A#»¢(1) = A 9. Sections of Y»¢(W}, that is
differentiable sections of the vector bundle W @ 3 T ® 4% T are called
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differentiable differential forms (or simply: forms) of type (p, ¢) with
coefficients in W. We let

A7 (W) = I"(V, A7 2(W)) = C-module of global forms of type (p, q)

with coefficients in W (5)
A?.1= A4P.9(1) = C-module of ordinary global forms of
type ($, g)-

Let W be given, over some open set U, by a local product structure
U;x C,. A local form of type (p,q) with coefficients in W can be
represented by an r-ple of ordinary local forms of type (, ¢). The opera-
tion d acts on this 7-ple. The identifications between U;x C, and
U; x C, are given by holomorphic functions

U"{\ U;‘—) GL(’, C) .

But 9 is zero on holomorphic functions, and therefore the action of J is
independent of the choice of local product structure. Therefore d indnces
a sheaf homomorphism

0 : AP (W) - AP 2+ (W)
The exactness of (4) now implies that the following sequence is exact:
0>QWerT) > U (W) > AP (W) > -+ - > Y4 (W) > -+, (6)

The sheaf of germs of local differentiable sections of a vector bundle
over V is fine (see 3.5). Therefore (6) is a fine resolution of the sheaf
Q(W ® A7 T), and Theorem 2.12.1 implies

Theorem 15.4.1 (DOLBEAULT-SERRE). The complex vector space
H»(V, W)=Ho(V, W@ I*T) is isomorphic to the g-th cohomology
module of the d-vesolution (6). That is,

H?a(V, W) o 208 (W)[3 (AP0~ (W) @)

where Z9:2(W) is the module of all those global forms of type (p, q) with
coefficients tn W which vanish under 0.

An immediate corollary s the fact that H»¢(V, W) is zero if p or ¢
is greater than the complex dimension of V.

For the rematnder of this paragraph it will be assumed that V is compbact.
Let n = dimV. Consider the vector bundle W* dual to W. A prodnct

AP 2 (W) X ANE(W*) > AP+7.a+3(])
can .be defined in a natural way. The product of a€ A??(W) and

B € Ar3(W*) is denoted by aa §. For W =1 it is the usual exterior
product of forms. The product satisfies

J{anB)=0anf+ (—1)P+9ardf 8

aAf= (-1t r+ B p o,
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Ifr=n—p and s=5—gq then ar f€A%"({1) and the integral
x, f) = Jau\ﬂ

is well defined. If @ = 3y, y € A% ¢~1(W), and 3§ = 0 then by (8) and
Stokes’ Theorem

e )= JEy AP = [dlynf)=0.

Similarly ¢(a, f) =0 if B=30y, y€Ar-?»—¢1(W* and 0a=0.
Therefore by (7) the bilinear form ¢ induces a pairing of H?.¢(V, W) and
Hr»-?n-¢(V, W*) with values in €. Thus if acH»*(V, W),
b e Hn—?n—9(V W*) the complex number (g, b) is defined, depends
only on (a, b), and is linear in & and 5.

Kopaira has extended the theory of harmonic forms to apply to
forms with coefficients in W. Introduce a fixed hermitian metric on V.
This induces [15.8 ¢)] an isomorphism T =~ T*,

Using this isomorphism and Theorem 3.6.1 we obtain isomorphisms
MPTRN T TR IrT*® AT ieT*

e AP T*@ 1T

AT ?T.
The result is a duality operator

T T > TRA*T.

The isomorphism »* from A? T ® A¢ T on to itself is multiplication by
(—1)p+e,

Now let the structure groups of the vector bundle W be reduced to
the unitary group. By 15.3 c) there are hermitian anti-isomorphisms
p:W>W pLiWr>W.

Let x (conjugation) be the anti-isomorphism from ¥ T® A* T to
AT @ Ar T. We define

=9 (), F =910 (xs)
and obtain anti-isomorphisms
#:W oMRTQUNT >Wre i *To T
FW*RITOXAT>W @"Te*T.
For r=n-—p, s=mn—g the isomorphism ¥ # is multiplication by
(—1)P+e,

# and

# induce anti-isomorphisms of the corresponding sheaves
#: Q(P,G(W) - Q{u——ﬁ)u-ﬂ(W‘)
F AW > Ar-ron—y(W) .
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Since W and W* are complex analytic there are sheaf homomorphisms
0: AP 2 (W) > AP THL(W),  §: A (W) > A+ (%)
We define the homomorphism
9 A% W) - A~ 1(W)
by
d=—Fo%.
If &, fC A?:4(W) are global forms of type (p, ¢) with coefficients in W,
the scalar product

(a,ﬂ)=t(¢,#ﬂ)=vfa/\#ﬁ

can be introduced. Then (a, &) = 0, and (e, &) = 0 if and only if & = 0.
With respect to this scalar product, 4 and ¢ are adjoint operations:

(&8 = (G ) for acAriW), edr(@). ()
Proof:(a,z‘}ﬂ):—yfau\# FO# p=(—12+4 [ard# p.
v

Therefore (0a, ) — (o, # ) = Vf (@ans B+ (=122 d ¥ p)

=Vf5(au\# B)
=Vfd(ow\# B)

= 0 by SToxES’ theorem.

We now define the complex LAPLACE-BELTRAMI operator [ : A% 4(W)
- A#9(W) by [1= 90+ 0 9. The subspace of elements a¢ A%¢(W)
for which [ & = 0 will be denoted by B#2(W). This is the subspace of
“complex harmonic’’ forms. As in the usual case, (9) implies: O a =0
ifand only if o = 6 = 0.

The methods of the theory of harmonic integrals now show that with
respect to the scalar product 4#9(W) can be represented as the direct
sum of three mutually orthogenal components:

AP (W) = §A79-1(W) @ BAP<HI(W) © BAU(V, W).

Hence Z#:¢(W) = 34 #9-1(W) @ B»9(V, W) and therefore, by Theorem
15.4.1,
H2S(V, W) oz Z8:9(W)[5 A29-1(W) = B2 (V, W) .

From the fact that [J is an elliptic partial differential operator over
the compact manifold ¥, Kopaira deduces that B?:7(V, W) is finite
dimensional, and hence that H#?.¢(V, W) is finite dimensional [see also
SPENCER [2]; a general definition of elliptic differential operator is given
in the appendix {25.1) together with references to proofs of finite dimen-
sionality (25.2)]. The operators #, 9, [ are defined equally for the
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sheaves # ¢2(W*) and the operator induces an anti-isomorphism from
B#»e(V, W) to Br—n—9(V, W*).

We collect the results, of whose proofs we have given a bare outline,
in two theorems.

Theorem 15.4.2 (KopaIra [3]). Let W be a complex analytic vector
bundle over a compact complex manifold V. Then H#»9(V, W) is a finste
dimensional vector space which (after the introduction of a hermitian
metric on V and a unitary structure for W; see 15.3 c)) #s fsomorphic
to the vector space of “complex harmonic” forms of type (p, q) with coef-
ficients in W. In particular H? (V, W) = H%?(V, W) s finite dimensional.
Ifp>mnorq>nithen HH9(V, W) = 0.

Theorem 15.4.3 (SERRE {3]). Let V, W be as in the previous theorem.
The bilincar form ¢ is a dual pairing of the vector spaces H»¢(V, W) and
Hn-pn—o(V W*), In particular if K = J* T is the canonical line bundle
then H*(V, W) and H*—4(V, K @ W*) are dual vector spaces.

We write dimH?.2(V, W) = a#»¢(V, W) and dim H# ¢(V, 1) = h*.2(V)
[= the “number "of complex harmanic forms of type (p, g) on V1.

Remarks: Counter-examples show that it is not true in general
that A#. 2(V) = he-#(V). It will be shown in 15.6 that this is however true
when V is a KAgLER manifold. This fact will be used in the proof of
Theorem 15.8.2. There is a generalisation of Theorem 15.4.2, due to
CARTAN-SERRE [1], which is mentioned in the appendix (23.1).

15.5. Let W be a complex analytic vector bundle over a compact
complex manifold V,,. Since the groups H*(V, W) are finite dimensional,
and zero for £ > n, the EULER-POINCARE characteristic

x(V, W) = “i:' (=) dimHY(V, W) = ‘_Z:' (-1 dimHYV, W) .
is defined (2.10). Define y?*(V, W) by
PV =x(V,We irtT) = 2”,’ {(—berto(V, W). (10)
Then -
LV W) = (V. W) and g#(V,W)—0 for p<0 and p>n. (1)

For W = 1 we naturally write
n

V. 1) =2 (V)= X (=1)h(V)

=0
By using an indeterminate y we can define

x.(V-W)zﬁé 2V, W) 99, x.(V)=P§ 2Py, (12)

We call y,(V, W) the yg,-characteristic of the vector bundle W and
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1+ (V) the y,-genus of V. By definition
2V, W)= 2°(V, W)= 2(V. W) and z(V)=2°(V)=2(V).

(V)= 27 (—1)2h% (V) is called the arithmetic genus of V. (13)
g=0
The SERRE duality theorem (15.4.3) implies that

(VW)= (=1 y»=2(V, W¥)
x(V, W)= (=1 x(V.K @ W*).
We emphasise that the arithmetic genus y(V) of a compact complex
manifold V is defined as the EULER-POINCARE characteristic of the co-
homology with coefficients in the sheaf of germs of local holomorphic func-
tionson V.

15.6. Let V,, be a compact complex manifold. A hermitian metricon V
has the form

(14)

ds' =20 gap(2,%) (@2 A2P), gup=gpa (15)
with respect to local coordinates 2* (x =1, ..., n). To each hermitian
metric ds? is associated an exterior differential form

=12 g.pl{z,2) d*rndZP (16)
which can be written as a real differential form by using real coordinates
2 (=1, ..., 2n) for which 2% = #?*—1 + { 42=, The hermitian metric
ds? is called a KAHLER metric if dew = 0 (KAHLER [2]). The form w then
represents an element of the cohomology group H?*(V, R) which is
called the fundamental class of the KAnLER metric (here we are of
course using the DE RHAM isomorphism).

In the present work we adopt the following terminology: by a
manifold with a KAHLER metric we mean a compact complex manifold
with a particular choice of KAHLER metric; by a KAHLER manifold we
mean a compact complex manifold which admits at least one KAHLER
metric. We summarise briefly the properties of KAHLER manifolds
needed for the present work. A fuller account can be found in WerL [2].

15.7. Let V be a manifold with a KAHLER metric. Then the k?.7(V)
can be calculated with the help of the KAHLER metric by choosing
W =1 in 15.4. The following discussion is concerned with this case.

For a KAHLER metric the compiex LAPLACE-BELTRAMI operator [ is

equal to = , where A is the real LAPLACE operator 40+ 6d, (§=—*d=).
q 2

The operator [J therefore commutes with conjugation, and «— & de-
fines an anti-isomorphism from B#:¢ fharmonic forms of type {p, ¢)] on
to B%# [harmonic forms of type (g, p)]. Therefore a (compact) KAHLER
manifold V has

B (V) = ko (V), h#9(V) = dimB?.e . (17)
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The theory of bE REAM and HoDGE gives a natural isomorphism

H'(V,C= } B#«e, (18)
ptg=r
Therefore the #-th BETTI number b,(V) satisfies
5(V)= X Be(V). (18%)
ta=r

Under the isomorphism (18) the subspace B#.? of H*+¢(V, () is
represented, in the sense of DE RHAM, by the subspace of forms « of
type (p, q) with dee = 0. Elements of this subspace, which clearly does
not depend on the particular choice of KAHLER metric, are said to be of
type (¢, 9)- .

An element of H*+9(V,Z) or H**+¢(V,R) is said to be of type
(p, g) if when regarded as an element of H#+¢(V, C) it is of type (9, ¢).

Formulae (17), (18%) are in general false for arbitrary compact
complex manifolds. For a KAHLER manifold V, (17) gives A% 2= h4.0,
For an arbitrary compact complex manifold A%° is by definition
dim H(V, A¢T), that is the dimension of the complex vector space of
holomorphic g-forms on V. These are also called the forms of the first
kind of degree ¢. Let g, = A%°. Then we have proved

Theorem 15.7.1. The arithmetic genus x(V,) of a compact KAHLER
manifold V, 1s equal to )] (—1)% g;, where g, is the mumber of forms of the
=0

first kind of degree ¢ on V,, linearly independent over C.

15.8.. We have associated (in 15.5) a polynomial x,(V) to each
compact complex manifold V. For y = 0 the value of this polynomial is
the arithmetic genus of V. The next two theorems give an interpretation
of the value of g, (V) fory = —land fory = 1.

Theorem 15.8.1. If V,, is a compact complex manifold then

1alV) = 3 (1P (V) = 3 (—1p+ehse(V,)
. =0 29

is equal to the (ordinary) EULER-POIRCARE characteristic E (V).
Proof (due to SERRE [3], p. 26): Let £2¢ = Q(1? T) be the sheaf of
germs of local holomorphic p-forms. The operator 4 defines an exact

sequence
0>C P> s 50,

E(V,) is the EULER-POINCARE characteristic of cohomology with

coefficients in the constant sheaf €. The result now follows from Theorem
2.10.3.

Remark: If V,, is a KABLER manifold then Theorem 15.8.1 is an
immediate consequence of {18%).
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Theorem 1582 (see Hobge [4)). If V, s a (compact) KAHLER
manifold then
. n
21(Va) =p2; 22 (Va) = pZ' (=1 2(V,)
= X
is equal to the index 7 (V) defined in 8.2.
Proof: If n is odd then by SERRE duality (Theorem 15.4.3)

22 (Va) = ()" 02 (Vo) = — "~ (Vi)
and therefore }' (V) = 0. On the other hand 7(V,) = 0 by definition. -
=

Thus for # odd the theorem is_ true for arbitrary compact complex
manifolds. *

Now suppose # is even. We shall use a number of facts on manifolds
with a KAHLER metric. For these we refer to ECKMANN-GUGGENHEIMER
[1, 2], GuccenugIMER [1], HopGE [1] and WEIL {2]. If 2; = %5;_; +
-+ % %5, are local complex coordinates then ECKMANN-GUGGENHEIMER
and HopGE use the orientation for V,, given by day Adxg A=+ » Adxgy_g A
dxz Adxg A« - Adxy, We use the orientation given by the natural order

n{n—1
dxy Adxy A+ Ad%y,. The two orientations differ by a sign (— 1)"(—2-l
To simplify the subsequent formulae we assume that n = 2m.

Let B# ¢ be the complex vector space of harmonic forms of type
($, ). The fundamental form  defined in 15.6 is a particular harmonic
form of type (1, 1) whose product with any other harmonic form is again
harmonic.

Define a homomorphism

L: Bt.¢— Bp+l,a+l

by associating to each form o€ B?:? the form Lo = w o€ B+ 041,

Then, since w is real, La = L& By 15.4 there is an anti-isomorphism
4 : Bt 4> Ba—pm—q

for which # o= ¥ & = » & We consider the homomorphism
.A : B#,9_» Bp-1,4-1

definedby A= (—1)?*t24 L#.Thend = (—1)#+%x L * and A = Aa.

The kernel of A is denoted by B%¢ and called the subspace of ef-
fective harmonic forms of type (p, q).

(a) AL*: Bf~*e—k, Bp-Le-1 (pLg=<mn, k=1) is (up to a
non-zero scalar factor) equal to L*-1.

(b) L*: B=*%e~* > B?¢ (p + g < m) is a monomorphism.

For p + q < n there is a direct sum decomposition

(c) B#?= B%,a ® L‘Bg-l,_q-l ®--ralr Bg—r,q—r (,- = min (p, q))‘
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We define Bf9 = L* B2~* ¢—* The elements of B}? are called harmonic
forms of type (p, ¢) and class k. The following formula is then decisive for
the proof:

(d) # @ = (—1)2*+* @ for € Bf? and p + ¢ = . Note that @ is an
element of B{-?.

The cohomology group H*(V,, €} is a complex vector space [see
15.7 (18)]

(&) H (VWO = X Bps.

pHg=n
k < min(p,49)

We recall that the scalar product
(e, B) =-Vf¢z/\# B

is defined for harmonic forms «, § of the same total degree.

() The summands in the direct sum decomposition (e) are mutually
orthogonal with respect to the scalar product.

Proof: The scalar product can be non-zero only if « A 4 B is of type
(n,n). Therefore B¢, B:? are orthogonal for (p,q) = (¢, ¢). If
a€ Bi?and B€ BL:7for k> k' and p + ¢ = n then

(a, B) = (L* &g, L¥ B,) with o, B, effective (A og=A fo=0).

Since L and A are adjoint operators, (La, ¢) = (&, Ap), and therefore,
by (a), (@, B) = (o, A* L* fg) = 0.
The cohomology groups H*(V,, R) can be identified with the real
vector space of real harmonic forms. There is a direct sum decomposition
(€ H' (Vo R)= S E{* (p+g=nkr=p<y
where E%'7is the real vector space of real harmonic forms « which can be
written in the form a«= @+ § with ¢¢ B{? (and hence §¢ BP?).
Clearly ©(V,) is the index (see 8.1) of the quadratic form

(. B) =Vf A B (x fEHV, R).

By (d) and {f) the real vector space summands in the sum (g) are mutualily
orthogonal with respect to this quadratic form. Now (d) implies that the
quadratic form (—1)9*+* @(x, f) is positive definite when restricted to
ERS.
Therefore
2 (V,) = X (—1)o+* dimg ED

{thesumisoverp+¢g=n,k < p < ¢).

Clearly dimg Ef? = 2 dim¢ B} ?for p < ¢. If n = 2m then dimgEP™
= dimc kan,m.

Therefore

(h) (V) =2 (—1)9+*dime BR? (p + ¢ =n,k < min(p, g)).
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Now let A?? = dim¢ B?:? as before. It follows from (b) and (¢ that
(i) hp—PHa—k __ pp—k-La—k—1l= dim¢ Bf¢ for p+ ¢ < =
Since A":* = h%* = p*—7:"~*¢ we have
() Bp—*-La=k-1_ pe+kilarksl for py g =,

Finally (h), (i) and (j) imply

(V) = é‘o(_ u—kpp—ka—k L 37 (_J)a+R+LpotR+l, ok tL

k=0
Prg=n Prg=n
= X (~)hnes X (—1hee
P+gsS» Ptraeg>n
=3 (=1)¢h*e. Q.E.D.
b9

Theorem 15.8.2 is used in 19.5 to give an essential step in the proof
of the RIEMANN-ROCH theorem.

Problem: Find a direct proof of Theorem 15.8.2 which is valid for
an arbitrary compact complex manifold ¥,. A somewhat indirect proof
is sketched in the appendix (25.4).

15.9. Let ¥V be a KAHLER manifold (15.6). The exact sequence
0—+Z—->C,—C%—>0 defines an exact cohomology sequence [see
2.5 (11) and Theorem 2.10.1; by definition C, = £7:

HA\(V, C) = HY(V, Z) — H*(V, ©) . (19)

Now HA*(V, £) = H*(V, 1) =~ B%2(V). Therefore (KODAIRA-SPENCER
[2]): an element a& H3(V,Z) is mapped on to the zero elemnent of
H3(V, Q) if and only if a is of type (1, 1).

By Theorem 4.3.1, if £€ HY(V, C¥) is a complex analytic C*-bundle
then &} &= ¢;(§). If F is a complex line bundle over V aund £ is the
associated C*-bundle then ¢, (§) is called the cosomolugy class of F. The
exactness of (19) then implies

Theorem 15.9.1 (LerscHETZ-HODGE, KODAIRA-SPENCER [2]). Let V
be a compact KAHLER manifold. An element a € H2(V, Z) 1is the cohomology
class of a complex analytic line bundle over V if and only if a is of type
(1, 1).

Remark: This theorem has also been proved in the non-KAHLER
case by DOLBEAULT ([2], Théoréme 2.3).

15.10. Let V be a KAHLER manifold with #?¢=0 fur p = ¢. Then
2 (V) is essentially equal to the POINCARE polynomial P(¢; V) =)' b, 1
of V (b, = r-th BETTI number of V). More precisely,

22(V) = X (~ )i e = (— 1) h? = (—1)2 by, .
q

The odd BETTI numbers of ¥ are zero and so
1o(V)=PHV) =Y b,or. (20)
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KAn1LER manifolds with this property include the complex projective
spaces and the flag manifolds F (n). For F(n) this can be seen as folows:
the cohomology ring H*(F (»), Z) is generated by elements y, € H2*(F(n),
Z). By 14.2 there are complex analytic €*-bundles &, over F(n) with
¢ (&) = y;. By the “only if” of Theorem 15.9.1 the y; are of type (1, 1)
and therefore any cohomology class of F(#n) is of type (¢, ). Notice in
particular that for the complex projective spaces and for the flag mani-
folds the polynomials y, and 7, (see 14.4) agree, since both are essentially
equal to the POINCARE polynomial.

15.11. If V,, and V,, are KAHLER manifolds then

ROV X Vi) = Y bne(V,) kv (V,) . (21)

rHu=4p
s+uo=¢

Let v, z be indeterminates and associate to each KAHLER manifold ¥V
the polynomial I, (V)= } h*:2y#20. Then (21) is equivalent to
bq

Hy,s(Vn X Vo) = Hy'z(Vn) 'Hy,s(V:n) . (22)
Let z= —1in (22). Then 1, _,; = g, and
Zy(Vn X V:») = x:v(Vn) : x:v(V:u) ’ (23)

another property common to g, and T,.

§ 16. Further properties of the ygy-characteristic

In this paragraph V¥ is always a complex manifold.
16.1. Consider an exact sequence

0w S whwrso (1)

of complex analytic vector bundles over ¥ [see 4.1 d)]. The sequence of
sheaves

0 QW) = QW) 2> QW) >0, @)

obtained from (1) by taking sheaves of germs of local holomorphic
sections, is also exact.

Proof: Every germ s’ € 2(W’) of a local holomorphic section of W’
is mapped to a germ A'(s') € (W), every germ s¢ Q(W) to a germ
his) € Q(W"). The sequence 0> Q(W') > QW) > Q(W") is clearly
exact, so it remains to prove that every germ 5" ¢ £(W"’) can be written
in the form s” = h(s), s€ Q(W). This is a consequence of Remark 2
of 4.1 d).

Theorem 16.1.1. L&t

O->W  >W->W"'->0 1)
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be an exact sequence of complex analytic vector bundles over a compact
complex manifold V. Then

2V, W)= (V. W) + 2 (V. W"). )
More generally

2V, W)= g2 (V, W) + ?(V,W"), (3%
so that

1 (Vs W) = 43 (V, W') + 1, (V. W") .

Proof: The sheaves which occur in (2) are of type (F) by Theorem
15.4.2, and therefore (3) follows from Theorem 2.10.2. To obtain (3*)
it is sufficient to replace (1) by the sequence

O-WeoltT->-We#T-W' e#T->0 (1%

which is exact by Theorem 4.1.2. (3%) follows by applying (3) to (1%).

Theorem 16.1.2. Let W be a complex analytic vector bundle (fibre C,)
over & compact complex manifold V, and suppose that the structure group
of W can be complex analytically reduced to the triangular group A(g, €).
Let Ay, A, . . ., A, be the corresponding diagonal line bundles [see 4.1 €)].
Let W’ be another complex analytic vector bundle over V. Then

V. Wew
— (VW edA) + (V. W o)+ -+ (V. W ® 4.

Proof by induction on ¢: The theorem is trivial for ¢ = 1. Suppose it is
proved for ¢ — 1. There is an exact sequence

0>A4,-W-—>W/4, -0

in which the vector bundle W/4, admits A(g— 1, C}) as structure
group with 4,, . . ., 4, as diagonal line bundles. The induction hypothesis
implies that
2V, W @ WiA) = 1V, W @A)+ + 2(V. W @ 4)) .
Now (3), applied to the exact sequence
0-W QA -~WeW->-WeWA4-+0,

implies that y(V, W ® W)= x(V, W ® 4,) + x(V, W' @ W|A,). This
completes the proof.

16.2. Let W be a vector bundle over the complex manifold V and S
a non-singular divisor of ¥ (see 15.2). Let U = {U,} be an open covering
of V for which S is given by holomorphic functions s; on U, The
C*-bundle [S] is then represented by the cocycle {s;;} = {s./s;}. Let {S}
be the associated line bundle constructed from the cocycle {s;;} by
identifications on U (U; x C) [see3.2. a) and 15.2]. The maps s;:U; > €
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define a global section s of {S} which is zero at points of S and non-zero
elsewhere, Let (W ® {S})s be the restriction to S of the vector bundle
W @ {S}, and let Q((W ® {S})s) be the sheaf over S of germs of locally
holomorphic sections of (W @ {S})s. The extension by zero of this sheaf
from S to the whole of V will be denoted by Q((W ® {S})s) as in Theorem
24.3.

Theorem 16.2.1. Let V be a complex manifold and let S be a non-
singular divisor of V. Let W be a complex analytic vector bundle over V.
There ts an exact sequence

0> Q(W) > QW ® {S}) > 2(W ® {S})s) > 0 )
of complex analytic sheaves on V.

Proof: Associate to each local section s’ of W the local section
s’ ® s of W ® {S}. Since s is a global section of {S}, which is not identically
zero on any open set of V, this defines a monomorphism 4" : Q(W) -
— (W @ {S}). Over the complement of S in ¥ the section s is never zero
and therefore A’ is onto. Hence the quotient sheaf Q(W ® {S})/Q2(W)
is zero over the complement of S, and is uniquely defined by its restric-
tion to S. It is therefore sufficient to prove the exactness of the sequence

0> QW) S QW e {SH|S— (W {SP) -0  (5)

where . .. |S denotes restriction of the sheaf . . . to S, and where 4 is the
homomorphism which restricts a section of W ® {S} over an open set U
of ¥V to the corresponding section of (W & {S})s over the open set
UnSofS.

To prove the exactness of (5) associate to each point € S a neigh-
bourhood U, in ¥V over which W and {S} are represented as product
bundles U, x €, and U, x €. U, can be chosen so small that U, C U,
for some set U, of the covering. The section s is given by the holomorphic
function s, = s;{U,. Now W ® {S} is represented by the product
bundle U, x (C, ® €). Consider the map €,® C— C, defined by
(- 2) ® 2> (2,2, ...,2,2). This defines a product structure
U, x €, for W ® {S}. With respect to these product structures local
holomorphic sections of W and W ® {S} are represented by g¢-ples

(80 .- - &) and {fy, .. ., [ of local holomorphic functions. The homo-
morphism 4’ is then defined by

(oo o fd=H (g 8) = (5280 - 52 8d) -

The homomorphism 4 is the restriction of (f,, .. ., /) to S and is onto,
since the germ of a local holomorphic function on § is always the restric-
tion of the germ of some local holomorphic function on V. This restriction
is zero if and only if the local holomorphic functions f,, . . ., f, are each
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divisible by s,, that is, if and only if (f,, ..., f,) lies in the image of
A’. This proves the exactness of (5).

If V is compact then the non-singular divisor S is itself a compact
complex manifold, and Wy is a complex analytic vector bundle over S.
In the sequel we write simply ¥(S, W) for (S, Wy), and similarly for
2?(S, W) and g, (S, W). With these notations, if we replace W in (4)
by W@ {S}-* and apply Theorems 2.6.3 and 2.10.2, we cbtain {see
KobAIRA-SPENCER [31)

Theorem 16.2.2. Let V be a compact complex manifold, S a non-
singular divisor of V and W a complex enalylic vector bundle over V. Then

2V, W)= x(V. W {S}) + x(S. W) . (6)
In particular, when W 1s the trivial line bundle
x(V) = z(V. {S} 1) + 2(5) - (6%)

16.3. Let V, S be as in Theorem 16.2.2. For the xest of this paragraph
it will be assumed that V¥ is compact. Denote the complex analytic
contravariant tangent bundles of ¥V, S by £(V), $(S). Then the vector
bundles 22(% (V)), 4#(2(S)) are the complex analytic vector bundles of
contravariant p-vectors on V, S. The corresponding bundles of covariant
p-vectors are denoted by A2(T(V)), 22(T'(S)) as in 4.7. There is an exact
sequence (see 4.9)

0—>Z(S)>E(V)s—~{S}s~>0. (7)

By Theorem 4.1.3* there is a corresponding exact sequence for bundles of
contravariant p-vectors

0> A2(E(S) - 2 E(V)g) — #HE (SN ® {S}s >0, (8
and, by dualising, for bundles of covariant p-vectors
0> 221 (T(S)) ® {S}s*— (T (V)g) > A#(T(S)) > 0. (8"

Let W be a complex analytic vector bundle over V, and consider the
sequence obtained from (8) by tensoring each term by Wy, the restriction
of W to S. By Theorem 16.1.1 the exact sequence obtained gives a
formula

1S, W (T (V)= x2S, W {S} ) + x?(S. W) . ©)

Now replace W in formula (6) by W ® A2{T(V)). A comparison with (9)
gives the important “four term formmla” [KoDAIRA-SPENCER [3],
Formula (14)]

2P (V, W) = 22(V, W {S}1) + y?(S. W) + y2~1(S. W @ {S}-9) . (16,)

This formula holds for all = 0 provided that if $ = 0 the last term is
interpreted as O [in this case we get (6)]. The term 4#(S, W) is zero for
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$=mn=dimV, and for p > n all four terms are zero. If y is an indeter-
minate, (10,) holds with each term multiplied by y*, and summing over
all = 0 gives

2 (V. W)= 2o (V, W ® {S})) + 25 (S, W) + 5 1, (S, W@ {S}7Y) . (10%)

16.4. By repeated application of equation (10,), the integer x?(S, W)
(p = 0) can be expressed as a linear combination of integers of the form
22(V, A) where each 4 isa certain complex analytic vector bundle over V.
For example (10,) = (6) gives

PEW) =22 (V. W) —2°(V, We {S}7). (11,)
The last term (S, W @ {S} ) in formula (10,) for x*(S, W) can be
calculated by replacing W in (115) by W & {S}-*. Thus

1EWy=gV.W)—2(V.We {5} -
— RV WS + 2V, W (S} . (11,)
A continuation of this method gives the formula

1 (S.W) =,2§ (D [V We {S}~) — g MWe {S}-t)]. (11,)

This formula holds for all $ = 0. The left hand side of (11,) is zero for
$ 2 n because S has complex dimension # — 1, but it is not immediate
that the terms on the right hand side cancel for p = #. In other words,
given a vector bundle W and a non-singular divisor S, certain relations
hold between the integers y*(V, W ® {S}"). Do these relations still hold if
{S} is replaced by an arbitrary line bundle F over ¥V'? We shall see that
the answer is yes if V is an algebraic manifold.

16.5. Let Z{y} be the integral domain of all formal power series
ay+ @,y + a3y + - - - with integers 4; as coefficients. The polynomial
ring Z{y] is a subring of Z{y}.

It is not possible to deduce from (11,) an expression of 7,(S, W)
as a linear combination of a finite number of polynomials of type y,(V,4).
Nevertheless in the domain Z{y} of formal power series it is true that

1(S, W) =’.§)(~y)‘[xy(V, We {5}~ — x(V.We {S}-¢m)]. (11%)

The right hand side of (11¥) is a formal power series which in fact
terminates. The coefficient of y? in this power series is given by (11,)
and is zero for p = .

§ 17. The virtual x,-characteristic

17.1. The definition of the virtual y,-genus and the virtual g,-charac-
teristic, as well as the associated calculations, are simplified by introduc-
ing the following formalism.
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Let E be an extension ring of the ring Z of rational integers, and let
the integer 1 be the identity element of E. We consider the rings Z{y}
and E{y} of formal power series with coefficients in Z and E respectively.
Z{y} is then a subring of E{y}. We call a map

k: E{y} > Z{y}
an allowable additive homomorphism (or d-homomorphism) if:

I) h(u+v) =h(u) + h(v) for -u,v€ E{y},
I0) A(uv)=u k() for ucZ{y}, v¢E{y}.

In other words: E{y} and Z{y} are regarded as Z{y}-modules. A d-
homomorphism is a homomorphism from the Z{y}-module E{y} to the
Z {y}-module Z{y}. Condition IT) implies that % (s) = % k(1) for u€ Z{y}.
Lemmea 17.1.1. Let by be an additive homomorphism from E to Z{y}.
Then there is one and only one d-homomorphism h from E{y} to Z{y}
which agrees with ky on E.
Proof: Ifv=1e,+ 6,y + e,7* + - - - with ¢;€ E then we define

A(0) = hyleg) + Boley) v + Bplegy 42 4+« -,

The h,(e;) are power series in y but, after multiplying out the right hand
side, the coefficient of y? for each p = 0 is a finite sum. Therefore the
right hand side is a power series in y and the homomorphism 4 is well
defined. It is easy to see that 4 is a d-homomorphism which extends &,.
Conversely suppose that A’ is a d-homomorphism which extends h,.
Then I) and II) imply that » and A’ agree on any terminating power
series of E{y} and hence that h=4". Q.E.D.

Given a d-homomorphism 4 :E{y}->Z{y} and a fixed element
1€ E{y}, there is a d-homomorphism 4, defined by

h{u) = h{tu).

An immediate corollary of Lemma 17.1.1 is

Lemma 17.1.2. Let k and k' be d-homomorphisms from E{y} to Z{y}.
If i€ E{y} is an element such that

W(u)=h{tu) forall ucE

then by =K', that is the equation K (s) = h(tu) holds for all uc E{y}.

In our applications the ring E will be of a particular form. Let
fi. « - -+ fy, w be indeterminates and let E be the ring generated over Z by
these indeterminates together with f%, ..., /L. The products
we fi fha o form an additive basis of E (here g, 4,, . . ., 4, are integers,
4 is non-negative, and the element 1€ Z is regarded as a product with
p=2A =--+=4,=0). Suppose that to each such product there is
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associated an element of Z{y}. Then there is a unique additive homo-
morphism E — Z{y}, and hence by Lemma 17.1.1 a unique d-homo-
morphism E {y} - Z{y}, which takes the given values on the basis of E.

Now let ¥ be a compact complex manifold, W a complex analytic
vector bundle over V and Fy, . . ., F, complex analytic line bundles over V.
If E is defined as above there are two d-homomorphisms % and £ from
E{y} to Z{y} defined by associating the following values to the basis
elements of E:

hfy.. . 1) =2(V. W@ Fpr @ -- - F), k(1) =z(V) )
Rlwrfo.. )=, (V,Wh@ Fha - @ F%), h(l)= (V).
On the right hand side powers of vector bundles are to be understood
as tensor products. For line bundles negative powers are well defined.
Let u€ E{y} be a power series with constant term uy. Then

h(u) € Z{y} (2)
s & power series with constant lerm h(ug).

Convention: Let V be a compact complex manifold. If we are
given a complex analytic vector bundle and a finite number of complex
analytic line bundles over ¥, we denote the vector bundles by capital
letters and associate to each vector bundle an indeterminate denoted by
the corresponding lower case letter. If there is any possibility of confusion
we write ky, hy for the homomorphisms &, % obtained in the above
manner. If S is a non-singular divisor of ¥, the given vector bundles over
V can be restricted to S. We denote these bundles over S (and the as-
sociated indeterminates) by the same letters as the corresponding bundles
over V. Applying (1) to the complex manifold S we obtain d-homo-
morphisms kg, kg defined by

h,g(w“l‘ll‘ e )= 2(S, We@ F’ll‘ ® - ®FM, hs{l)= 2(S) 3
B o )= 1, (S, We@ Fhg - @ F%), he(l)=1,(S). O

We associate to the line bundle {S} over V the indeterminate s in
accordance with the convention. Then formula 16.5 (11*) can be written

T—st
1(S. W) =hy (w W) 4)
Note that in E{y} every element with constant term 1 has a unique
multiplicative inverse. Particular cases of (4) are

1—s—1

1(9) = v (755)
and, by 16.2 (6}, (6'),

1S, W) =hy(w(l —s7Y)), x(S)=rhy(l—sY).
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17.2. We are now in a position to define the virtual y,-characteristic.
Let V be a compact complex manifold of complex dimension #. Let W
be a complex analytic vector bundle over V and F,, ..., F, complex
analytic line bundles over V. The r-ple (F;, ..., F,) is called a virtual
submanifold of V of {(complex) dimension # —7». We allow the case
r>n.

Definition [compare 17.1 (4)]:

(F, F,,Wyy=h (wﬁ_li
y LIS TREY SR V= #y- ;=11+ylg—l .

2y (Fy, - . . F,|, W)y is an infinite power series on y with integer co-
efficients. It will be called the virtual y,-characteristic of therestriction
to the virtual submanifold (F,, . . ., F,)” of the vector bundle W. Clearly
it does not depend on the order in which the line bundles F; appear.
If W is the trivial line bundle we denote the virtual y,~characteristic by
2»(Fy, - - -, Fy)y and call it the virtual y,-genus of the virtual submanifold
(Fy . ... F,). We write

2o (Fys -+ Fol, W)y =,,’:Y‘; 2Ty o Fol, W)y y?

BBy Fly= 3 g2(Bu s Fy 7.
We shall always write x for 4% Then by 17.1 (2)

WF oo EL Wy = by (w 1T (1= £7).

The integer y(Fi, ..., F,|, W)y is called the virtual y-characteristic
of the restriction to the virtual submanifold (F,, ..., F,) of the vector
bundle W. The integer y(F,, ..., F,)y is called the virtual arithmetic
genus of the virtual submanifold (Fy, .. ., F,).
In particular, the virtual arithmetic genus y(F)y of a line bundle F
over V is defined by
2 (F)y = 2(V) — x(V,FY).

Now let S be a non-singular divisor of V. Then ¥, (S, W) is defined
and is a polynomial of degree <= — 1. By 17.1 (4)

xS, W) = 1, ({S}, W)y - #)

In this case the virtual y,-characteristic is a polynomial of finite degree.
The fact that y,(F,, .., F,], W)y is a polynomial of degree =<# —7,
and in particular that y,(F,,... F,|, W)y is identically zero for r > #,
is proved in Theorem 19.2.1 for the case that V is an algebraic manifold.
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We prove the following generalisation of {4") which justifies the above
definitions.

Theorem 17.2.1. L& V, W, F,, . . ., F, be as at the beginning of ihis
section. Let S.be a non-singular divisor of V and {S} = F;. Then

(- o B Wy = 1 ((Fads, - - - (F)sl, We)s -

Proof: We write

Rx) = L=t (5)

14 ys1
Then by definition ,

B(Fds. - (B)sl, We)s = s (w TTRUD).
It follows from (1), (3) and (4) that
hs(orfr .. ) =Ry(w fir.. . fF R(f))-
Hence by Lemma 17.1.2 with ¢ = R(f,)

As (w’_ g R(f,)) _ 1y (wi g R(fi)) — 1(Fy .o F.W)y. QE.D.

From the definition of the virtual y,-characteristic we obtain
Lemma 17.2.2. If some F, is the trivial line bundle 1 then
2(Fy L W)y =0.

17.3. We now show that the functional equation, established in 11.3
for the virtual 7,-characteristic, is also satisfied by the y,~characteristic.

Theorem 17.3.1. Let V be a compact complex manifold, W a complex
analytic veclor bundle over V and F,, .. ., F,, A, B complex analytic line
bundles over V. Then

Fy, .., F,,4A® B|, W)y
= fy(Fy, - . Fp, A, W)y + 2y(Fy, - - ., B, B], W)y + (6)
+O-V(F..  F, A, B, W)y—yxy(F,...F,A,BA® B|, W)y.
Proof: For brevity let u = 1w JT R(f). Then by (5) it is necessary
i=1
to prove the equation

A(u R(a b))
=h(uB(@)+huREO)+ (y— 1) A(uR(a) R() - y A(uR(a) R(b) B (ab)).

Since £ is a d-homomorphism it is sufficient, using 17.1 I) and 17.1 IT)
to prove that

R@b)=R{@) +R®) +(y— 1) R(a)R(®) —yR@) R(®) R(ab).
But this is precisely the functional equation which occurs in 11.3.
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Remark: The functional equation (6) is a relation between five
formal power series. It cannot be assumed that these power series
terminate or converge, and therefore it is not permissible to substitute
particular numerical values for y. It is however permissible to equate
coefficients in (6). The result is a relation between the y?(. .., W) of the
five virtual manifolds involved. For 4° = g this gives

Z(Flt"-»FrnAQBI: W)V (6’)
=2(Fy ... Fp, A, W)y + 2(F, ..., B, B,W)y— 4(F,, ..., E, 4, B, W)y.

This is an equation for the virtual genus well known in algebraic geo-
metry. In our formalism it arises from the identity

1— (@b 1=(1—aY+(1—b"Y—(1—a(d—b-1.

17.4. Let V,, be a compact complex analytic split manifold [see
13.5 b}]. By definition the group of the tangent G L (m, C)-bundle of V,,
can be complex analytically reduced to the group A(m, C) of triangular
matrices. Let 4,, . . ., 4,, be the m diagonal complex analytic line bundles
[see 4.1e)]. The complex analytic vector bundle A? T of covariant

p-vectors on ¥, admits the group A ((’;’), C) as structure group; the
corresponding (';;) diagonal complex analytic line bundles are (compare
Theorem 4.1.1}
AP @ A71@ - - " ® A (5 <ia< - <1y,
Therefore, by Theorem 16.1.2 for = 0,
22V W=V, We 22 T)
= ¥ aVeWeAD'® A7'e -0 43 ™

;e . *»
H< < <lhy

and, applying the notation of 17.1,
m
1V W) = (0 17 1+ 3. ®

‘We proved in 13.6 (13) a formula for the Topp genus of an almost
complex split manifold, and will now obtain the corresponding formula
for the arithmetic genus x(V,,) of a complex analytic split manifold 7,

Theorem 17.4.1. Let V,, be a complex analytic split manifold with

diagonal complex analytic line bundles A,, ..., Ay Let W be a complex
analytic vector bundle over V.. Then

(1+y>"'x(vm,W)=lz”" X mle A Wy, @)

=0 H<h< e <H
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Proof: Note that (9) is a relation between formal power series.
In the notation of 17.1 the right hand side can be written

5 y X k(R(a)...R(a)) [Definition of B in (5)]

=0 dy<iy< <

=k ( f ¥ 3 wRa)... R(a,-‘)) (17.1 1))

I=0 H<ig<o<g

=F (wﬁ @ +yR(a,.)))

i=1

=h (7{)‘_ T+ (1t +yar‘)‘1)

= (1 +y:’:ﬁ (w‘_é (1 +ya,-‘1)—1) .

A straightforward application of (8) shows that

‘

Blonairap . ..ab) = b (wrabal ..o [T (1+ yar).

t=1

Now Lemma 17.1.2 with

t=_ﬁ:r (1 +yar?)
gives -
(o (w 0T (-4 3a57)71) = (L) h(0 [T (1 +yart (L yars)
— (L4 37 hw) = (L 9)" 2V, W), Q.E.D.

§ 18. Some fundamental theorems of Kobama

18.1. Let V be a KAHLER manifold. By definition (15.6) V is compact.
Let HL1(V, R) be the subgroup (see 15.7) of H2(V, R) which consists of
elements of type (1, 1), and let #%-(V, Z) be the corresponding subgroup
of H3(V, Z). We introduce an “archimedean partial ordering” of
HYY(V,R):

Definition: An element x ¢ HLY(V, R) is positive (x > 0) if x can
be chosen as the fundamental class of a KAHLER metric on V.

If x, y € HL1(V, R) then the following rules hold:

(0} At least one element of H%“(V, R) is positive.

(1) The zero element of H-1(V, R) is not positive.

(2) Ifx>0andy>0thenx +y>0.

8 Ifx>0andr>0 (7 cR)thenrx>0.

(4) If x,y ¢ HY1(V, R) and x > O then there is a positive integer g
(which depends on x, ) such that gx —y > 0.
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Definition: An element x € HLY(V, Z) is positive if it is positive
when regarded as an element of H%-*(V,R). A complex analytic line
bundle F over V is positive if ¢,(F), which by Theorem 159.1 is an
element of H-*(V, Z), is positive.

A KAHLER manifold V is called a HopGe manifold (see HopGe [2])
if HLY(V, Z) contains at least one positive element, that is, if V admits
a KAHLER metric whose fundamental class is in the image of the natural
homomorphism H?(V, Z) - H*(V, R).

Examples are known of compact complex manifolds which are not
KAHLER manifolds, and of KAHLER manifolds which are not Hopgr
manifolds.

Complex projective space P,(C) is a KAHLER manifold [and so
automatically a Hopgt manifold: H%(P,(C), Z) = H2(P,(C), Z) ~ Z
implies that if x ¢ HL1(P, (C), R) = H2(P,(C), R) there is a real number
7 > 0 such that 7 x lies in the image of the homomorphism H2(P,, (C), Z)
— H%(P,(C), R)). The positive elements of H2(P,(C), Z) are the positive
integral multiples of 4, [= the cohomology class of the oriented hyper-
plane P,_, (C) in the oriented manifold P, (C); see 4.2].

An algebraic manifold V (see 0.1) is a HODGE manifold because V
can be regarded as a submanifold of P, (C), m sufficiently large, and
the restriction of &, € H2(P,,(C), Z) to V gives a positive element of
HWY(V, Z).

A complex analytic line bundle F over V is said to be projectively
tnduced if, for some embedding of V in a projective space P, (C), F is
the restriction to V of the line bundle H with cohomology class k,y,.
[H is associated to the C*-bundle #,, of 4.2 with ¢;(3,,) = %,, and is
determined by the hyperplane P, _;(C) of P,(C).] A projectively
induced line bundle is positive, but in general there exist positive line
bundles which are not projectively induced. The projectively induced
line bundles can always be given by divisors (the hyperplane sections).
More precisely we have

Theorem 18.1.1 (BeRTINI). Let F be a projectively induced line
bundle over the algebraic manifold V. There is a non-singular divisor S
of V with F = {S}.

Remark: The theorem of BERTINI is often stated in the form:
A “‘general” hyperplane section S of a connecled non-singular algebraic
manifold V, in P, (C) is iiself non-singular and, for n = 2, connected.

For proofs see Axizuki [1] and ZARIsgI [2, 3). It is easy to prove
that S is non-singular; the fact that S is connected for # = 2 is not
needed in the sequel.

The following fundamental theorem is due to KoDAIRA [6]. Another
proof, which applies more generally to normal complex spaces, has been
given by GRAUERT [3].
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Theorem 18.1.2. A compact complex manifold is algebraic if (and
only if) st is a HopGE manifold.

Kopartra’s proof makes essential use of a theorem on the vanishing
of certain cohomology groups which is itself of considerable importance
and is described in the next section. We then summarise the applications
of Theorem 18.1.2 which are important for the present work.

18.2. In 15.2 we formulated the generalised RIEMANN-RoCH problem.
Examples show that H*(V, W) does not depend only on the continuous
vector bundle W': it is possible to find an algebraic manifold ¥ and two
complex analytic vector bundles W, W’ over ¥V which are isomorphic as
continuous vector bundles but for which dim He(V, W) & dim H*(V, W").
Nevertheless it turns out that y(V, W) does depend only on the conti-
nuous vector bundle W. In fact it depends only on the CHERN classes
of W. In many important cases it is moreover possible to prove that the
cohomology groups H*(V, W) vanish for all ¢ > 0. In such cases
dim HYV, W) = x(V, W), and the calculation of yx(V, W) by means
of CHERN classes gives a solution of the RIEMARN-RocH problem.

Theorem 18.2.1. Let F be a complex analytic line bundle over the
compact complex manifold V. If F—14s positive then the cohomology groups
Ht(V, F) vanish for all i = n.

This theorem is proved by Kobaira [4]. He uses a technique from
differential geometry due to BocENER. Another proof has been given by
ARi1zUKI-NAKANO [1], who actually prove that if F—! is positive the
groups H#4(V, F) [see 15.3 a)] vanish for p + g < n.

The SERRE duality theorem 15.4.3 shows that Theorem 18.2.1 is
equivalent to

Theorem 1822 (Kopaira). If F ® K1 is postlive then the cohomo-
logy groups H*(V, F) vanish for all i > 0. In this case

dimH(V, F) = z(V, F).

Of course these theorems are non-vacuous only if V is a HODGE
manifold. Theorem 18.2.2 and rule (4) of 18.1 imply immediately (see
also GriFFiTHS [3])

Theorem 18.2.3 (KoDAIRA). Let F be a complex analytic line bundle
over a HODGE manifold V, and let E be a positive line bundle over V.
Then ithe cohomology groups H(V,F @ E®) vanish for all §>0 and %
sufficiently large.

Theorem 18.2.2 is an essential preliminary in Kobaira’s proof of
Theorem 18.1.2 (HopGe manifold — algebraic manifold). In the process
Kopaira [6] proves

Theorem 18.24. Let V be a HoDGE manifold. There is a posiisve
element xy € HLY(V, Z) with the property:
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Every complex analytic line bundle F with ¢, (F) — %4> 0 s pro-
jectively induced.

It is now possible to deduce

Theorem 18.2.5. Let V be an algebraic manifold and F a complex
analytic line bundle over V. There are projectively induced line bundles
A, BwithF = A ® B~

As a corollary, F can be writien in the form

F={S}e {T}

where S and T are non-singular divisors of V.

Proof: Let E be a projectively induced line bundle over V with
6 {E) — x> 0. It is elementary that 4 = E® is projectively induced
for & > 0. For % sufficiently large % ¢, (E) — ¢, (F) — %5 > 0, and by 18.2.4
B = E* @ F~!is projectively induced. Then F = A @ B~2. The corollary
follows from the theorem of BeRTINI (18.1.1) with 4 = {S} and B={T}.

Remarks: The corollary shows that F can be represented by a
divisor. It follows that the group of divisor classes of V is naturally
isomorphic to the cohomology group H'(V, C%) (see 15.2 and KoDAIRrA-
SPENCER [2]). The fact that every divisor D of an algebraic manifold is
linearly equivalent (see 15.2) to a divisor of the form S — T, where S
and T are non-singular, is elementary to prove (see for instance ZARISKI
[4)).

From now on we make no distinction between HoDGE manifolds and
algebraic manifolds. In many cases (for instance in the next section) it is
possible to show that a given compact complex manifold ¥ admits a
HobnGE metric. V is then automatically algebraic.

18.3. Let L be a complex analytic fibre bundle over the algebraic
manifold V with complex projective space P,(C) as fibre and the pro-
jective group PGL(r + 1, C) as structure group. Cleatly L is a compact
complex manifold. It is possible to construct a HODGE metric on L by
using 2 HopGE metric on ¥ and the usual Hopge metric on P,(C).
Hence

Theorem 18.3.1 (KopaIra). A complex analytic fibre bundle L
over the algebraic manifold V with P.(C) as fibre and PGL(r+ 1,0)
as siructure group is itself an algebraic manifold.

The details of the proof can be found in Kopaira [6], Theorem 8.
A. BogreL (also using Theorem 18.1.2 of KoDAIRA) has generalised the
above theorem as follows:

Theorem 18.3.1* (A.Borgr). Let L be a complex analytic fibre
bundle over the algebraic manifold V with an algebraic manifold as fibre
and a connected siructure group. Assume that the first BETTI number of F
15 zero. Then L is itself algebraic.
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We shall apply the BoreL theorem only in the case where F is the
flag manifold F(g) == GL({g, C)/4(q, C) and L is associated to a GL(g, C)-
bundle £ over V. In this case it is easy to prove that L is algebraic
directly from Theorem 18.3.1 by induction over ¢:

Consider the fibre bundle L’ associated to L but with P, ,(C) as
fibre. Then L is a complex analytic fibre bundle over L’ with F(g — 1)
=GL(g— 1,C)/4(g — 1, C) as fibre. By Theorem 18.3.1 L’ is algebraic.
By the induction hypothesis L is algebraic.

The fact that F(g) is an algebraic manifold was not used in this
induction proof. It can be deduced by taking V as a point. In this case
L=F(g).

Remark: Theorem 18.3.1* remains true if “‘algebraic” is replaced by
“KAnrLER” throughout. It is then a special case of a theorem of BLAN-
CHARD [2].

§ 19. The virtual yy-characteristic for algebraic manifolds

In § 17 we defined the virtual y,-characteristic g, (F;, ..., F,|, W)y
associated to a compact complex manifold V, a complex analytic vector
bundle W over V and complex analytic line bundles F,, . . ., F, over V,
By definition y,(F;, ..., F,|, W)y is a formal power series in the in-
determinate y with integer coefficients. We omit the suffix ¥ when there
is no danger of ambiguity. If ¥ is an algebraic manifold, it is possible to
obtain more detailed information about the y,-characteristic with the
help of Theorem 18.2.5.

19.1. A O-dimensional compact complex manifold is a finite number
of isolated points.
Lemma 19.1.1. Let V be a O-dimensional complex manifold consisting
of k poinis. Let W be a vector bundle over V with fibre C, and F, .. ., F,
line bundles over V.
Then ) 0,(V.W)=4q#
In) gy(Fy ... F L W)=0 for r= 1.
Proof:
I) 2,(V. W) = 2(V, W) = dmH(V, W) = q k.
II) Every line bundle over V is trivial. Apply Lemma 17.2.2.

19.2. By definition y,(V, W) is a polynomial (terminating power
series) with integer coefficients. We now prove by induction on the
dimension # of V that the virtual y,-characteristic is also a polynomial
in the case that ¥ is an algebraic manifold.

Theorem 19.2.1. Let V be an algebraic manifold of complex dimension
n. Let W be a complex analytic vector bundle over V with fibre C, and let
Fy, .., F, (r = 1} be complex analytic line bundles over V. Then
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a) the virtual y,-characteristic y,(Fy, ..., F,|, W} is zero for r > n.
Forr < nitis a polynomial of degree < n — r in y with integer coefficients.

b) if r=mn=1 the virtual y,characteristic y,(Fy, ..., F,|, W)
= y(Fy, ..., F,l, W) is the integer g~ f; f5 . . . [, [V], where f, ¢ HX(V, Z)
is the cohomology class of F .

Proof of a): Lemma 19.1.1 shows that a) is true for dimV = 0.
Now suppose that a) is proved for dimV < #. By Theorem 18.2.5 there
are non-singular divisors S and T of ¥V such that {S} =F, ® {T}. The
functional equation (6) in Theorem 17.3.1 then becomes

Zy({s}:Fz’ .. ':Fr!» W)
=y(Fr .. W F L W)+ 4, {T}, Fy, .., F |, W) (*)
+ =) (T} o o Bl W) =y 1 (S} AT By F| W)

The functional equation contains five terms, and we have to prove
that term 2 has degree < # — r. The induction hypothesis, together with
Theorem 17.2.1 shows that terms 1, 3, 4, 5 all have degree <n —7r
and vanish for r > n. [If » = 1 then term 1 is just x, (S, Wg) and term 3
is 4y(T, Wy); these terms are polynomials of degree <z — 1 by the
definition of the (non-virtual) y,-characteristic.] Therefore term 2 is a
polynomial of degree < # — 7 and zero for 7 > n. Q. E. D.

Proof of b): Again by Theorem 18.2.5 there are non-singular divisors
S and T of V such that {S} = F, ® {T}.

Then a) gives, for n = 2,

2{S} Fa - . . |, W)
= 2(Fy, Fa, . o Ful, Wy + 2({T}, Fy, .. . Ful, W) (1)
and forn =1
2 ({SH, W) = z(Fol, W) + x({TH. W) . 2)
By (2) and Lemma 19.1.1 the case #n = 1 gives

2(ELW)=gs—qt=qh/[Vi]

where s, ¢ are the number of points of S, T. Therefore b) is true for
dimV = 1. Now suppose that b) is proved for 1 £ dimV < #. We now
apply the induction hypothesis to (1), and use Theorem 17.2.1, Theorem
4.9.1 and 9.2 (3) to obtain

2 Fy Fo o WP Wy=q-(f3.. . fa)s[S1— ¢ {fa. - - f)r[T]
=g-cl{SPfe---fulVl—g-al{Thf. .- xlV]
=q¢-fifs-- - fulV]

Remark: The case # = 1 of Theorem 19.2.1 b) implies the RIEMANN~
RocH theorem for (connected) algebraic curves (see 0.5). Let F be a
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complex analytic line bundle over the algebraic curve ¥V with cohomology
class fe H3(V, Z). Choose W to be the trivial line bundle. Then the
virtual y-genus of F-1is given by

2(FY) =—f[V].
But, by 17.2, x(F) = x(V) — z(V, F-1) and therefore, substituting F -1
for F,
1V, F)=x(V) +/[V]. 3

By Theorem 15.7.1, 2(V)=1—g, =1 — p where p = half first Betti
number = genus of V. The integer f{V] is called the degree of F. If F
is represented by a divisor, which is always possible, then deg(F) is the
algebraic number of points (number of zeros minus number of poles)
of the divisor. The duality theorem 15.4.3 implies that

x2(V, F) = dimH%(V, F) — dimH*(V, F)
= dimH*(V, F) — dmH*(V, K ® F-Y)
and therefore (3) becomes
dimH*(V, F) — dimH(V, K@ F~1) =1 — p + deg(F) .

19.3. Let (F,, ..., F,}, W)y denote a set consisting of an algebraic
manifold ¥, a complex analytic vector bundle W over ¥ and complex
analytic line bundles F, . . ., F, over V. We allow the case r = 0, but in
this case we also write (V, W) for (...}, W)y.

Theorem 19.3.1. Let G be a funclion which associates to each sei
(Fi, ..., F,|, W)y a power series in the indelerminale vy with rational
coefficients. Suppose that G(F,, . . ., F,|, W)y is independent of the order
in which the F; appear and that

DGV, W)=y (V. W).
I1) G satisfies the functional equation
G(F,...F,,A@ B, W)y =G(F,,... F, A, W)y +
+G{Fy .. F B, W)+ (y—1)G(Fy, ..., F,, 4, B, W)y —
—G{F,,....F,, A, B,A® B|, Wiy.
IIT) I} S is a non-singuiar divisor of V and Fy = {S} then
G(Fy - Fe|, Wy = G((Fs, - - - (F)sl, We)s
(forr =1 this means that G(F,|, W)y = G(S, Wg)). If F,={0}=1
then G(F,, ..., F,], W)p=0.
Conclusion: Forall (Fy, .. . F,|, Wiy withr = 1
o Fy e B, Wy =G(Fy, .. L F |, W)y
Proof: gy, has properties II) and II1) and therefore the function
%y — G has properties II) and III). It is therefore sufficient to show that
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any function G' which satisfies 11), 111} and

NGV, W)=0
ts 4dentically zero. This will be proved by induction on the dimension »
of V.

By Theorem 18.2.5 there are non-singular divisors S and T of V
such that {S} = F, ® {T}. Then II) implies equation (%) of the proof of
Theorem 19.2.1 a) with y, replaced by G'. This equation has five terms,
and we have to prove that the second term is zero. The induction hypo-
thesis and III) imply that terms 1, 3, 4, 5 are zero. [For r=1 it is
necessary to use I') to prove that terms 1, 3 are zero.] Therefore term 2
is zero. Q. E. D.

In the next theorem we consider only the virtual y,-genus, that is,
the vector bundle W is always the trivial line bundle. A virtual sub-
manifold (see 17.2) of ¥ is denoted by (F,, . . ., F,)p. We allow the case
7 =0 and in this case also write ¥ for (...})y. By Theorem 19.2.1 the
power series y,(Fy, ..., I}y is actually a polynomial in y with integral
coefficients. It is therefore permissible to substitute a particular number
¥, for the indeterminate y. If y, is a rational number then y,, (Fy, . ... F)y
is a rational number; if y, is an integer then so is g, (Fy. . .., F)y.

Theorem 19.3.2. Let G be a function which associgles fo each
(Fy, - . .. F,)y a rational number which is independent of the order in which
the F; appear. Suppose that, for some fixed rational number y,,

D) ¢(V) = £.(V)-
II) G satisfies the functional equation
GFy,.. . FL,A®@ Byy=G(F,,.. . Fr, )y + G(F,, .. , F,, Byy +
+ - 1)G(Fy, ... F, A, Byy — 3%, G(Fy, .. . F,, A, B, A ® B)y.
II1) If S is a non-singular divisor of V and F, = {S} then

G(Fl’ o "Fr)V = G((FZ)S» e (Fr)S)S
(for r=1 this means that G(F)y=G(S)). If Fy={0}=1 then
G(Fy....Flp=0.
Conclusion: Forall (Fy, ..., Flypwithr= 1

I (- F)y=G{Fy, ... Fy.

Proof: Exactly as for Theorem 19.3.1.

Remark: The reason for choosing W to be the trivial line bundle is
simply that we apply Theorem 19.3.2 in the above form. The same proof
gives a formulation of Theorem 19.3.2 for arbitrary (Fy,..., F,|, W)y.
This is not more general, however, because the hypothesis is strengthened
as well as the conclusion. The induction method of the proofs of Theorems
19.2.1, 19.3.1 and 19.3.2 is used frequently in algebraic geometry.
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Certain results need only be proved for algebraic manifolds (in the non-
virtual case) and then Theorem 18.2.5 allows them to be extended to
apply to virtual manifolds. We have stated this induction principle only
in the generality needed for the results in the present work, but at the
cost of some repetition in statements of theorems and proofs.

19.4. Let (F,, ..., F,|, W)y be as at the beginning of this section,
and let /€ H*(V, Z) be the cohomology class of F,. The complex analytic
vector bundle W is associated to a complex analytic GL(g, C)-bundle
which can be regarded as a continuous GL(g, C)-bundle & Then the
virtual (Topp) T,-characteristic T,(f,, . . ., /.|, £}y was defined in 12.3.
We write

T:V(Flr s Frl- W)V = Ty(fl: LR fr'» E)V

TV, W)=T,(V. 8.

By Theorems 12.3.1 and 12.3.2 the T ,-characteristic has all the properties
required of the function G in Theorem 19.3.1 except for the property

1) T,(V, W) = 2, (V. W)

which is not yet proved. We note already, however, that s is only
necessary to prove 1) for all V, W in order to prove that y, and T, agree
on all (Fy, ..., F,.|, Wip.

19.5. The virtual T,-genus is a polynomial in y with rational co-
efficients, and so it is permissible to substitute a particular value y,
for . If 4 is an arbitrary (but fixed) rational number then, by Theorems
11.2.1 and 11.3.1, T, (F,, . . ., F,)y has all the properties required of the
function G in Theorem 19.3.2 except for the property

D) T,,(V) = 2,.(V)
which is not yet proved. Note, however, that it is only necessary to
prove I) for all algebraic manifolds ¥ in order to prove that g, and T,
agree on all (F,, ... F)y.
‘We now show that I) does hold for ¥, =1 and y, = —1. The index
theorem 8.2.2 implies [see 10.2 (6)] that for y,=1

T:(V) =1(V) = index of V.
Theorem 4.10.1 implies [see 10.2 (5)] that for y, = —1
T_,(V) = E(V) = EuLER-POINCARE characteristic of V.

Theorem 15.8.1 and the HopGE index theorem 15.8.2 imply the corres-
ponding results for the y,~genus:

(V) ==(V)
21 (V) =E(V).

4

and
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For y,=1 or yy= —1 the function T, satisfies all the properties
required of the function & in Theorem 19.3.2 and therefore

Theorem 19.5.1. The virtual T ,genus and the virtual y,-genus agree
for yo=1and yy= —1:

Let V be an algebraic manifold and let F,, . . ., F,, be complex anabytic
line bundles over V with cohomology clusses fy, ..., f,€ HX(V,Z). Then

o s Fly=T(Fy, - o Fly=t(fu. .- v,

1By W Fy =TT - s Fly =Ty - v -

and

§ 26. The Riemann-RocH theorem for algebraic manifolds and
complex analytic line bundles

We are now in a position to prove that if ¥ is an algebraic manifold
then the Topp genus 7'(V) and the arithmetic genus y(V) agree. This
will then imply the RIEMANN-ROCH theorem for a complex analytic line
bundle over V.

20.1. The first step is to prove that T(V) and (V) agree if the
algebraic manifold V is also a complex analytic split manifold [see
13.5.b)].

Theorem 20.1.1. Let V be an algebraic manifold whick is also a
complex analytic split manifold. Then x (V) = T (V).

Proof. Let m = dimV and let 4,, ..., 4, be the complex analytic
diagonal line bundles defined over V. By 13.6 (13) and Theorem 17.4.1
with W =1,

I+ T(V)= 2 Tds, . u 4y,

<<

DI A P N

B K<y

Xy
i=o
(L) = 2
The T, are polynomials. Since V is algebraic the y, are also polynomials
(Theorem 19.2.1). The two equations show that T (V) = x(V) provided
that, for some y, &= —1, T,, and g,, agree for algebraic manifolds ¥ and
their virtual submanifolds (4;, ..., 4;)y. Theorem 19.5.1 shows that
T,, and y,, agree in this sense for y, = 1. This completes the proof.
Remark: It is interesting to note that the agreement of y, and T,
for y, = — 1 is not sufficient to prove the above theorem. The proof that
%v, and T, agree for y,= 1 is based on the fact that the index of a
differentiable manifold can be represented as a “polynomial in the
PONTRJAGIN classes” (Theorem 8.2.2). This theorem was proved with the
help of the cobordism theory of Taom.
20.2. The construction of 13.4 associates, to each compact complex
manifold V,, a compact complex split manifold ¥4 which is a complex



148 Chapter IV. The RiemanNN-Roca theorem for algebraic manifolds

analytic fibre bundle over V with the flag manifold GL (%, C)/4(n, C)
as fibre. This construction makes it possible to reduce the proof that
%2 (V) = T (V) for arbitrary algebraic manifolds ¥ to the case considered
in Theorem 20.1.1. By Theorem 14.3.1 T (V) = T'(¥V4). The corresponding
result for the arithmetic genus is contained in

Theorem 20.2.1. Let & be a complex analytic GL{gq, C)-bundle over
the algebraic manifold V. Lel V' be the fibre bundle associated to & with the
flag manifold F(q) = GL{(g, €)/A(q, C) as fibre. Then V' is an algebraic
manifold and ¥ (V') = x (V).

Proof: Theorem 18.3.1* implies that ¥’ is algebraic. Let ¢ be the
projection from V¥ on to V. The bundle ¢* & over ¥V’ admits the group
A(g, C) of diagonal matrices as structure group. Let &, ..., &, be the
corresponding diagonal C*-bundles and let y; be the image of c, (&)
under the natural homomorphism H2(V’, Z) -~ H?(V’, C). The bundles &;
are complex -analytic and therefore by Theorem 15.9.1 the cohomology
classes y; are of type (1, 1). The cohomology homomorphism ¢* maps
H*(V, €) monomorphically into H*(V’, C) (Borer [2]). Since ¢ is a
complex analytic map, ¢* maps cohomology classes of type (2, ¢) to
cohomology classes of type (p, ¢). It is known that H*(V’, €} is generated
by ¢* H*(V, C) and the y; (BoreL [2]). Since each y, is of type (1, 1},
all cohomology classes of type (0, ) in H* (¥, C) must liein ¢* H*(V, C).
Therefore A%#(V') = A%?(V) and hence y (V) = x(V').

Theorem 20.2.2. Let V be an algebraic manifold. The arithmetic
genus x (V) and the Toop genus T (V) agree.

Proof:Let V4 be the split manifold constructed from V. The previous
theorem shows that V4 is an algebraic manifold and that

2(V) = x(V9). 1
By Theorem 14.3.1

T(V)=T(V4). @
By Theorem 20.1.1 .

1 (V4) =T (V4. ©)

The conclusion follows from (1)—(3).

20.3. Theorem 20.2.2 states that the y,-genus and the T,-genus
agree for algebraic manifolds when y = 0. The argument of 19.5 then
implies

Theorem 20.3.1. Let V be an algebraic manifold, and It F,, . . ., F,
be complex analytic line bundles over V. Then

2Fy .. F)y=T(F,...F)y.
The theorem states for r = 1

xFly=T(F)y.
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The virtual genus of a line bundle can be expressed in terms of the
(non-virtual) genus of V. By 17.2 and 12.1 (4)

2 F)y=x(V)—x(V,FY),
T(F)y=T(V)— T(V,F-Y.

Therefore, replacing F by F~1, Theorems 20.2.2 and 20.3.1 imply the
formula:

and

2(V.F)=T(V,F). @

Formula (4) is the RiIEMANN-RocH theorem for an algebraic manifold V'
and a complex analytic line bundle F over V.

Recall (15.9) that the cohomology class of F is the first CHERN class
of the C*-bundle associated to F. The definitions of y and T and the
result just obtained can be collected together as

Theorem 20.32. Let V' be an algebraic manifold of dimension n
and let F be a complex analytic line bundle over V with cohomology class
f€ H23(V, Z). The cohomology groups H*(V, F) of V with coefficients in the
sheaf of germs of local holomorphic sections of F are finite dimensional
complex vector spaces which vawish for i>wn. The EULER-POINCARE
characteristic

n

1(V,F) = X (= 1) dimHY (V. F)

can be expressed as a “polynomial” T (V,F) in the cohomology class f
and the CHERN classes ¢; of V:

12V, F) =1, [e" II+— e_y‘] (4%)

Formula (4*) is to be understood as follows:
c.€ H2{(V, Z) and there is a formal factorisation

14zt text=0+p2)...(1+y,%). (5)

Consider the term of degree n in f and the y; of the expression in square
brackets. It is a symmetric function in the y; and is therefore a polynomial
in f and the c; with rational coefficients. If the multiplication is interpreted
as the cup product in H*(V, Z), this polynomial defines an element of
H2n(V, Z) ® Q. The value of this element on the 2n-dimensional cycle of V
determined by the natural orientation ts equal to y(V, F).

If F=1, so that f is 0, the above theorem gives Theorem 20.2.2.

Formula (4*) can also be written in the form (see 1.7):

2V, F) =%, [ef+ det1 s,f}:/fﬁ] ©
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The power series is a power series in x% The elementary symmetric

*
sinh »
functions of the y? are the PONTRJAGIN classes p;, g, . .., of ¥, which
depend only on the differentiable structure of ¥, not on the almost

complex structure (see 4.6). Therefore
x{V, F) is a polynomial in f - %cl and the PONTRJAGIN classes of V.
In terms of the polynomials 4, defined in 1.6 we deduce from (6) that

2V F) = 5 g (T + 5 6) Ay - ) V], (6%

where the summation is over all 7, s with7 + 2s =n = dim V.

The equation x(V, F) = T (V, F) has an immediate corollary which

was first proved by SERRE and KODAIRA-SPENCER [4]:
 Let V be an algebraic manifold. The integer y(V, F) depends only on
the cohomology class f of F.

20.4. In the remaining sections of this paragraph we make some
remarks on the connection between the present results and the classical
theory (see 0.1—0.5). Let F and G be two fixed complex analytic line
bundles over the algebraic manifold V. Then x(V, F ® G¥) is an integer
which depends on £. By Theorem 20.3.2

1(V.F® G¥)=T(V,F& G¥.

It is then clear from the definition of T that y(V,F @ G*) is a poly-
nomial in % of degree <#n = dimV. If {, g are the cohomology classes of

F, G respectively, the coefficient of 2* in this polynomial is %— gVl

The constant term of the polynomial is of course y(V, F). Collecting
these facts together we have

(V. F@GY =ag+ ayk+ -+ aykn

7
with ag= x(V,F) and nla,=gr[V]. @

The a; are rational numbers which by (4*) can be expressed as
“polynomials’ in f, g and the CHERN classes of V,

Remark: The fact that (V, F ® G*) is a polynomial in %, and the
formula for a,, can easily be deduced from Theorem 19.2.1, so that it is
not necessary to use (4*). On the other hand we obtain in this way very
precise information about all the coefficients a;. Another proof that
2(V,F ® G* is a polynomial in & was found by J.-P. SERRE who deduced,
with the help of the PICARD manifold of ¥, that y(V, F) depends only
on the echomology class f (see the end of the previous section).

Now let G be a positive line bundle {see 18.1). Then there is an
integer kg, depending on F and G, such that the linebundle F @ G*® K-
is positive for 2 = &,. [K is the canonical line bundle defined in 15.3. a).]
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Therefore by Theorem 18.2.2
dmHV, F@ G =V, F® G for k= k,.
It follows that for any line bundle F and any positive line bundle G
GmHY(V,F @ GY) = ag+ a k4 -+ - + a, k* 8

for sufficiently large k, and that the coefficient 44 = (V. F) is in-
dependent of G.

In the case in which G is projectively induced (that is, associated to a
hyperplane section of some embedding of ¥V in a complex projective
space) these are known features of the classical theory (HILBERT charac-
teristic function, postulation formula). It is then well known that «,

n (8) does not depend on G. If we write gy = a4 (F) we can define x(V, F)
in terms of the classical theory by

2V, F) = ay(F) . ©
By SERRE duality [15.5 (14)] or, alternatively, by 12.2 (12),
2y(F) = (—1)" ag(K® FY) . (10)

In the classical theory the arithmetic genus is defined in two alter-
native ways

Pa(V) = (—D™(=1+ ay(l)) and Po(V)=—(~1"+ a(K). (11)

The conjecture that p,(V) = P, (V) was a long outstanding problem.
SEVER! conjectured (see for instance SEVERI [1]) that for connected
algebraic manifolds V

pa(V) = Po(V) =n — s+ + (=115,

PalV) = Po(V) = (= 1)*(= 1+ z(V)) . (12)

This equation follows from (10) for F = 1. Equations (12) state the
equivalence of three definitions of the arithmetic genus of an algebraic
manifold, all of which appear in the classical theory. This result was
obtained by KoDAIRA-SPENCER [1] in the manner described. For further
information on the history of the arithmetic genus we refer to the work
of Koparra [1, 2, 5]. Theorem 20.2.2 can be interpreted as stating that a
fourth possible definition, namely the ToDD genus, agrees with the three
definitions just given (see 0.2).

20.5. Let V be a m-dimensional algebraic manifold and K the
canonical line bundle of V. If ¢; is the first CHERN class of V' then by
Theorem 4.4.3 (see also 12.2 and 15.9) K has cohomology class —¢;,.
The s-th plurigenus of V is defined by

Pt = dimHO(V, K)

that is,
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where K* denotes the i-fold tensor product of the line bundle K. (The
1 in Pt is a suffix, not a power.) Then

Pt = dimH*(V, K} = dim H*(V, 1) = g, = geometric genus of V.

There is an interesting case in which the P? can be calculated by
means of the RiIEMANN-RocE theorem (20.3.2) and Theorem 18.2.2:
Suppose that K is positive. Then

x(V.Ki)=Pi for i=2,

. 1 . od 2
2V, K =1, [exp (-3 @-1 cl) I si:}j/y , /2] a3
lim 2 =1 (e vy+0.

The above hypothesis is for instance satisfied if V is the quotient
space defined by a discontinuous group of automorphisms acting freely
(¢. e. no element other than the identity has fixed points) on a bounded
domain of €, (KopAIRA [6], p. 41). In this case the plurigenus P? is
equal to the number of linearly independent (over €) automorphic forms
of weight .

20.6. Let F be a complex analytic line bundle over the #-dimensional
algebraic variety V with cohomology class f¢€ H%(V, Z). Then y(V, F)
can be calculated by formula (4*) of 20.3. In (4*) there is a “multiplier”

¢ in front of the product J7. The identity
it1

I=(1— (=)= Z (l—e

i=0
in the cohomology ring of ¥ now implies (by the definition of the virtual
Topp genus and the fact that the virtual T-genus and y-genus agree)
the following formula which was conjectured by Sever: [1]:

V. E) =2V} + 2(F)y + g (F. F)y + -+ + x(F,.. ., F)y. (14)

(n times)

Associate to the n-dimensional algebraic manifold V' the integers

vi= 2K .. K)y, we=x(V).

(7 times)
These are given in terms of the classical invariants £, by the relations
Yn=2=(—c)"[V], p=(-1"70, ;+1.
Formula (14), with F replaced by K, becomes

(~1)* o= 3 9, (SEvERY). (14)

i=0
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MAxwEeLL-ToDD [1] obtained all other general relations between the
integers ;. All such relations are easily proved by using the virtual Topp
genus and we give another example:

The definition of the virtual TopoD genus shows that, if ¢, € H*(V, Z)
is the first CHERN class of V,

"
Wy = %o [(1 — e’ IT 1—72—7;]-
i=
This expression for y; contains the “multiplier” (1 — %)/, and so the

Ed
corresponding expression for 3] 27~7 y; contains the multiplier

F=0
n

2 21 — eo) = 20 HY(1 4 ) |

j=o0
Therefore )

id . el? oy
- — +1
1;%‘0 Qn ij._x,,[?l 15 o ig sinhy;/Z .
. et . . . .

Since T e IS aneven function of ¢,, the expression in [ ] contains

no terms of odd degree in ¢, and the y,. Therefore
D, 2y, =0fornodd. (15)
i=9

Remark: The calculations of this section can be carried out without
using the fact that the T-genus and the y-genus agree. It is then neces-
sary to use the formalism of § 17 together with Theorem 19.2.1 and the
duality formula 15.5 (14). All the relations of MaxweLL-TopDp can be
obtained in this way. Nevertheless once T and y are identified it is
much easier to work with the T-genus. The calculations in the formalism
of § 17 are precisely analogous to those using the T-genus. The reader
will notice that the power series of § 17 correspond to the multipliers

"
. . b {3 . . . g
which occur in front of 1._[_ Zl T, in the calculations with the T-genus

{and, similarly, to the multipliers which occur in front of J7 Q(y; v
i=1

for the T -genus; see 1.8). If for instance a complex analytic line bundle
F with cohomology class f is involved. the formalism of § 17 will contain
an indeterminate f and the calculations with the T-genus will contain a
multiplier &',

20.7. We conclude this paragraph with some remarks on the RIEMANN-
Rocu theorem for algebraic surfaces. Let ¥ be an algebraic manifold of
complex dimension two and F a complex analytic line bundle over V
with cohomology class f¢ H2(V, Z). Then formula (4*) of 20.3 and SERRE
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duality give
dimHO(V, F) — dimH'(V, F) + dimH*(V, K ® F-1)
=2 (P Fe) V] + o (e [V]

To express this in the classical notation we assume that V is connect-
ed. The superabundance (see ZARISKI [1], p. 68) of F is defined by

dim HA(V, F) = sup(F) .

The integer f2[V] is called the virtual degree g(F) of F. It is now
easy to express (16) in the usual form of the RIEMARN-RoOCH theorem.
Alternatively it is possible to use formula 20.6 (14) and obtain

(16)

dmH (7, F) + dimHO(V, K@ F-Y) = z (V) + x(F)y + g(F) + sup(F).
(17
In the classical terminology x(F) = 1 — =n{F), where =(F) = “virtual

genus of F”’, and y(V) = 1 + $,(V). Recall that, by the remark following
Theorem 15.2.1,

dim|F}+ 1 =dimH*(V,F), dim|K @ F~| + 1 = dimH%(V, K@ F1),
so that (17) can be written in the classical form
dim |[F| + dim |K ® F | = (V) — (F) + g(F) + sup(F) . (18)

Unlike formula (16), formula (18) does not contain the fact that
2{V) = T (V). This equation arises in the classical theory in the following
form:

Define the linear genus
PO =g(K)+1=cl[V]+1.
Formula (18), with F replaced by K, gives an alternative definition
1—m(K) = 1—p® = g(K) .

The ZEUTHEN-SEGRE invariant I of V is given by ¢, [V]=1 + 4,
and the arithmetic genus p,(V) by (V) =1+ $,(V). Therefore the
equation

2(V) =5 (@ + ¢) [V] = T(V)
becomes
120, +9=p® 4+ 1. (19)

This relation is due to M. NOETHER (see ZARISKI [1], p. 62).
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§ 21. The RiEMANN-RocH theorem for algebraic manifolds and
complex analytic vector bundies

21.1. In this section we prove the main theorem
1V, W) =T(V, W) ity

for an algebraic manifold ¥V and a complex analytic vector bundle W
over V. This theorem will be called the RiEMANN-RoCHE theorem for
vector bundles (or simply R-R). We recall the definitions of y and
T and summarise the sitnation in
Theorem 21.1.1. Let V be an algebraic manifold of dimension »
and let W be a complex analytic vecior bundle over V with fibre €, Let
Cos C1» - - -» Cp be the CHERN classes of V and dy, d,, . . ., d, the CHERN classes
of W{co=4dg=1;¢; d;€ H**(V,Z)). The cohomology groups HH(V, W)
are finite dimensional vector spaces wluch vanish for ¢ > n. The EULER-
POINCARE characteristic
"
x(V, W)= 2" (=1 dimHV, W)
i=0
can be expressed as a “polynomial” T (V, W) in the CHERN classes ¢; and d;:

e e

(1%)
» 2
= [e”"” (% + -+ - + o) ,1]1_551%,/?] =T w).

Equation (1¥) is to be understood as follows: there are formal factorisations
”

Z’;" c;xt= JT (14 ;%) and Z’dx‘ ]]'(1—!—6 x)

i=1
and the term of degree n of the expresswn in square brackets is a polynomial
in the c; and d;. This term determines an element of H**(V,Z)® 0
which is to be evalualed on the fundamenial 2n-dimensional cycle of V.

Before giving the proof we make some remarks and discuss a special
case. Of course R-R contains Theorem 20.3.2. R-R also implies that,
for fixed V, the integer ¥ (V, W) depends only on the CHERN classes of W
and therefore only on the continuous vector bundle W. This fact does
not seem to have been proved without using R-R, except in the case
that W is a line bundle (see the remark in 20.4). This may be connected
with the fact that there is in general no algebraic manifold whose points
represent (for fixed ¥ and ¢ > 1) the complex analytic GL(g, C)-bundles
over V which are trivial as continuous bundles. For g=1 such an
algebraic manifold does exist; it is called the PicArp manifold of ¥
{see SERRE [1], KODAIRA-SPENCER [2]).

Theorem 21.1.1 is known for # = 1; in this case V is an algebraic
curve and WEIL proved
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Theorem 21.1.2 (WEIL [1], p. 63). Let V be a connecled algebraic
curve and let W, W' be complex analytic vector bundles with C,, €. as
typical fibres. Let d,€ H3(V, Z) be the first CHERN class of W and d| the
first CHERN class of W'. Then

2V, We W)= dmH(V, We W'*) —dmH(V, K@ W*@ W)
=7 V] —r&[V]+77(L— )
where p 1s the genus of V.

Proof with help of R-R: Let §;, 8] denote the formal roots of W, W'.
Then by Theorem 4.4.3 or formula 10.1 (4)

AV W@ W) =[5 (eh +  e¥) (% 4+ 4 )]

— s [(1+ cf2) (r+dy) (v — )] . Q.E.D.
We now come to the proof of R-R. Let & be the complex analytic
GL(g, C)-bundle over V associated to W. Consider a fibre bundle E

associated to & with the flag manifold F(q) = GL(g, C)/4 (g, C) as fibre
and denote the projection of E on to ¥V by ¢. By Theorem 14.3.1

TV,W)=T(E, ¢* W), @
and, by the theorem of BoREL stated in the next section,

(V. W) = x(E, ¢* W) 2(F(9) -
Since the arithmetic genus x(F(g)) is 1 (see 15.10)

(V. W) =x(E, ¢*W). 3

The group of the bundle reduces complex analytically to the group
A(g, €). Therefore there are ¢ diagonal complex analytic line bundles
A,, ..., A, over E and by 12.1 (5) and Theorem 16.1.2

T(E, ¢*W)= X T(E A) and g(E ¢*W)= 3 y(E.4). &)

=1 i=1
E is an algebraic manifold (Theorem 18.3.1%), and so by Theorem 20.3.2,
(EA)=T(E 4) (15i=gq). )
Equations {2), (3), (4) and (5) now give

2V.W)y=T(V,W). Q.E.D.

21.2. The following previously unpublished theorem of BOREL was
used in the proof of Theorem 21.1.1 (R-R).

Theorem 21.2.1. Let E be a complex analytic fibre bundle over a
compaci complex manifold V with a (compact) connected KXHLER mani-
fold F as fibre and with a connected structure group. E is then auiomatically
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a compact complex manifold. Let @ be the projection from E on to V, and
let W be a complex analytic vector bundle over V. Then

I (B ¢* W) = 1, (V, W) y,(F) - (6)
In particular, when y = 0,
L(E, g* W)= x(V, W) x(F}), x(E)=x(V)x(F). ™

Corollary: If E, V and F are KAHLER manifolds then the index
salisfies
(B} =(V) z(F). @8

By Theorem 15.8.2, the corollary is the case y = 1, W trivial. The
proof of Theorem 21.2.1 due to BoREL uses the spectral sequence for
the d-cohomology of a complex analytic fibre bundle, and is included
in Appendix Two.

Remarks: (1) When F is a flag manifold, (6) implies formulae (10),
(10%) of 14.3, 14.4. 1t is shown in CEERN-HIRZEBRUCH-SERRE [1] that (8)
is true when E, V, F are compact connected oriented manifolds, provided
that the orientation of E is induced by those of V and F and that the
fundamental group =, (V) acts trivially on the cohomology ring H* (F)
of F.

(2) Theorem 20.2.1 is a special case of Theorem 21.2.1. In 20.2.1
we proved only as much as was necessary for the application to Theorem
20.2.2.

(8) For the proof of R-R in the previous section it is enough to
know formula (7) for F a flag manifold. The induction method used at
the end of 18.3 shows that it is sufficient to know (7) for F a complex
projective space. In this case y(F) = 1 and it is possible to prove that

dmHi(V, W) = dim Hi (E, ¢* W), ©)

which implies the equation y(V, W) = y(E, ¢* W). A direct proof of
(9) is given in the appendix [23.2 (2)].
21.3. Theorem 21.1.1 (R-R) makes possible the complete iden-
tification of the g-theory and the T-theory. By R-R
W, WokT)=TV, We A T)

and therefore

P (V, W) =TV, W).
Since y*#, T? are the coefficients of y? in the polynomials y,, 7', this
implies that

1 (V, W) =T, (V. W).
Note that y#(V, W) depends only on the continuous vector bundle W.
If W is a line bundle then this fact can be proved directly (KoDAIRA-
SPENCER [4]).



158 Chapter IV. The RiIEMANN-RocH theorem for algebraic manifolds

The explicit formula in the case W == 1 is [see 12.2 (9)]:

”

V)= 2 (=) h(V)

g=0
” y‘
- —trt ot v
= %, [25 v+ w,)’J:]l' ll—rn]
_ FOEpo,t kv B w2
= ¥ [2 ¢ ,.g sinhy /2 |° (10)

(The summation in the last line is over all combinations of signs which
contain exactly $ minus signs.)

It now follows from 19.4 that y, and T, also agree in the virtual case.
We therefore obtain

Theorem 21.3.1. Let V be an algebraic manifold, W a complex
analytic vector bundle over V and Fy, . . ., F, complex analytic line bundles
over V. Then )

Xy (Fus oo o e, W)y = Ty(Fy, .., Fy|, W)y (11)

Remark: The case r =0 (see 19.3) and y = 0 of this formula is
just R-R. Although formula (11) is the most general result of this
chapter, it is not an essential generalisation. R-R is the central theorem.

Bibliographical note

At least four other proofs of the RieMaNN-RocH theorem are now available.
A proof that x(V, W) = T (V, W) for a complex analytic vector bundle W over an
arbitrary compact complex manifold ¥ has been given by ATivAR-SINGER [1].
Their method is based partly on the proof of the index theorem (8.2.2) in Chapter
Two and is described in § 25. The argument of 21.3 then implies that the y-theory
and the T-theory agree on compact complex manifolds . e. Theorem 21.3.1 holds
for V a compact complex manifold. In particular y, (V) = T (V) = 7{V} so that
the HobgE index theorem (15.8.2) is true for ¥ a compact complex manifold.

A direct proof that y (V) = T(V) which avoids the index theorem is due to
WasHNITZER. The proof holds for V an algebraic manifold and more generally for V
a non-singular projective variety defined over an algebraically closed field K. By
results of CHow and SERRE, x (V) and T' (V) can still be defined in this case (SERRE
[2, 4], BOREL-SERRE [2], GROTHERDIECK [4]). The published version (WASHNITZER
[2]) contains an axiomatic characterisation of the arithmetic genus x (V) but
unfortunately omits the proof that T (V) satisfies the axioms.

The GROTHENDIECK-RIEMANN-ROCH theorem for a proper map f:V — X of
algebraic varieties (BoREL-SERRE [2]) is described in § 23. When X is a point the
theorem becomes R-R for an algebraic vector bundle W over a non-singular
projective variety V (both defined over an algebraically closed field K). By results
of SERRE [4] on the relation between analytic and algebraic sheaves when K = (,
this implies R-R for a complex analytic vector bundle W over an algebraic
manifold V.

Another proof of the GROTHENDIECK-RIEMANN-RocH theorem when K = C
is due to ATivau-HirzeprucH [8]. For f: ¥ — X an embedding the proof includes
the case that ¥, X are arbitrary compact complex manifolds. For general f it is
necessary to assume that ¥, X are algebraic manifolds. This approach yields the
shortest available proof of R-R but, as in this book, only for ¥V a {complex)
algebraic manifold.



Appendix One

by R. L. E. SCHWARZENBERGER

§ 22. Applications of the RieMaNN-RocH theorem

Three typical applications of the RiEMANN-RoOCH theorem are sum-
marised. The first uses the theorem to calculate invariants of complete
intersections in projective space {22.1). The second uses the theorem fo
calculate invariants of algebraic manifolds which arise from the bounded
homogeneous symmetric domains of E. CARTAN (22. 2.—22.3). The third
application of R-R is to the study of complex vector bundles over
complex projective space (22.4).

22.1. Consider » non-singular hypersurfaces F(@, . . ., F@) of degrees
a,, . . ., a, in complex projective space P, (C). The intersection Vv~
= F@) n -+« N F®) is an algebraic manifold of dimension # if the hyper-
surfaces F®, . . ., F(@) are in general position. The problem is to calculate
the y,-characteristic of the algebraic manifold V-4, 1t will appear
that this depends only on the integers 4,, . . ., a,, # and not on the parti-
cular choice of hypersurfaces F©9, ., ., F@n),

Let H be a line bundle over P, (C) associated to the C*-bundle %, .,
(see 4.2). Then H corresponds to the divisor class of a hyperplane
P,.,,(C) and has cohomology class ¢;{n,.,) =k ¢ H (P, (C), Z).
The line bundle H®% corresponds to the divisor class of the hyper-
surface F@), If j:V@v--wod 5 P, (C) is the embedding we write & for
7* k and H for j* H.

Consider the case r = 1. By 4.8.1 there is an exact sequence of vector
bundles over F @

0->%(F)>*S(P)>s*H»—>0

where $(F) and $(P) are the tangent bundles of F¢) and P,_,{(C).
Therefore

(T (F)) =7*(c(E(P)) - c(H)) = (1 + By +2 (1 + ¢, B)-2.

Theorem 4.8.1 can be applied 7 times to give the total CHERN class
of the algebraic manifold V-4 :

EW) =+ R4 a B2 (144, k)2, (1)

Theorem 22.1.1. Let V,, be a complete intersection of v hypersurfaces
of degrees ay, . .., a, in general position in P, (C}, and let z be an in-
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determinate. The y,~characteristic of the line bundle H* over V, is given by

= ppr_ (L2 5 (Lt zyle— (1 —a)%
Z o Ve B = S sty s -

Proof (HirzeBrRUCH [3], § 2.1): By the RIEMANN-ROCH theorem (21.3.1)
Xy (Vm ﬂk) = Ty(Vm Hk) .
Let R(x) = [(1 — e*w+1)—-1{y + 1) — y]~*. Then (1) implies

Ty (V B® =2, [g(uy)m'i(ﬁR(;’;,) “Lyntril I} (a; ﬁ)“lR(a,- };,)]

i=1
= 9, [g(l+y;k7; Ir+1R(R)-m=r-1 JT a;7' R(a; )] A
is
The term of degree » is a multiple of &* and A*[V,] =4, 45.. .4,
Therefore T, (V,,, H¥) is the coefficient of x~1 in

eQtNEX R(x)=n—r=1 JT R{a; x).
<1

This coefficient can be computed as a residue at x = 0. The substitution
z=R(x) gives

etz — 11—'—_‘? , dz=(1+z2y) (1 —2)adx

+zy)p—(1—2*
(L+azy)*+y1l—2a"

Therefore T, (V,,, %) is the residue at z = 0 of

R(ax)=

14 ap)*t T (L4 zgp—(1— 2

z—n—r——l (
(1 — z)k+t i (I +zy)4+y(l—2)%

as required.
Corollary: When y = 0, equation {2) becomes

3 (Ve B antr= (1 —2)=*1 JT (1 — (1 — 2)%).
n=0 $==1
Similarly the cases y=—1, y = +1 give equations for the EULER-
POINCARE characteristic and index of V%4,

Remark: Theorem 22.1.1 can be proved directly from the “four
term formula™ {16.3 (10)] and this proof preceded the proof of the
RieEMANN-RoCH theorem. It can be shown easily that the theorem holds
also for # = 0. The corollary gives for » = 0 and 7 = 1 respectively the
well known formulae for y(P,(C), H¥) and y(V?, A*) which were used
for example in HIRZEBRUCH-KODAIRA [1] and BrIESKORN [1].

Theorem 22.1.1 can be used to calculate the integers h*? for V,,
(see 15.4). This is possible because of
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Theorem 22.1.2. Let V,, = V& -+%) be a complete intersecsion. Then
W2 (Vy) = 8,4 for p + q + n and

PV = (12 hen2(V) + (—1)? for 2p+n,
2™ (V) = (=) (V) for 2m=n.

The proof can be found in HIRZEBRUCH [3], § 2.2. It is by induction on »
and uses the theorem of LEFSCHETZ on hyperplane sections (BotT [4]).

22.2, Let M be a bounded domain in €, endowed with the BERGMANN
hermitian metric (KODAIRA [6], p. 42). This is a KAHLER metric which is
invariant under complex analytic homeomorphisms of M. Let I (M) be
the group of all such homeomorphisms and Y = M/4 the quotient space
defined by the action of a subgroup A of I(M). The identification map
#:M Y is a complex analytic covering map of a compact complex
manifold Y if

(a) A is properly discontinuous, 3. e. any compact set in M intersects
only a fintte number of its tmages under A.

(b) M|A is compact.

(c) A acts freely, i. e. only the identity element of A has fixed points.

Properties (a), (), (c) imply (see Kopaira [6], p. 41) that the
canonical line bundle K, is a positive line bundle over Y (see 18.1).
Therefore Theorem 18.1.2 implies that Y is an algebraic manifold.
A holomorphic function f on M is an aufomorphic form of weight r with
respect to A if forallxc M, y € 4,

Hy %) = J57(x) f(x)

where J,(x) is the jacobian of y at the point x. The complex vector
space of all automorphic forms of weight 7 is isomorphic to H(Y, K%).
The dimension of this vector space, 4. e. the “number” of linearly in-
dependent automorphic forms of weight r with respect to A4, is denoted
by IT.(M, A). Since Ky is positive, Theorems 18.2.1 and 18.2.2 imply
that the cohomology groups of Y with coefficients in the sheaf of germs
of holomorphic sections of K% are zero in all dimensions 0 if » = 2
and in all dimensions =# if » < — 1. Therefore [see 20.5 (13)]

M, A)=0 for r< -1,
I 4)=1,

IL(M, A) = gu,

I (M, A) = g(Y,K%) for r=2.

Here g, is the “number” of holomorphic forms of degree n over ¥ = M/A.

Now suppose that the bounded domain M is homogeneous, 1. e. M
admits a transitive group of complex analytic homeomorphisms. The
CHERN classes ¢; of Y can be represented by differential forms so that each

3
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partition @ = (4, . . ., f,} of n defines a differential form P (n} of degree
2n and type (#,7) which represents the cohomology class ¢;, .. .cy,.
Since M is homogeneous p*P(x) = s{n).V where s(=) is a real number
which depends only on M and the partition z, and V is the invariant
volume element of M with respect to the BERGMANN metric (see Hirze-
BRUCH [5], § 2).

Theorem 22.2.1. Let A,, Ay be two subgroups of I(M) which satisfy
(a), (b), (c). Let v; be the volume of Y ;= M|A; with respect to the BERG-
MANN meiric on the bounded homogeneous domain M and ¢ = vyjv,. Then

1 (YD) = e 1y (Va) . (M, 4) = cIT,(M,A) for 722,

Proof: Let s;(n) be the CHERN number ¢;, ... ¢, [Y,] of ¥; which
corresponds to the partition sz. Then s, (n) = s(@) v;, 5,(%) = s(x) v, and

$i(@) = csy(m) forall m=(jp...5) . )

Therefore (4) holds also for any linear combination of CHERN numbers.
In particular (3) and the RIEMANN-RocH theorem imply that (4) holds
for 4,(Y,) and for IT. (M, Ay), r = 2.

Now suppose that the bounded homogeneous domain M is in addition
symmeiric, 1. e. for each point ¥ € M there is a complex analytic homeo-
morphism ¢, : M — M which has x as isolated fixed point and is an
involution (6% = identity). The. following special case of a theorem of
BoOREL shows that there always exist algebraic manifolds M/A.

Theorem 22.2.2 (BoreL [4]). Let M be a bounded homogeneous sym-
metric domain, and 1(M) the group of complex analytic homeomorphisms
of M. Then

I) I(M) contains a subgroup A whick satisfies (a), (b) and (c),

II) if A is a subgroup of I(M) which satisfies (a) and (b), and which
does not consist only of the identity element, then A has a proper normal
subgroup of finile index which satisfies (a), (b) and (c).

Remark: In the case considered, (2) holds if and only if 4 is a
discrete subgroup of I(M); property (&) holds if and only if I{M)/4
is compact (BoreL [4], p. 112).

22.3. Let M be a bounded homogeneous symmetric domain in €,,. Then
M is a product M = N, X - - - X N, of irreducible bounded homogeneous
symmetric domains N, Each I, is a quotient space N = G/H with
G a simple non-compact LiE group with centre the identity and H a
maximal compact connected subgroup of G with centre of (real) dimension
one. It is possible to associate to G a compact L1 group G which also
contains H. The quotient space N’ = G'/H is a compact irreducible
homogeneous hermitian symmetric complex manifold which contains an
open subset complex analytically homeomorphic to N (Borer [1]).
Full details of this construction can be found in Hercasow [1], p. 321.
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It is shown in BorReL-HIRZEBRUCH [1], Part I, p. 520 that the canonical
line bundle of N’ is negative in the sense of KopDaIrRA (and hence that
N’ is an algebraic manifold). Let e€ NC N’ be the base point cor-
responding to the identity of G, G'.. By a formula of E. CARTAN the
curvature tensor at ¢ associated to an invariant metric on N’ is a negative
multiple of the curvature tensor at e associated to an invariant metric
on N (see HirzEBRUCH [5]).

Let M =N; X +-X Ngand e= (e, ..., ¢)€M. Then M can be
regarded as an open subset of M’ and the invariant differential forms
which represent given CHERN numbers on M, M’ differ at ¢ by a positive
factor multiplied by (— 1)”. This is a consequence of the above-mentioned
property of the curvature tensors. As in Theorem 22.2.1 an application
of the RteMANN-RocH theorem gives

Theorem 22.3.1. Let M be a bounded homogeneous symmetric domain
in C,, and I (M) the group of complex analytic homeomorphisms of M.
Let Y = M/A be the quotient space defined by the action of a subgroup A of
I (M) which satisfies (a), (b) and (c} of 22.2, and M’ the compact sym-
metric manifold corresponding to M. Then there is a real number c such that

1Y) =cy, (M), I (M, A)=cy, (Kp)) for r=2.

Ifnisevenc>0.Ifnisoddc<0.

In fact the manifolds M’ have been classified directly (see HELGASON
[11, p. 854). M’ = N; X + - - X N, where each N’ is one of the manifolds
in the following list:

I) U +9)/U(p) x Ulg), II) SO(25)/U(p),
IIT) Sp(p)/U(#) IV) SO(p + 2)/SO(p) X SO2), p+ 2,
V) E/Spin(10) X T VI) E,fEgx TE. (4)

The fact that each such N’ yields a bounded homogeneous symmetric
domain N was proved by E. CARTAN by means of an explicit construction
in each case. The first general proof is due to HARISH-CHANDRA {1], p. 591
(see HerGasor [1], p. 312). The BETTI numbers b,(N’) of N’ can be
calculated by the formula of HirscH and it can be shown that the
numbers A?:2(N’) defined in 15.4 are zero for p = ¢ (see 15.10, BoreL [2]
and BorerL-HirzeBrucH [1], § 14). Tt follows that 4 (N') = 1 {in fact N”
is a rational algebraic manifold). Thus we see that the constant ¢ in
Theorem 22.3.1 eguals yx(Y). It also follows that the index 7 = 7(NV')
= X7 (—1) by; (N') is zero except in the following cases:

ifp=2sand g=2t, orif p=2s+ 1 and g=2¢, or if p = 2¢
andq=2s+1,thmt=—(—‘:——;'—;—?i, {5)

IV) ifp=4sthent =2,
V)z=3.
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Let A be a subgroup of I (M) which satisfies (@), (b) and (¢) of 22.2.
Such a subgroup exists by Theorem 22.2.2. Also by this theorem there
exists a proper normal subgroup I” of index u in A with g arbitrarily
large such that I acts freely on M. Then M/I" is a finite covering of
Y = M/A with u sheets and the RIEMANN-RocH theorem implies that
29 (MII") = p 4, (Y). By Theorem 22.3.1 and the equations y(M') = 1,
¢ = y{Y) mentioned above

(M) = p (YY) = p 2(Y) 1, (M)

where ¢(Y)} >0 if » is even and y(Y) < 0 if # is odd. In particular
if M' is a product of manifolds of the type listed in (5) then 7 is even and
t(MID)=px(Y)z(M"), 2(Y) >0, ©(M') > 0. In this way algebraic
manifolds M/I" can be constructed with arbitrarily large index.

The first example is the case M’ = U(3)/U(2) x U(1) = P,(C).
Then y(M') = 1 and M is the open unit disc B, €,. Thus there exist
algebraic surfaces M/I" with arbitrarily large index. This contradicts
a conjecture of Zarra [1]. Further details can be found in BoreL [4].

Theorem 22.3.1 can also be applied to calculate the integers IT, (M, A4).
Because of (3) we suppose r = 2. For simplicity let M be an irreducible
bounded symmetric homogeneous domain. Then M’ is one of the mani-
folds listed in (4). The values of I1.(M, A) were calculated by Hirze-
BRUCH [4], [5] using the values for y(M’', (Ky/)"). The latter can be
calculated by R-R and are related to formulae of H. WEYL on degrees
of representations (BOorReL-HIrzEBRUCH [1], §22). The results in each
case are:

1) IT,(M, A) = (— 1)°% y (M| ) n%tqq—)—_j"—:%, where the product
ssoveraldl0=¢i=p—1,1=7=< 4.
I0) IT,(M, A) = (— 1)ko -9 5 (M) 4) 7 20— D ‘f;;’ YT here
the product is over al 0 £ i <j < p— L.
1) I7,(M,4) = (— D 049 g a1 4) [T 2= DLID LI e e
product is over all0 S 1 < 7 < p. ~

V) IT,(M, 4) = (—1)* x(M]A) (("’; )+ ('f)) :

V) I (M, A) = x(M]|A) ]]'—ml:;%m , where the product is over

k=1,...,16 and the corresponding values of u; are 1,2, 3, 4,4,5, 5, 6,
6,7,7 889,10, 11,
V) IL(M, A) = — y(M]4) 1]18—(’;;)4!‘— where the product is

over k= 1,...,27 and the corresponding values of u, are 1,2, 3, 4,5, 5,
66,7,7,88,99,09, 10, 10, 11, 11, 12, 12, 13, 13, 14, 15, 16, 17.
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Remark: Another method of calculating the numbers I7, (M, A4),
including also the case in which condition (¢) is omitted, is due to
SELBERG (Seminars on analytic functions, Vol. 2, p. 152—161. Institute
for Advanced Study, Princeton 1957). Formulae I)—VI) have been
generalised to a more general type of automorphic form by Ise {2]. He
also uses the proportionality principle. LANGLANDS [1] has obtained these
formulae, and corresponding formulae when condition (¢) is omitted,
using SELBERG’s trace formula and HarisH-CHANDRA's work.

22.4. In this section the RIEMANN-ROcH theorem y (V, W) = T(V, W)
is applied with V = P, (C). For each # we regard P,,_, (€) as a hyperplane
in P, (C). The corresponding divisor class defines a line bundle H over
P, (C) and a cohomology class 4 € H?(P,(C), Z).

Let W be a continuous complex vector bundle over P, (C) with fibre
C, and CHERN class 1+ dih+ -+ d, B, (d;€Z,s5q s<n). In
H*(P,(C), €)= H*(P,((), Z) ® C there is a factorisation

1+dhd---ddp=(1+06k...(146;h)
with 8; ¢ C and therefore by 10.1 and 4.4.3

. q ”n
T@u(0, W 0 1) = | X et (L) ]
i=1

edi+rik

4 1
=i§1 2mi f (1 — R+l dh

where d,,,="'++= J§,= 0 and integration is over a small circle round
the origin. The substitution z = 1 — e~ gives

T(P.(0), W H)= 3 (" B4,

ji=1
1f W is a complex analytic vectornhundle the RIEMANN-ROCH theorem
g
implies that }; (" + i’ + ’)
i=1
denominator #!, is an integer for all integers r. The same conclusion
holds for W a continuous vector bundle by the integrality theorem of
26.1. This completes the proof of
Theorem 224.1. Let W be a continuous complex vector bundle over
P, (C) with CHERN class

1+dht+-td=0+064...(1+34)
where d;C Z, 8,€C and s < n. Let v be an inieger. Then the symmeiric
function .
(n+r+6l) (n+r+($,)
RIS

n »n

, which a priori is a rational number with

in the 8; is an inieger.
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Examples: Consider the case ¢=2. Then (" + 6‘) + (” +6’) is an
” ”
integer. This implies the following restrictions on the integers d, = 8; +46,,
dz = 61 6::
n =2 no restriction
n=3 d,;dy=0modulo2
n=4 dy(dy+1—3d;, —2d% = 0 modulo 12.

Let W be the tangent bundle of P,(C). Then s=2, d,=d,=3 and
d, d, is odd. Therefore W is not the restriction to P, (C) of any continuous
vector bundle over Py (C). It can be shown similarly that for all # = 3
the tangent bundle of P, _, (C) is not the restriction of any vector bundle
over P,(C). An example of a continuous vector bundle W over P4(C)
with fibre €,, which is not the restriction to P4(C) of any vector bundle
over P,(C), is given by the following classical construction. Consider a
linear complex in P,(C), 4. e. the set of lines satisfying an equation
2 ay5 Pi3 = 0 where Poy, Pogs Doz Pass Psrs P1e are PLUCKER coordinates.
The lines of the linear complex which pass through a point x ¢ P4(C)
form a plane pencil. This defines an algebraic fibre bundle B over P;(C)
with fibre P, (C). There is an associated vector bundle W over P,;(C) with
fibre Cyand d) = dy = 2. Thus d;(d; + 1 — 3d; — 2d%) = 2 modulo 12 and
W is not the restriction of any vector bundle over P,(C).

In general Theorem 22.4.1 gives necessary conditions for integers
d,, ..., d, to appear as CHERN classes of a continuous complex vector
bundle over P, (C) with fibre C,. These are hard to calculate for particular
¢, n but for fixed ¢ they clearly become more restrictive as # - co. In fact
a lemma in algebraic number theory (which the author owes to J. W. S.

Cassgtrs) implies that if 7 (” _: 6’) is an integer for all # then each 8, is an
i=1
integer. This implies ]

Theorem 22.4.2. Lat W be a continuous vector bundle over P, (C) with
fibre C, and suppose that W is the restriction to P, (C) of a continuous vector
bundle over Py (C) for arbitrarily large N. Then there are inlegersr,, . . ., 7,
such that c(W) = c(H" & - - - & H").

Further results on complex vector bundles over P, (C) can be found
in Horrocks [1], [2] and SCHWARZENBERGER [1]. For the classification of
complex analytic vector bundles over algebraic curves, which also makes
use of R-R, see Atrvanm [1], [2], GROTHENDIECK [3], NARASIMHAN-
SEsHADRI [1], [2], and TuriN [1], [2].

§ 23. The RieMaNN-RocH theorem of GROTHENDIECK

The generalisation of R-R due to GROTHENDIECK depends on
properties of coherent analytic sheaves over complex manifolds. These
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properties are summarised in 23.1—23.3 and are used to obtain an
alternative proof of equation 21.2 (9). The GROTHENDIECK-RIEMANN-
RocH theorem itself is described in 23.4—23.6. Throughout this paragraph
we shall for convenience assume that all algebraic manifolds are connected.

23.1. Let X,, be a complex manifold of dimension #, and 2 the sheaf
over X, of germs of local holomorphic functions (15.1). Each stalk Q,
of 2 is a ring with identity 1¢€ 2,.

Definition: A sheaf & = (S, 71, X,)) of abelian groups is an analytic
sheaf over X, if:

1) Every stalk S, of & is a module over the corresponding stalk £,
of 2 (the unit element 1€ 2, operates as the identity).

II) The map from ng £02,.% S, (regarded as a subspace of Q2 X S)

to § defined by the module multiplication is continuous.

An essential role is played by the coherent analytic sheaves. Let £,
denote the sum 2@ - - - & 2 of p copies of 2.

Definition: An analytic sheaf & over X, is coherent if for each
point x€ X, there is an open neighbourhood U of x and an exact sequence
of sheaves over U

2,)U-L2JU~>8&|U~0.

For the basic properties of coherent analytic sheaves we refer to
GRAUERT-REMMERT [1]. The definition given there is apparently more
restrictive than the above definition. The theorem of OrA on the sheaf
of relations determined by a system of holomorphic functions (see
CartaN [3], Exposé XIV) implies that £ is coherent in the sense of
GRAUERT-REMMERT [1]. It can then be deduced that the two definitions
of coherence are equivalent (see SERRE (2], Chap. I, Prop. 7). Note
that coherence is a purely local property.

The sheaf (W) of germs of local holomorphic sections of a complex
analytic vector bundle W over X,, with fibre C, is locally isomorphic
to Q,. Therefore Q(W) is a coherent analytic sheaf.

If & is an arbitrary sheaf over X, the cohomology groups of X,
with coefficients in & can be defined by “alternating” cochains (SERRE
[87). It follows from general considerations of dimension theory that
HY(X,, ©) = 0 for ¢ > 2n. For coherent analytic sheaves a more precise
result has been proved by Marcrawce [Bull. Soc. Math. France 85,
231237 (1957)1:

Theorem 23.1.1. Let S be a coherent analytic sheaf over an n-dimen-
stonal complex manifold X,,. Then H (X, ©) = 0 for ¢ > n.

The corresponding finiteness condition is due to CARTAN-SERRE [1]
(see also CARTAN [4]):

Theorem 23.1.2. Let & be a coherent analytic sheaf over a compact
complex manifold X. Then for all g = O the complex vector space H (X, ©)
is finite diménsional.
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Theorems 23.1.1 and 23.1.2 generalise the results obtained, for the
particular case & = (W), in Theorem 15.4.2. The proof of Theorem
23.1.2 makes use of the theory of holomorphically complete manifolds
(STEIN manifolds). Theorem B (SERRE [1] and Carran [3], Exposé XIX)
implies that if & is a coherent analytic sheaf over a holomorphic-
ally complete manifold X then H¢(X, &) =0for g>0. If now X isa
compact complex manifold there is a finite covering U = {U};e; of X
such that each intersection U;, n - - - N U, is holomorphically complete.
This is for instance automatically the case if each U, is a unit disc with
respect to some complex analytic chart on X. The LERAY spectral
sequence (GODEMENT [1], Chap. I1, 5.2.4) can then be used to prove that
HY(X, &) = H*(U, &) for ¢ = 0. This is one of the basic facts required
for the proof of CARTAN-SERRE.

23.2. Let f: X — Y be a holomorphic map of complex manifolds
and & an analytic sheaf over X. The ¢-th direct image of & is an analytic
sheaf f4 € over Y which is defined by means of a presheaf. For any
open set U of Y the cohomology group H4{f-*(U), &) is a module over
the ring of holomorphic functions defined on f~1(U). A holomorphic
function g : U — C can be lifted to a holomorphic function g f: /~*(U) - €
and so H2(f~1(U), &) can also be regarded as a module over the ring of
holomorphic functions defined on U. These modules define a presheaf
for f4 ©. The definition implies that f{ & is an analytic sheaf over Y.

Consider an exact sequence of analytic sheaves over X

0-€ >E6>€">0.
By Theorem 2.8.2 the open set f—*(U) is paracompact for every open
set U of Y. By Theorem 2.10.1 there is an exact sequence
0> HY(f-Y(U), 8"~ H({~(U), &)~ H(f-1(U),&")~H (1 (U),&) >+~
o> H(fH(U), €) —~ He(f1(U), €) > He(f-1(U), &) ~
- Hq+1(]¢—1(U)’ 6’)—* P
and hence an exact sequence of analytic sheaves over Y
0> -AE>/4G" >G> --
e S S A C>G SBG e,

Theorem 23.2.1. Let f: X -+ Y be a holomorphic map of complex
manifolds and & an analytic sheaf over X. Suppose that fi, & = 0 for all
$> 0. Then the complex vector spaces HU(Y, f3 &) and HU (X, &) are
isomorphic for all ¢ = 0.

The direct image sheaves figure already in the fundamental work of

LerayY [1], [2]. The exact sequence (1) and Theorem 23.2.1 are reformula-
tions, for holomorphic maps and analytic sheaves, of results of LEraY on

(1)
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continuous maps. Theorem 23.2.1 follows immediately from the LErAY
spectral sequence (see CARTAN [2] and GoneEMENT [1], Chap. 11, 4.17.1).
A direct proof can be found in GRAUERT-REMMERT [1] (p. 417, Satz 6).

The proof of the RiEMANN-RoOCH theorem in 21.1 depends on a result
of BorsL (Theorem 21.2.1). As remarked in 21.2, in order to complete the
proof of R-R directly.it is sufficient to establish equation 21.2 (9).
We first prove

Lemma 23.2.2. Let X be a complex anaiytic fibre bundle over the
complex mawnifold Y with fibre P, (C) and projection map f. Let W be a
complex analytic vecior bundle over Y. There 1s a natural isomorphism
between the analytic sheaves Q(W) and f§ Q(f*W). The analytic sheaf
i QU W) is zero for i > 0.

Proof: Let U be an open set of Y. A holomorphic section s of W
over U determines a holomorphic section s f of f*W over f~*(U). Since
each fibre P, (C) is compact and connected, this defines an isomorphism
HY(U, Q(W)) -~ H*(J~(U), 2(f*W)) and proves the first part of the
lemma. The second part is purely local, so we may choose U to be a
holomorphically complete open set over which both W and X are trivial.
We wish to prove that H¥(f~1(U), Q(f*W))=0 for 4>0. Since
F*W|~(U) is a sum of trivial bundles it is sufficient to prove that
Hi(f1(U),1)=0 for 1> 0. Now H"(U,1)=0 for >0 (23.1) and
H*(P,(C), 1) = O for s > 0 (15.10). Therefore (Kaup [1], § 7, Satz 1) the
KtnneTH formula for analytic sheaves can be applied in this case to give

Hif=(U), ) = HY (U x P,(C), 1) =
X HY(U, 1) @ H(P,(C), 1) =0fori>0.
r4+s=1

Remark: The KonngtH formula for sheaves is due originally to
GROTHENDIECK (see Bort [1] and BorEL-SERRE [2]). A proof of
the formuia for algebraic coherent sheaves was given by SAMPSON-
WasaNITZER [3]. The formula for analytic coherent sheaves used here
depends on finiteness assumptions on the higher dimensional cohomolugy
groups involved; in the present case these groups are zero. For full de-
tails see Kaup [1].

Lemma 23.2.2 and Theorem 23.2.1 (with & = Q(/*W)) together
imply

Theorem 23.2.3. Let X be a complex analytic fibre bundle over the
complex manifold Y with fibtve P, (C) and projeciion map f. Let W be a
complex anaiytic vector bundle over Y. Then the complex vector spaces
HYY, W) and HY{(X, {*W) are isomorphic for all ¢ = 0.

As a corollary we obtain the equation 21.2 (9) required to complete
the proof of the RiEMANN-ROCH theorem:

dimHe(Y, W) = dimH¢(X, f* W) . @)
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The direct image sheaves f{ & have special properties when &
is coherent. Let X be a complex manifold of dimension # and & a coherent
analytic sheaf over X. Let f: X - Y be a holomorphic map of complex
manifolds. The following theorems reduce to 23.1.1 and 23.1.2 when Y
is a point.

Theorem 23.2.4. Under the above hypotheses fi, G = 0 for ¢ > n.

Theorem 23.2.5. Under the above hypotheses, if | is a proper map
then f}, © s cokerent for all ¢ = 0.

Theorem 23.2.4 is an immediate consequence of 23.1.1. Theorem
23.2.5 is a deep theorem of GRAUERT [2]. If X and Y are both algebraic
manifolds then Theorem 23.2.5 can be proved algebraically (BoreLr-
SERRE [2], Théoréme 1) by using the correspondence between coherent
analytic sheaves and coherent algebraic sheaves (SERRE [4]).

23.3. Let X be a complex manifold, C(X) the set of isomorphism
classes of coherent analytic sheaves over X and F(X) the free abelian
group generated by C(X). An element of F(X) is a finite linear combina-
tion ) n, &;, n;€ Z, &; a coherent analytic sheaf over X. Let R(X)

be the subgroup generated by all elements & — &’ — &’ where
08 >EC>6">0

is an exact sequence of coherent analytic sheaves over X. The GROTHEN-
DIECK group “of coherent analytic sheaves over X™ is the quotient group
Ko(X) = F(X)/R(X).

Let X be a compact complex manifold and 4¢ K,,(X) an element
represented by a linear combination 3 #; &, of coherent analytic sheaves

©; on X. Theorems 23.1.1 and 23.1.2 show that &; is of type (F) and
therefore the integer y (X, &,) is defined (see 2.10). The integer

2 (X, ) =2”£ (X, &)

depends only on the element & ¢ K, (X).

Let f: X - Y be a holomorphic map of complex manifolds which
is also proper. If &€ C(X) then, by 23.24 and 23.2.5, fL &¢ C(Y)
for ¢ = 0 and f4 & =0 for g > dim¢X. Consider the homomorphism
fr: F(X) » F(Y) defined on generators of F(X) by

”

Al®) =3 (-1 S, n=dimcX.

g=0
The exact sequence (1) shows that f, maps the subgroup R{X) to R(Y).
Therefore f, induces a homomorphism

fr: Ko(X) > Ko(Y) .
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The LERAY spectral sequence can be used (BoreL-SERRE {2], p. 111)
to prove that if /: X — Y and g: Y - Z are proper holomorphic maps
of complex manifolds X, Y, Z then

(gh=2gt 3)

Consider the special case in which Y is a point and f: X — Y is the
constant map. Then {is proper if and only if X is compact. A coherent
analytic sheaf over Y is a finite dimensional complex vector space and
therefore K, (Y) = Z. In this case

ho) = z2(X,9) . )

The homomorphism f, is analogous to the GvsiN homomorphism f,
for cohomology. If X, Y are compact connected oriented manifolds
{(not necessarily complex), and f: X — Y is a continuous map, there is
a homomorphism of H*(Y, Z)-modules

f«: H¥(X,Z) > H*(Y, Z)

which maps classes of codimension g to classes of codimension ¢. As in
4.3, f(x) = DY (fy Dx(x)) for x€ H*(X, Z) where Dy, Dy denote the
duality isomorphism from cohomology to homology. The homomorphism
fo: H¥(X, Q) - H*(Y, Q) is defined in the same way. If g: Y > Z is
another continuous map of compact connected oriented manifolds then

(gNs=8xlx- (5)

Consider the special case in which Y is a point, f is the constant
map and X is a compact connected oriented manifold ot (real) dimension
m. In this case

fo0) =Bl 1, pER*X) ©
where 1¢ H*(Y) is the identity element and »™[ ] is defined as in 9.2.

23.4. Let X be a complex manifold, C'(X) the set of isomorphism
classes of complex analytic vector bundles over X and F’(X) the free
abelian group generated by C'(X). Exactly as in 23.3 we can define the
GROTHENDIECK group K,({X) “of complex analytic vector bundles
over X' There is a natural homomorphism & : K, (X) ~ K, (X) induced
by k(W) = Q(W).

Theorem 234.1. Let X be an algebraic manifold. Then h: K, (X)
- K, (X) is an isomorphism.

The main step in the proof of Theorem 23.4.1 is

Lemma 23.4.2. Let & be a coherent analytic sheaf over an n-dimen-
stonal algebraic manifold X. Then there are complex analytic vector bundles
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Wo, Wy, .. .. W, over X and un exact sequence
0->-2W,)>Q(W, )~ >Q(W)>&E~0 (7)

of analytic sheaves over X.
Lemma 23.4.2 shows that the homomorphism 4 is surjective. It must

then be shown that the element }; (— 1) W; of K,,(X) determined by
i=0

(7) depends only on &. Proofs for € a coherent algebraic sheaf over X
are given in BOREL-SERRE [2]. The above statements then follow from
the correspondence between coherent analytic sheaves and coherent
algebraic sheaves over an algebraic manifold (SERRE [4]). A similar
remark applies to all the other results mentioned in this section including
the RiemanN-RocH theorem of GROTHENDIECK (23.4.3). The proofs are
purely algebraic and apply to non-singular irreducible projective varieties
defined over an arbitrary algebraically closed field K. They are formulated
in terms of the ZARISKI topology, coherent algebraic sheaves and algebraic
fibre bundles with fibre K,. The cohomology ring H*(X, Z) is replaced
by the CHow ring A (X) of rational equivalence classes of algebraic
cycles on X. When K = C the results of SERRE mentioned above allow
algebraic statements to be reformulated in the complex analytic ter-
minology used in this book.

Let @ be a coherent analytic sheaf over X with a “resolution by

vector bundles” as in (7). Then the CEERN character of & can be defined

by ch(&) = J}; (—1)'ch(W,;). By 23.4.1 this is independent of the

1=

choice of resolution. If
08 >G6>6"->0

is an exact sequence of coherent analytic sheaves then {see 10.1)
ch(&) = ch(&") + ch(&").
Therefore the CHERN character defines a homomorphism
ch: K, (X) > H*(X, Q)

for every algebraic manifold X.

Let td(X), td(Y) be the total Topp class of the tangent bundle
of X, Y defined in 10.1. The RiEMANN-RoOCH theorem of GROTHENDIECK
can now be stated.

Theorem 23.4.3 (G-R-R). Let X, Y be algebraic manifolds and
f: X =Y a holomorphic map. Then the equation

ch(f,5) - td(Y) = £, (ch (8) - td(X)) (®)
holds in H*(Y, Q) for all b¢ K, (X).
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Letf: X - Y, g:Y — Z be holomorphic maps of algebraic manifolds.
It follows from (3) and (5) that if G-R-R is true for both f and g
then it is true for g f: X — Z. Since X is an algebraic manifold thereisa
holomorphic embedding X — Py (C) for some integer N. The mapf: X -+ Y
is then the composition of an embedding X - Y X Py(€) and a pro-
duct projection ¥ X Px{C) - Y. It is therefore sufficient to prove
G-R-R in the two cases:

1) /: X — Y is an embedding. There is an algebraic proof in BOREL-
SERRE [2] and a complex analytic proof in ATIvAH-HIRZEBRUCH [8].
The special case in which X is a non-singular divisor of ¥ and &€ K, (X)
arises from the restriction to X of a vector bundle over Y is proved
in 23.5.

II) /: Y x Py(€) —» Y is a product projection. An algebraic proof
is given in BOREL-SERRE [2].

We have formulated the RieMaNN-RocH theorem of GROTHENDIECK
only for algebraic manifolds. It is possible to formulate it for a proper
holomorphic map f: X - Y of complex manifolds: the problem is to
define ch (&) for an arbitrary analytic coherent sheaf & over a compact
complex manifold X, and this can be done by considering resolutions by
real analytic, and by differentiable, vector bundles. At the time of writing
this version of G-R-R has been proved only for f an embedding
(AtivaH-HIrzZEBRUCH [8]). Two special cases of G-R-R are discussed in
23.5; two applications are described in 23.6.

23.5. Suppose first that Y is an algebraic manifold with complex
analytic tangent bundle § and that j: X - Y is an embedding of X
as a submanifold of Y. Then 7* 0 has the tangent bundle of X as sub-
bundle and the complex analytic normal bundle » as quotient bundle
(4.9). Thus td(X) = (td(»))~'-j* td(Y) by 10.1 and (8) becomes

ch(j;b) - ta(Y) =7, (ch(2) - (LA ()" - 7* ta(Y)).
Now 4, is a H*(Y, Q)-module homomorphism and td(Y) is invertible

in H*(Y, Q). Therefore G-R-R implies the RieMmann-Rocn theorem for
an embedding:

ch(j, ) = jiy ch(B) - (td @)~ for all b€ K,(X) . ©)

We prove the following special case of (9). Let X be a non-singular
divisor S of ¥ and {S} the corresponding line bundle (15.2). Let W be a
complex analytic vector bundle over Y and &€ K,(S) the element
represented by the coherent analytic sheaf Q(7* (W ® {S})) over S.
Let U be an open set on Y such that ¥V = U N S is holomorphically
complete, Then, in the notation of 16.2,

74 Q(* (W ® {S) (U) = He(V. §* (W ® {S})) = 0 for ¢>0
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and so 7, b is represented by the trivial extension 5§ Q(*(W @ {S})
= Q((W ® {S}))s) of Q(7*(W ® {S})) from S to Y. By 16.2 (4) there is a
resolution of Q((W ® {S})) by vector bundles over Y

0> QW) > QW @ {S}) > 2((W ® {S})s) >0
and therefore ch(j, b) = ch(W ® {S}) — ch{W) = (¢* — 1) ch(W) where
k¢ H3(Y, Z) is the cohomology class of S.

On the other hand ¢, () =j* A by 4.8.1 and 5, 1 = A by 4.9.1. There-
fore the right hand side of (9) is

. . B\t

ja(i* h (W ® {S)) - ) ™) =g 7* (b (W) - - (v2=) )

= (e® — 1) ch{W) .

This proves (9) in the special case and helps to explain why the Topp
class arises in G-R-R.

Now consider the special case of G-R-R in which Y is a point and
f is the constant map. Let 6€ K, (X) be the element represented by
the coherent analytic sheaf (W) of germs of local holomorphic sections
of a complex analytic vector bundle W over X. By (4) the left hand side
of (8) becomes y(X, W). By (6) the right hand side of (8) becomes

sp[ch (W) td(X)] = T (X, W). Therefore the RiEMANN-ROCH theorem
of GROTHENDIECK implies Theorem 21.1.1 (R — R):

X W) =T(X, W).

23.6. Let E, F, V be algebraic manifolds and let ¢:E—> ¥V be a
holomorphic fibre bundle with fibre ¥ and connected structure group
{see Theorem 18.3.1*). As in 23.2.2 let U be a holomorphically complete
open set of ¥V over which E is trivial. Then, by the KONNETH theorem for
coherent analytic sheaves used in the proof of 23.2.2,

Hi(g (), 1) = HO(U, 1) @ H(F, 1).

Therefore ¢} (1) = Q(W,) for some complex analytic vector bundle
W, over V with fibre dimension dim H*{F, 1). The fact that the structure
group of E is connected implies that W, is trivial. Hence

cho(@: 2(1)) =} (— 1) AmHH(F, 1) = y(F) = T(F),
Ch_.;((P! .Q(l)) =0 for j >0.

On the other hand G-R-R applied to the mapg: E > ¥V and the
sheaf (1) over E gives

ch(g; 2(1)) - td(V) = @y td(E) = @, td(6) - td(V)
where 0 is the bundie over E of tangent vectors “along the fibres”.

(10)



§ 23. The RieMANN-RoCH theorem of GROTHENDIECK 175

Therefore (10) implies
T(F) - td(V) = gy td(E) , (1)
TF)-1 = ,td(0), (11%)

where 1€ H*(V, Q) denotes the unit element. Formula (11*) is the
strict multiplicative property of BoreEL-HirzEBrUCH [1], §21. If { is a
continuous GL (g, C)-bundle over ¥V then multiplication of both sides
of (11) by ch(Z) gives-

T(F) - (ch(0) - td(V)) = gu(ch(@* {) - tA(E)) .

Equating terms of top dimension we obtain the multiplicative property
of the ToDD genus {compare Theorem 14.3.1):

Theorem 23.6.1 (BOReL-SERRE (2], Prop. 16). Let E, F, V be
algebraic manifolds and @ : E -~ V a holomorphic fibre bundie with fibre F
and connected structure group. Let .C be a continuous GL(g, C)-bundle
over V. Then T{F)-T(V,0)= T(E, ¢*{).

A second application of G-R-R is to monoidal transformations.
Let X be a submanifold of codimension ¢ of an algebraic manifold Y,
1: X > Y the embedding, » the complex analytic normal GL (g, C)-bundle
of X, and f: X" » X the associated bundle over X with fibre P,_,(C).
There is an algebraic manifold Y’, called the monoidal transform of ¥
along X, an embedding 7: X’ - Y’ and a map g: Y’ — Y such that the
diagram

XI 7‘ YI
,1 J (12)
X ——sy

is commutative. Let U be an open set of Y which admits local analytic
coordinates. If U does not meet X then g~*(U) is biholomorphically
equivalent to U. If U meets X there are holomorphic functions £, . . ., f,
on U such that U n X is the submanifold {u € U; f,(u) = - - - = f,(u) =0}
of U and such that the differentials f,, . . ., df, are linearly independ-
ent at each point of Un X. In terms of homogeneous coordinates

equivalent to the submanifold {(u, 2) € U X P,_;(C); 2 f; () = z; {.(w),
Isi<i<gglof Ux P,_{0).

Let €, €' be the complex analytic tangent vector bundles of Y, ¥’
and RN the normal vector bundle of X in Y associated to ». Let H be the
line bundle over Y’ determined by the non-singular divisor X’ of Y".
A lemma of Porteous [1] implies that in K, (Y’) there is an equation

Q(g*2) — 2(T) =j(R(P* N) — L(* H)) -
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By the RIEMANN-RocH theorem for an embedding (9) the CHERN
character of the right hand side is

]
iu (7 ) =% M -% (+5))

where k€ H2(Y’, Z) is the cohomology class of H. We obtain

Theorem 23.6.2 (PorTEOUS [1]). Let X be a submanifold of an
algebraic manifold Y, Let (12) be the diagram obtained from a monoidal
transformation of Y along X, v the normal bundle of X in Y, and
k< H2(Y', Z) the class represenied by the cycle X'. Let 0, 0 be the tangent
bundles of Y, Y'. Then

1—e*

5T) e ebe) - ey, (1)

The CHERN character of Y’ can be calculated in terms of the CHERN
character of Y by (13). A refinement of the RiEMANN-RocH theo-
rem (involving integer cohomology; see PortrEOUS [1] and ATIYAH-
HirzEBRUCH [8]) gives the corresponding formula for the CHERN classes
of Y and Y’ which had been conjectured by Topp [5] and SeGrE [1].
The RiEMANN-RocH theorem for an embedding is proved in ATIVAH-
HirzeBRUCH [8] for arbitrary compact complex manifolds. Therefore (13),
and also the TopD-SeGRE formula, is true for 2 monoidal transformation
of a compact complex manifold Y along a submanifold X. In certain
cases this had been proved by van DE VEN [1]. A calculation due to
HirzeBRUCH (unpublished) shows that the TopD-SEGRE formula implies
T(Y') = T(Y), that is, the Topp genus is invariant under monoidal
transformations. In the special case when X is a point (quadratic trans-
form, HOPF g-process) this can also be proved directly with the help of
Lemma 1.7.2.

If Y is algebraic the invariance of the Topp genus can be obtained
more easily either from the birational invariance of the arithmetic
genus (see 0.1 and SAMPSON-WASHNITZER [2]) or by applying G-R-R
to the map g: Y’ — Y. Then g% 2(1) =0 for ¢ > 0 and G-R-R gives
gy ta(Y") = td(Y); the equation T(Y') = T'(Y) follows by equating
coefficients of the top dimension.

g* ch(9) — ch(9) = (

§ 24. The GROTHENDIECK ring of continuous vector bundles

The definition of the group K, (X) “of complex analytic vector
bundles over a complex manifold X in 23.4 is due to GROTHENDIECK.
His construction can be imitated in the continuous case to give a
“GROTHENDIECK ring of continuous vector bundles” (ATIVvAH-
Hirzesruch [1], {3]). Although the vector bundles themselves are not
elements of the GROTHENDIECK ring, this abuse of language may be
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permitted. There is one slight simplification : by Theorem 4.1.4 a sequence
O->W>W->W'—>0

of continuous complex vector bundles over a paracompact space X is
exact if and only if W= W’'e® W”. Throughout this paragraph we
shall for convenience suppose that X is a compact space. This implies,
if X is finite dimensional, that X is admissible in the sense of 4.2.

24.1. Let X be a compact space and C(X) the set of isomorphism
classes of continuous complex vector bundles over X (see 3.5). The
‘WHITNEY sum @ makes C(X) a semi-group. Let F (X) be the free abelian
group generated by C(X), and R(X) the subgroup generated by all
elements of the form W — W' — W"” where W= W’'@ W'". Define
K(X) = F(X)/R(X). The tensor product of vector bundles defines a
ring structure on K (X). This is the GROTHENDIECK ring of continuous
complex vector bundles over X. If X is a point,then K(X)=Z. If
X is a complex manifold there is a homomorphism K, (X) > K{X)
obtained by ignoring the complex analytic structure.

The natural map C(X) -> F(X) defines a homomorphism of semi-
groups % : C(X) - K(X). Let G be an additive group and f: C(X) > G
a homomorphism of semi-groups. Then there is a unique homomorphism
f: K(X) > G such that = f4. This universal property allows homo-
morphisms defined on C(X) to be extended to K(X). If X is finite
dimensional the CHERN class and Topp class give homomorphisms

c: K(X)~>G(X, Z)
td: K(X)>G(X, Q)
where G(X, A) denotes the set of all sums 14 & 4+ A, 4+ -+ with
k¢ H34(X, A) and with group operation defined by cup product.
Similarly the CHERN character defines a ring homomorphism
ch: K(X)~ H*(X, Q) 1)
and a map f: X — X’ defines a ring homomorphism
KXY > K(X)

which depends only on the homotopy class of f. By 4.2 there is a com-
mutative diagram

3

I

E(X) K(X)

mi h @

H* (X', Q) —— H*(X, Q).
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If X is infinite dimensional, H*(X, @) must be replaced by the direct
product {infihite sums allowed) H**(X, Q).

The GROTHENDIECK ring can also be defined for pairs (X, Y) where X
is a compact space and Y is a closed subspace, If Y is empty define
K(X,0) = K(X). If Y consists of a single point define K (X, {z,}) to be
the kernel of the homomorphism #': K{X) - K ({x,}) = Z induced by the
embedding s : {x,} - X. In general let X U TY be the space obtained
by attaching a cone on Y with vertex z, and define K(X,Y) =
K(X UTY,{zy}). There is a canonical map X U T'Y - X/Y which col-
lapses the cone 7Y to a point ¥, and induces an isomorphism

K(X]Y, {5q}) ~ K(X, Y).

The CHERN character can be defined in the relative case. It is a ring
homomorphism ch: K(X,Y) - H*(X, Y; Q). A map of compact pairs
/1 (X, Y)—» (X, Y’) defines a ring homomorphism

KX, Y)>K(X,Y)

which depends only on the homotopy class of f. In particular the embed-
dings ¢: (Y,0) - (X,9) and j : (X, 0) - (X, Y) define a sequence

KX v) 5 kxS k() ®)

which is an exact sequence of K(X)-modules. If Y is a retract of X,
1. e. if there exists a map f: X — Y such that fi(y) =y for all y¢ Y,
then it can be shown that one has a short exact sequence

N P
0 K(X, ¥) Lo K(X) 2 K(¥) >0
f

which splits by means of f.

The definition of the relative GROTHRENDIECK ring K (X, Y) is the
first step in the construction of an “extraordinary cohomology theory”
K*(X, Y) which satisfies all the axioms of EILENBERG-STEENROD except
for the dimension axiom. Further details can be found in ATIvAB-
HirzeBRUCH [3].

24.2. Let X be a compact space, Y a closed subspace, E and F
continuous complex vector bundles over X and a: E|Y — F|Y an iso-
morphism between the restrictions of E and F to Y. In this section we
construct an element d(E, F, &) of K(X, Y) which can be regarded as a
first obstruction to extending the isomorphism « to the whole of X.
For the original {and slightly different) construction see ATIvAn-
HirzeBRUCH [7].

Let I be the unit interval and form the subspace Z=X X Ov
UX X 1TuY X TIof X x I OncZdefine a complex vector bundle L by
putting E over X X 1, putting F over X X 0 and using a to “join™
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them along Y x I. More precisely let

I,=1—-{0}, I=1-{1},
Zy=Xx0uY¥xI, Z;=XX1uY¥xI,,
E0=F, E]_:E:

and let f4:Zy > X, f,:Z;~> X, {: Z— X be induced by the product
projection X X I - X. Then f¥(E;) is a bundle over the open set Z;
for =0, 1 and « induces an isomorphism ff (E;) - f¥(E,) on the open
set ZonZy=Y X (Iyn I,). This gives the required bundle L over Z.
The element L — f* F of K (Z) is trivial when restricted to X x 0. Since
f:Z—~>X =X x 0is a retraction map, we get a short exact sequence

0->K(Z, XX 0)>K(Z) =2 K(X X 0)>0
P

which splits. Thus L — f* F and this splitting define an element
4(E,F,)inK(Z, X x 0)=K(X,Y). Theelement 2{E, F, &) is called the
difference bundle of the triple (E, F, a). The following properties of the
difference bundle are easily checked (ATrvan-HirzesrucH [7], Prop.3.3).

Theorem 2421. 1) If f: (X, VW > (X", Y") 45 a map then
d(f*E, *F f* &)= fd(E F,&).

II) d(E, F, «) depends only on the homotopy class of o.

) If Y=0then d(E,F,a) = E — F.

V) Ifj*: K(X,Y)>K(X)isasin (3) thenj* d(E,F, a) = E — F.

V) d(E, F, &) = 0 if and only if there is a vector bundle G over X such
that o @ 1 extends to an isomorphism E @ G —F & G over the whole of X.

VI) d(E1@ E,. F; @ Fy, 0y ® op) = d(Ey, Fy, o) + 4(Ey, F, ).

VII) d(E,F,a) + d|F,E, ) = 0.

VIII) If 8:F|Y - G|Y 45 an isomorphism over Y then d(E, G, B «)
=d(E,F, &)+ d(F, G, B).

24.3, There is an important special case in which the CHERN character
of the difference bundle Z(E, F, «) can be computed by 24.2.1 IV).

Let W be a real vector bundle with fibre R?¢ and group S0(29)
over a compact space X. Let B(W), S{W) denote the unit disc and unit
sphere bundles of W and s : B(W) — X the projection map. We shall
consider difference bundles d(n* E, #* F, a) where E, F are continuous
complex vector bundles over X and « is an isomorphism

a* E|S(W) - a* F[S(W).
The CuerN character of the difference bundle is then a relative class

chd(a* E, n* F, «) € H*(B(W), S(W); Q) . @)
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The cohomology ring H*(B(W), S(W);0Q) has been described
by TroM [1]. Itis a free module over H* (B (W), Q) = H*(X, Q) generat-~

ed by a class

Ucm*(B(W), S(W);: Q) .
The THoM isomorphism ¢, : H¥(X, Q) - Hi+2¢(B(W), S(W); Q) is
defined by ¢, (x) = (z*x) - U and is an isomorphism for all 4. Let j
be the embedding (B(W),9) — (B(W), S(W)). A comparison with 4.11
shows that the EULER class ¢(W) of W can be defined (since #* is an

isomorphism) by
*U=n*e(W). )

It follows that
7* P (%) = w*(x - e(W)) for x€ H*(X, Q) . (6)

Theorem 24.3.1. Let E, F be complex vector bundles over X, and W
a real oriented vector bundle over X. Let B(W) and S(W) be the unit disc
and unit sphere bundles of W, m: B(W)— X the projection map and
«: q* E\S(W) — a* F|S(W) an isomorphism. Then

e(W) - gzl chd(n* E, n* F, o) = chE — chF .
Proof: j*chd(a*E, n*F, o) =chj'd(n*E, a* F, )

= cha* E — cha* F
by 24.2.1 1IV), and therefore

7* ¢x 93’ chd(n* E, n* F, a) = n*(chE — chF).
By (6) this gives
a*(e(W) - g3 chd(n* E, n* F, a)) = =n*(chE — chF)

and the result follows from the fact that #* is an isomorphism.

We consider a case in which 24.3.1 gives an explicit formula for
gaichd{(n* E,n* F, «). Suppose that W is induced by a map
f: X > ®"(2¢, N; R) from the standard vector bundle W’ with fibre
R2¢ over &*(2¢, N; R) [see 4.1 a)]. Then f induces a map

g:(B(W), S(W))— (B(W"), S(W")) .

Suppose that E’, F' are complex vector bundles over &' (2¢, N; R)
such that E = f* E', F = f* F' and that &’ : E’|S(W)>F'|S(W') isan
isomorphism such thata=g*a’.

Then by 24.2.1 )
gpichd(n*E, a*F,a) =f{* gy ichd{(n'*E', a'*F', o) .

If N is sufficiently large the ring H* (& (24, N; R), @) has no divisors
of zero in dimensions < dim X (Borgr [2]) and therefore Theorem 24.3.1
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implies that

chE’—chF’

e @
where the right hand side is uniquely defined. Note that (7) implies
that, under the above assumptions, g;!chd(n* E, n* F, «) does not
depend on the particular isomorphism «.

gyichd(n* E, n* F, &) = f*

24.4. An example of a difference bundle which satisfies the assump-
tions made in 24.3 is given by the following construction of KoszuL.

Let A be a complex vector space of dimension ¢ and A7 4 the r-th
exterior power of A. For each « € 4 there is a linear map

BrilktA>irA, r=1, ®)

defined by B.(u; A~ Aw,_) =%AU A" At._y. Since the exterior
product does not depend on any choice of basis for 4 it is also defined for
vector bundles and (8) gives

Theorem 24.4.1. Let E be a continuous complex vector bundle with
fibre C, over a topological space X, and let s be a never zero section of E.
There is an exact sequence

0>0EB pE . s 201EP B0

where B, is given by exterior product with s.

Now let X be a compact space, B(E) and S(E) the unit disc and
unit sphere bundles of the real vector bundle underlying E and
7 : B(E) - X the projection map. There is a canonical never zero sec-
tion of #*E over S(E) and hence an exact sequence

0> Fo[S(E) 2 FyIS(B) >+ = FoalS (E) ™ Fi|S (E) 0
where F,= n* ir E. Hermitian metrics for each F, define adjoint
homomorphisms §f : F,|S(E) - F,_;|S (E). The homomorphism

B: X FaolS(E) = X Fas1|S(E)

defined by Blfyfofur--)=(Bifo— BtfoBsfo— Bt fp--) is an
isomorphism whose homotopy class does not depend on the choice of

hermitian metrics for F,. By 24.2.1 there is a unique element
d(E) = d(Z.‘ Fay 3 Fagt1, ﬂ) €K(B(E), S(E)
s s

which behaves functorially with respect to maps f: X — X',

Theorem 24.4.2. Let 5 be a continuous U(q)-bundle over a compact
space X and E a vector bundle associated ton. Let

@y H*(X, Q) > H*(B(E), S(E); @)
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be the TaoM isomorphism. Then
ga' chd(E) = (—1)? (tdy*)~*.
Proof (compare Arivar-HirzEBRUCH [7], Prop. 3.5): Let 1 be

induced from the universal U(g)-bundle & over G (g, N; €) by a map
f: X — ®(g, N; (). The argument of 24.3 shows that

£ (—tranre
3’ chd(E) = f* ——p—0,

where the right hand side is well defined provided that N is large enough.
The result then follows from Theorem 10.1.1.

24,5. The element d(E) can be used to define a homomorphism
@1 : K(X) - K(B(EY, S (E)) of K(X)-modules. Let

gia=(—1)2d(E)*-n'a for acK(X).

Then chgya = @, ((tdy)~t - cha). In fact ¢, is an isomorphism analo-
gous to the THOM isomorphism for cohomology. The proof depends on
the special case when X is a point, which in turn depends on the Bott
periodicity theorem:

Theorem 24.5.1 (Bott [2], [51). Let X be a compact space. There is a
commutative diagram

K(X) ® K(S%) —L

K(X x §%

ch®@ch lch

H*(X,0) @ H*(S, Q) —— H*(X x $*, Q)

where B is induced by tensor product of bundles, o by cup product, and
both are isomorphisms.

An elementary proof of Theorem 24.5.1 has been given by ATrvan-
Borr [1]. For the corresponding periodicity theorem for the GROTHEN-
DIECK ring of real vector bundles see Woop [1].

Theorem 24.52. Let n be a continuous U(qg)-bundle over the 2n-
dimensional sphere S*». Then (ch, n) [S**] is an inieger. Equivalently
(cn(m)) [S27] 4s divisible by {(n — 1)1

Proof: Let & € K(8? correspond to the U (1)-bundle 5, over $* = P, (C)
defined in 4.2. Then 1 and A are generators for K(S* and hence
{chyg) [8?] is an integer for all g € K(S?%). Theorem 24.5.1 implies that
{ch,f) [S2 X - -- X S*isaninteger forallf € K($* X - - - X $%). Represent
$2# as the reduced product of # copies of $2 and consider the identification
mapp:S*X -+ X $*—§2%. Then (ch, p'b) [S* X - - - X $%], and hence
{ch, ) [$*"], is an integer for all b € K(S*"). The final statement follows
from the NEwToN formula (10.1)

n! ch,b = (— 1)* 1 n ¢, (b) + products of lower degree terms.
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Theorem 24.5.2 is also due to BorT who originally gave a direct proof
using MoORsE theory (Botr [3]). It implies that $?# does not admit an
almost complex structure for #n = 4 (if 6 were a tangent GL (#, €)-bundle
then 4.11 (16) would imply that (c,(0)) [S?#] = 2). KERVAIRE and MILNOR
deduced from Theorem 24.5.2 that $%27-1 is parallelisable if and only if
n=1, 2 or 4 (KERVAIRE [1], MILNOR [2]; see also BOREL-HIRZEBRUCH
[1], §26.11 and ATivAH-HIRZEBRUCH [5]).

Consider the homomorphism ¢, : K(X) - K(B(E), S(E)) when X is
a point. Then K(B(E), S(E)) = K (8%, y,) for some base point y, € §*¢
and ¢,:Z > K(8%9,y,) is a homomorphism with (ch,¢, 1) [$??] = 1.
In this case it can be shown that p': K($29) > K (S X +--x 8% is
a monomorphism and that ¢,: Z > K(8%¢, y) is an isomorphism. It
is often convenient to introduce the element A= 14 ¢, 1€ K (829).
For g = 1 this coincides with the element used in the proof of Theorem
24.5.2. The same argument involving reduced products implies that
Theorem 24.5.1 holds with $? replaced by $2¢ for any ¢ > 0.

The Borr periodicity theorem is the basic tool for the definition
of the complete “‘extraordinary cohomology theory” K*(X, Y) (see 24.1)
and hence also for the proof of the THOM isomorphism theorem mentioned
above. We give one further application: to the proof of differentiable
analogues of the Riemann-RocH theorem.

Let 7: XY be an embedding of compact connected oriented
differentiable manifolds such that the normal bundle £ of X in ¥
admits a complex structure, 4. e. E is associated to a U{(g)-bundle #
as in 24.4.2. There is a map r: Y — B(E)/S(E) under which all points
outside B{E)CY are collapsed to the base point and hence a homo-
morphism r': K(B{(E), S(E)) > K(Y). Define j,: K(X)-~K(Y) by

jia=r" g asothat

chjya = 7* py((tdn)t - cha)
= ju((tdn)* - cha)

where 7, : H*(X, Q) - H*(Y, Q) is the Gysin homomorphism. This is a
differentiable analogue of the RieMaNN-RocH theorem for an embedding
[23.5 (9)]. We give two corollaries for the case when X is an almost
complex manifold.

Theorem 24.5.3. Let X be a connected almost complex manifold. There
exists an embedding j: X — S*¥ and a homomorphism j,: K (X) - K (§*%)
such that chj, a = j(td(X) - cha).

Proof: Let 0 be the tangent U(n)-bundle of X. For ¢ sufficiently
large there is a U{g)-bundle 5 over X such that 6 @7 is a trivial
U(n + ¢)-bundle and such that 7 is the normal bundle of a differentiable
embedding X —~C,,; ,. We regard $2¥ as the one point compactification of
Cy where N = 1 + ¢. The result follows from the equation tdf - tdy= 1.
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Theorem 24.54. Let X be an almost complex manifold and n a
U{q)-bundle over X. Then T (X, n) is an inieger.

Corollary: The ToDD genus of X is an inieger.

Proof: Let j: X - $*¥ be the embedding constructed in 24.5.3.
Then # determines an element & € K (X) and

T(X,n) = xx[fa (td(X) - cha)]
‘ = xy [chy, a]
is an integer by Theorem 24.5.2.
" Theorem 24.5.3 is due to Arrvar-HirzeBrucH [1], [8]. It is a special
case of a theorem on continuous maps of differentiable manifolds which

is described in 26.5. Similarly Theorem 24.5.4 is a special case of more
general integrality theorems on differentiable manifolds (26.1—26.2).

§ 25. The ATIYAH-SINGER index theorem
25.1. Let x,, . . ., x, be coordinates for R* and define, for each n-ple

t= (¢, ..., t,) of non-negative integers,
fl=ti+ -+
am

D= (Mg =1 @

Let A, B be finite dimensional complex vector spaces and C* (U, 4)
the space of differentiable functions f from an open set UCR" to 4.
The linear map
D:C*(U,4A)—~C*(U, B)
is a lnear differential operator of order r if there exist functions
& €C* (U, Hom(A4, B)) such that
Df=} gD'f.
M=r
The differential operator D of order r defines a linear map
a.(D) (v) € Hom(4, B) for each v = (%, (5, - . .. ¥4)) €U X R* by

o,(D) (v) = Z' &)y ...y 2
D is elliptic of order 7 if, for all € U and all non-zero

Y= €RY v=(13),
the homomorphism o, (D) (v) is invertible. The homomorphism g, (D) is
called the symbol of D. Note that the symbol depends on the choice of
r:if D is regarded as a differential operator of order » + 1 then the
symbol ¢, 14 (D) is zero.
Now let X be a differentiable manifold, g8* the dual tangent bundle
of X (see 4.6), B(X) and S(X) the disc and sphere bundles associated



§ 25. The ATIvAH-SINGER index theorem 185

to g0*, and n: B(X) > X the projection map. Let E, F be differentiable
complex vector bundles over X and I'(E), I'(F) the corresponding vector
spaces of (global) differentiable sections. A linear map

D:I'(E)— I'(F)

is a differential operator of order v if there is an open covering of X by
coordinate neighbourhoods Uj; such that, over each Uj; we have
E=U;x 4 and F = U; X B and D is given by a differential operator
D;: C*(U;, A) — C* (U;, B) of order 7.

Regard n* E, n* F as subspaces of B(X) X E, B(X) X F respectively
and define 2 homomorphism

g, Dy:n*E>a*F,

called the symbol of D by

0, (D) (3, s(w)) = (0, 57 D" ) () @
where %, €X, v€ B(X), n(v) =%, sC€I'(E) and f is a differentiable
function with f{xo) = 0 and df = v. In terms of local coordinates x,, . . ., %,

at the point x, we have D¥(fr 5), = 0 for |t|<< r and
0 .
R 2f \h of \in
Di(fr s),, = (—i) (an,),, .. (a—x’;)x.r: s (%)

for [¢| = 7. Therefore o,(D) (v, s(x,)) depends only on the coordinates
2k of af and on the value s (x) of 5.
1 .

This proves that the bundle homomorphism g, (D) is well defined and
that it agrees at x, with the homomorphism defined by (2).

If E, F, G are complex vector bundles over X, and if D, : I'(E) — I'(F)
and D,:I'(F)— I'(G) are differential operators of orders », and 7,,
then D, D, is a differential operator of order #, + 7, and

Or,4 v, (D2 Dy) = or,(Dy) 0,,(Dy) .

Definition: The differential operator D is elliptic of order 7 if
¢ = 0,(D)|S(X) is an isomorphism.

Remark: If D is elliptic then E, F have the same fibre dimension.
A monomorphism between vector bundles of the same fibre dimension
must be an isomorphism. Therefore D is elliptic provided that E, F
have the same fibre dimension and that, if s ¢ I'(E) is a section with
s{(x) =0 and f is a differentiable function with f(x) =0, df(x) + 0,
then D(f s) (x) == 0.

25.2. Now suppose that X is compact with a RIEMANN metric. The
volume element makes it possible to define integration over X. Suppose
that the complex vector bundles E, F are given hermitian metrics
H(,). A differential operator D*:I'(F)—» I'(E) is called a formal
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adjoint for D if for all s ¢ I'(E), t € I'(F)
[H(Ds,f)=[H(s,D*#).
X X

The hermitian metrics on E, F define metrics on n* E, n* F. Therefore
the symbol ¢,(D):a*E —>a*F defines an adjoint homomorphism
o.(DY*:n*F.—>a*E.

Theorem 25.2.1. Let X be a compact differentiable manifold with a
RIEMANN meiric, and E, F differeniiable complex vector bundles over X
with hermitian metrics. There exists a unique formal adjoini D* for D and
o,(D*) =a,(D)*.

For the proof see Parais [1]. If D is a differential operator of order r
then D*D: I'(E) - I'(E) is a differential operator of order 2r by 25.1.
‘With respect to the hermitian metrics in E, F

H(e, 63,(D*D) ¢) = H(a,(D) ¢, 0,(D) ¢)

for all ¢ 4 0 in n* E. Therefore if D is elliptic, D* D is strongly elliptic,
i.¢. H(e,04,(D*D)e) >0 for all e+ 0 in a* E. Conversely suppose
that E, F have the same fibre dimension and that D*D is strongly
eliptic. Then o, (D)|S(X) is 2 monomorphism and hence D is elliptic.

Let ker D and coker D be the kernel and cokernel of the differential
operator D. If D is elliptic then D* is elliptic, ker D is finite dimensional
and dim ker D* = dim coker D (Pavais {1], GELFAND [1]). The index,
or analytic sndex, ©(D) of D is defined by

t(D) = dim ker D — dim coker D = dim ker D — dimker D* . (4)

VekvA and GELFAND [1] conjectured that the integer 7(D) could be
expressed in terms of topological invariants. This conjecture was checked
in special cases by Acranovic [1], DyNIN [1], VorrerT [1], [2] and
others.

25.3. Let X be a compact differentiable m-dimensional manifold,
which need not be orientable, and g8 the tangent GL (m, R)-bundle of X.
Let T* be the total space of the covariant tangent vector bundle g&*
of X and = : T* - X the projection map. Then T* is a 2m-dimensional
manifold with tangent GL(2m, R)-bundle n* 30 & #* z0*. A RIEMANN
metric on X defines an isomorphism »f =~ z6* and hence (in the notation
of 4.5) an isomorphism

a%l @ AR0* =2 2%l ® 7%0 = o(n* p(r0)) -

Therefore the GL(m, €)-bundle 9 = n* p(zf) gives an almost complex
structure for the manifold 7*. For a detailed study of the almost complex
structure on T* see DoMBROWSKI [1].
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In terms of local coordinates xl, , %, an element v in the fibre of T*
over (0,..., 0) has the form Z,‘ v; dx;. The ordermg of coordinates

(%1, o4y -« -, Xy, U,,) defines the onentatlon of T* induced by . This
orientatlon induces orientations of the unit disc bundle B(X) and the
unit sphere bundle S(X) and hence a fundamental cycle in

Hyn(B(X), S(X); Q) -
The value of a cohomology class # ¢ H*(B(X), S(X); Q) on the funda-
mental class is denoted by #2™ [«].

Let D: I'(E) - I'(F) be an elliptic differential operator of order »
with symbol ¢, (D). By 24.2 the restriction ¢ = ¢, (D)|S(X) defines a
difference bundle d(n* E,n*F,0) in K(B(X), S(X)) with CHERN
character

chD ¢ H¥*(B(X), S(X); Q) .

The relative cohomology group H*(B(X), S(X); Q) can be regarded,
using the relative cup product, as a module over H*(B(X), Q). The
topological index y (D) of D is then defined by

y (D) =%*m[chD - tdy] . 5

Theorem 25.3.1 (ATivAH-SINGER [1]). Let E, F be differentiable
complex vector bundles over a compact differentiable manifold X and
D:TI'E)— I'(F) an clliptic differential operator. Then t(D)= y(D).

Corollary: y(D) is an integer.

The ATIVAH-SINGER index theorem z(D) = (D) implies Theorem
21.1.1 (R-R) for an arbitrary compact complex manifold V. In addition
it implies the index theorem of Chapter Two (Theorem 8.2.2). These
implications are proved in 25.4. The proof of Theorem 25.3.1 is discussed
very briefly in 25.5. In certain cases it can be proved directly that
¥(D) = 0. Theorem 25.3.1 then implies that 7(D) = 0. For example

Lemma 25.3.2. Let D be an elliptic differential operator on a compact
differentiable manifold of odd dimension. Then y (D) =

Proof: Let D:I'(E) > I'(F} be elliptic of order ». If v¢€S(X),
7(v) = z, then the symbol 0, (D) (x, v) : E, —~ F, is defined by a homo-

geneous polynomial of degree 7 in the local fibre coordinates vy, .. ., ,,
for B(X). Therefore
G,(D) (x» ""'”) = (— 1)7 U,(D) (x’ '(')) . (6)

Let f:B(X),S(X)-> B(X),S(X) be the antipodal map and f: n* F—»>n*F
scalar multiplication by (— 1)”. Then (6) gives

Bo.(D)=f*o,(D):[*n*E > f*a*F .
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Therefore, since zt f =  and f* 7* = a*,
dn*E,a*F,*6) =d(n*E,n*F, o).
It follows from Theorem 24.2.1 that since § is homotopic to the identity
d(f*a*E, [*n*F,f*o) =d(a*E,a*F, o),
f*chD=chD.
On the other hand td# is a class in H*(B(X), Q) = H*(X, Q) and so
f* tdn = tdn. If X is odd dimensional the map f is orientation reversing
and therefore —y (D) = y (D).
If X is orientable, g% is associated to the S@(m)-bundle gf. There
is a THOM isomorphism
@x: H*(X, Q) >~ H*(B(X), S(X); Q) O
defined by the orientation of X, and the orientation of B(X) given by
the ordering of coordinates (xy, ..., %, vy, ..., v,). This orientation
differs from that used above by a factor (— 1)#m -1, Therefore
7(D) = gz* ((—~ Dimen-D chD - tdy) [X]
=™ [ ((— Dimes—1 chD) -tdyp(r0)] . 8
The TopD class tdy(gf) can be expressed as a polynomial in the
PONTRJAGIN classes $;(X) = (—1)7 ¢q;(p(R0)) of X : if

2(X) =11_I(1 +5)) €H*(X, Q)
then (see 4.5)
c(y(=0)) = 17_7(1 -3 = lfI(l +35) (1)

and so

—; 2
weet) = I (2%=) =) - n(ay) o
The right hand side is a symmetric function of the y} and is therefore
expressible as a polynomial in the $,(X) (compare the corresponding
formula in 1.7).

25.4. In this section we outline two important applications of the
ATIVAH-SINGER index theorem. Further details can be found in Paras
[1], CARTAN-ScEWARTZ [1].

a) Let V,, be a compact complex manifold of dimension # and W a
complex analytic vector bundle over V, with fibre C,. We wish to
show that Theorem 25.3.1 implies the RiEmMANN-RocH theorem
XV W) =T (¥, W). Let T be the complex covariant tangent vector
bundleof ¥,. In the notations of 154, I'(W ® A* T) = A%#(W). The
differential operator

3+0:I’(§W®PT)»I‘(‘§W®PT)
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is self adjoint [15.4 (9)]. Since 0 is of degree + 1, and @ is of degree —1,
the differential operator 8 + & maps odd degree forms into even degree
forms and conversely. Let

E=YW@T, F=YWei+T,

D=0+%:(E)—>I'(F).
Then D is a differential operator of order 1. The decomposition
A% (W) = § A%? -1 (W) @ # A%2+1(W) @ B%?(V, W)

of 15.4 shows that if Sa+8 B=0, aC AN -1(F), § €AW +1(W),
then 0 @ = & § = 0. Therefore

ker D = J B%:(V, W),

ker D* = 3} B%2+1(V W)
By Theorem 15.4.1

(D) = dim ker D — dim kerD*
= (-1 dmH(V, W)= 4(V,W). (10)
4

Let g&¢ be the complexification of the real dual tangent bundle
&Z* of X. The isomorphism x&¥ = T ® T [see 4.7 (12)] defines a projec-
tion map $:gZ¥ — T. The induced map zg@* - T can be used to
identify the disc bundle B(X) = B(z%*) with B(T). We assume this
identification when calculating the symbol of the differential operator D.
By (3) the symbol of 8: I'(Ar-1 T) - I'(4* T) is defined at df € B (S8,
U Atigh**Athy_ EX1T by

6, (0) @f, A ANty ) =50fAU - AUy
and at (df) = df € B(T) by
0, (0) (OF, 4y A Ath_)) =3 8f AU A" Athy_,.

The isomorphism A7 T — A7 T* [see 15.3 ¢)] induces hermitian metrics
for each A7 T such that &, defined by 15.4 (9), is a formal adjoint for J
in the sense of 25.2. Therefore, in the notation of 24.4,

0’1(5) =1if,
6, (D)IS(X) = if:a* T We W TIS(X) »a* X We i+ T |S(X).

By 24.4, f is an isomorphism and therefore D is elliptic. Alternatively
an explicit calculation shows that D*D = (3 is strongly elliptic and
hence that D is elliptic.
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As in 24.4.2 we have
gzl ch(D) = ¢3! chd(:;z* ‘Z' wWe T, n*%,‘ W® T, ﬁ)
={(—1)"chW - (td0*)—
where 0 is the tangent U(n)-bundle of ¥,. Then

y(D) = x,[(—1)** ch W - (td6*)~1- td 0 - td 6]
=2, [chW-1d0] = T(V,, W). (11)

Equations (10) and (11) show that Theorem 25.3.1 implies R-R
for an arbitrary compact complex manifold ¥,. The same theorem
applied to the vector bundle W ® A# T gives

Ve W)=T#(Vy, W) and 2,(Vy, W) = Ty (Ve W) -

In particular the case y = 1 shows that the HopGE index theorem
(15.8.2) is valid for an arbitrary compact complex manifold.

b) Now let X be a compact oriented differentiable manifold of
dimension 2#. We wish to show that Theorem 4.11.4 and Theorem 8.2.2
are both consequences of Theorem 25.3.1.

Let g&¥ be the complexification of the real vector bundle of covariant
tangent vectors (see 4.6) and define

W= ISt

A section of W is a complex valued difierential form on X. The exterior
derivative

a: Wy I'(W)
is a differential operator of degree 1 (see 2.12). Equation (3) shows
that if v =df, n{v) = %, f(x) = 0 and w € I'(W) then the symbol of d
is defined by

. (d) (v, 0(x)) = (v. s v A 0(x)).
A RiEMANN metric on X defines a homomorphism
x: A g&E > An-r G
and hence a homomorphism * : I'(W) — I'(W). Since X is even dimen-
sional the formal adjoint & for 4 in the sense of 25.2 is defined by
=—%d* As in 154 we have dd=65=0 and (d+ 8 @+ 8 =

48+ 8d = A. A form o € I'(W) is called harmonic if Aw = 0. wis har-
monic if and only if dw = dw = 0. If Br(X) denotes the vector space of
harmonic forms of degree r there is a natural isomorphism (D RuaM [1],
Hobge [1]; compare 15.7)

H7(X, C) = Br(X)
and therefore dim B7(X) = &, (X) is the »~th BETTI number of X.
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The differential operator d 4 6: I'(W) > I'(W) is self adjoint.
We therefore seek decompositions W = E & F such that

D=d+ 6:I'(E)—~ I'(F)
is elliptic. Consider the endomorphisms of W defined by * and
=g+t g Jr G¥ . J2n—r GF Since X is even dimensional
## = (— 1) and a® = (— 1) #* = 1. The eigenspaces of the involutions

»x and a provide decompositions of W of the required type.
1) Define E = 3] 223 g@¢, F = }] A2¢+1 3@ and

D=d+ é:I'(E)—>I'(F).

In the notation of 24.4 the symbol of D is i8 and therefore D is elliptic.
Alternatively an explicit calculation shows that D*D = A is strongly
elliptic and hence that D is elliptic. As in a)

(D) = dim kerD — dim ker D* = 37 (—1)" dim Br(X) .

Therefore (D) is the EvierR-PoiNcaARE characteristic E(X) of X.
By Theorem 10.1.1, if g0 is the tangent S 0(2#)-bundle of X,
chE — chF = ¢,,(p(0)) - (tdy (z0))?
= (=1 (e@0) (tdyp RO
By 24.3 (7) and 25.3 (8), y(D) = ¢(gf) [X]. Therefore Theorem 25.3.1
implies Theorem 4.11.4 for even dimensional X. The case of odd dimen-
sional X is covered by Theorem 25.3.2.

2) Now let E, F be the eigenspaces corresponding to the eigenvalues
+1, —1 of «. The argument of 1) shows that the differential operator
d+ §: (W) -> I'(W) is elliptic. Now «(d + 8) = — (4 + 6) « and there-
fore there is a differential operator

D=4+ d: I'(E) > I'(F).
The symbols of D and d -+ ¢ form a commutative diagram

(D)
*E—22 ., o F
1{é+
w28 e

in which vertical arrows denote inclusions. Since o,{d + d) is an iso-
morphism over S{X) the symbol ¢ (D) is a monomorphism. The same
argument shows that o, (D*) is a monomorphism and hence (see 25.2.1)
that ¢, (D) is an epimorphism. Therefore D is elliptic.

The kernel of D is the space of harmonic forms @ such that & w = w.
The kernel of D* is the space of harmonic forms e such that ¢ & = — .
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Thus (compare the proof of Theorem 15.8.2)

7(D) = dim kerD — dim ker D* = dim B% (X) — dim B? (X)
where B% (X) is the subspace {w ¢ B*(X); & o = + o} of B*(X). The
homomorphism a: 4* 3%¢ - A® 3&¢ is defined by « = 4 % for # odd and

=% for n even. If n is odd the mdp w— @ is an isomorphism
B% (X) - B™ (X) and therefore v(D) = 0. The direct sum

H*(X, ()= B% (X) ® B~ (X)
induces a corresponding direct sum, when # is even,

H*(X,R) = B% »(X) @ B »(X)

where B% g(X) is the subspace {w € B% (X); o = &} of B"i(X) The
inner product (w,, wy) = f W, A * wy on Bg(X) = H*(X, R) is positive

definite and B% R(X) B ,r{X) are orthogonal with respect to this
inner product 1f # is even. The quadratic form Q(m,;, wy) = [ @; A
X

is positive definite on B% y(X) and negative definite on B% g(X).
Therefore if # is even, dim B (X), dim B* (X) is the number p., p_ of
positive, negative eigenvalues of (. Hence z(D)=$, — p_ is the
index of X as defined in 8.2.

A calculation on the classifying space & (25, N; R) which is similar
to 1) and which is given with full details in Parass [1], shows that, in
terms of the factorisation

0= IT (+D), et = T3,
chE — chF = JT (e — ¢)

=1

and therefore by 24.3 (7) and 24.4 (7)

® e —e

ga*chD = [T
f=1

b4

s
_ ] n g &Iy —
D) = _(_ b ,-I,I, Y5 l—e?s 1—e% ]
an] pya. SoRiy]
o .1!=]ly! sinh $5; |

= 2,. pli T+, (tanh y,)"]

— e Hy,/tanhy, =L(x).

Lj = 1
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Therefore Theorem 25.3.1 implies Theorem 82.2. The case of odd
dimensional X is again covered by 25.3.2.

25.5. There are two proofs of the ATIYAH-SINGER index theorem. The
first proof, which is modelled on that of Theorem 8.2.2, was outlined in
ATivAH-SINGER [1]. Details can be found in PArars [1] and CARTAN-
ScawarTz [1]. The second proof appears in ATIVAH-SINGER [2].

The starting point for both proofs is the fact that formula (8) defines
the index y(8) for any element ¢ K (B(X), S(X)). We wish to extend
the analytic index (D) similarly so that it becomes a function
7:K(B(X), S(X)) > Q. It is known that homotopic operators have the
same analytic index and that symbols which determine the same differ-
ence bundle are homotopic. Thus the index will depend only on the
difference bundle if (i) a homotopy between symbols can be raised to a
homotopy between operators. The function = will be defined if (i) every
b€ K(B(X), S(X)) is the difference bundle determined by some elliptic
operator. In general neither (i) nor (ii) is true for elliptic differential
operators. It is necessary to introduce the elliptic integral operators
of SEELEY [1]. This class includes the elliptic differential operators
but is large enough for (i) and (ii) to hold. In this way the analytic
index defines a homomorphism z: K(B(X), S(X)) - Q which always
takes integral values.

The remainder of the proof is devoted to showing that the two
homomorphisms

y:EK(B(X),S(X)~Q,
: K(B(X), S(X))~Q,

coincide. We summarise both methods very briefly. In the first it is
assumed that X is oriented and even dimensional.

a) By 25.4 b) there is a differential operator D, over X whose topo-
logical index is the L-genus of X. Let 3¢ K(B(X), S(X)) be the
corresponding  difference bundle. The ring K(B(X), S{X)) is a
K (X)-module (24.5) and the function p is determined completely by its
values on the subgroup K({X)-:b, of finite index. Define a function
(X, ): K(X) > Q by y(X, 8) = y(b- by). In fact y(X, b) is none other
than the T,-characteristic of & with y = 1 (this is defined also for dif-
ferentiable manifolds and by 12.2 (13) the definition can be extended
to elements b¢ K (X)). The homomorphism has the properties

I) y(X+Y,b+4¢)=y(X, b+ y(Y,c) where on the left hand
side + denotes disjoint union (noé direct sumy);

I y(XX Y, b@¢c)=y(X,b) p(Y,c) where ® denotes tensor
product; this follows from 12.2 (14) with y = 1;
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IIT) p(X, b) = 0if there exists a manifold X" with boundary 8 X' = X
and an element &’ ¢ K (X’) whose restriction to X is b; this is proved by a
more complicated version of Theorem 7.2.1;

IV) p(8**, k) = 2" where A€ K(8%") is the element with»**[ch 4] =1
defined in 24.5; by 12.2 (10) we have, if ch b= }] ¢%,

(S, h) = a3 [ 3 €34 = 2% 3% [ch h] = 2°;
V) y(®3zn(C), 1) = 1; this follows from 1.5.1.

The next, and most difficult step in the proof is to show that the
analytic index 7 also satisfies properties I})—V). Finally it is shown that a
function K(X)->Q is uniquely determined by properties I)—V). As
in 7.1 we consider a cobordism group {,. For each n = 0, Q, is obtained
by considering pairs (X, b) with X a compact oriented n-dimensional
differentiable manifold and ¢ K(X). A pair (X, b) bounds if there
exists a manifold X’ and element &' € K(X') such that X =9X’ and
b= V|X. The groups 2, ® Q are determined as in 7.2.3: elements of
2, ® Q are determined uniquely by mixed PONTRJAGIN-CHERN numbers

le(X) v Pir(X) ° Chkz(b) ce. Chha(b) [X] .
Properties I)—III) show that y gives a function Q= Zw' 2, 0.

=0
Properties IV), V) are sufficient to determine y on the generators of
£ ® Q and hence to determine 4 uniquely. A general theory of such
cobordism groups of pairs can be found in CoNNER-FLOYD [1].
The theorem for X odd dimensional follows by considering X x S.
b) The second proof that the homomorphisms y and 7 coincide does
not depend on cobordism theory. By 25.3 the unit disc bundle B (X)is an
almost complex manifold with boundary S (X). For convenience we write
T* X for B(X) — S(X) and K(T* X) for K(B{X), S(X)).Let V=R¥ s0
that K(T*V)=K(S*¥,y,) =Z. An embedding XCV defines an
embedding §: T*X -» T*V. Now Theorem 24.5.3, suitably modified
to apply to manifolds with boundary, implies that there is a homo-
morphism
JuK(T*X)>K(T*V)=2

such that 7, @ = x3™[ch 4 - td%n] where m is the dimension of X and
is the tangent GL (m, C)-bundle of T* X. By 25.3 (5) the homomorphism ,
coincides with the homomorphism y : K(T™* X) — Q. Note in particular
that ¢ always takes integer values, so that for applications of the ATTVvAH-
SinGER index theorem to integrality theorems (26.2; MAYER [1]) the full
proof is not needed.

It remains to prove that the homomorphism j, coincides with the
analytic index v: K(T*X) - Z. The first part of the proof consists in
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extending the definition of ¢ to apply to operators on non-compact
manifolds U, V. This is done by SEELEY {1]. The result is a diagram
of homomorphisms

K(T*X)—5 K(T*U) > K(T*V) <= K(y,)

Z idﬁ' Z id .z id Z
in which U is a tubular neighbourhood of X in V, the ¢, are TaOM
isomorphisms (see 24.5) and 7! is induced by the map T*V - T* U which
collapses everything outside TU to a point. The second and difficult
part of the proof consists in proving that each of the squares in this
diagram is commutative.

The techniques involved in this proof have been extended by ATIvay
to give generalisations of the ATIYAH-SINGER index theorem which apply
to manifolds with boundary (Atrvam-Bort [2]), to families of elliptic
operators (SmiH [2]), and to actions of compact LIE groups on differ-
entiable manifolds (ATIvAH-SINGER [2], [5]).

25.6. The latter development can be described briefly as follows.
Let X be a compact space, and G a compact Lie group which acts on X,
Then a G-vector bundle over X consists of a complex vector bundle E
over X together with a G-action on E, commuting with the projection
E > X, given by linear maps g: E,—~ E,, for all g€G, x¢X. The
definitions of 24.1 can be imitated in this case to give a GROTHENDIECK
ring Kg(X) “of G-vector bundles over X”. In the special case when G
consists only of the identity element, K¢ (X) coincides with K (X). When X
is a point, Kq(X) is the representation ring R(G) of G. If Y is a G-stable
closed subspace of X then the relative group Kq(X, Y) is defined. Note
that the groups K4(X), K¢(X, Y) depend not only on G, X, Y but also
on the particular action of G on X. The results in K-theory mentioned
in § 24 all have analogues (due to ATrvaH and SEGAL) in K theory.

Now suppose that X is a compact differentiable manifold, and that
G acts differentiably on X, If E is a differentiable --vector bundle over X
{that is, both E and the action of G on E are differentiable) there is an
action of G on the space I'(E) of differentiable sections of E defined by

(gs) k) =g -s(g™x), gE€G,scl'(E),x¢cX.
Let E, F be differentiable G-vector bundles over X and
D:I'(E)—~I'(F)

an elliptic differential operator compatible with the action of G. Then
G acts linearly on the finite dimensional vector spaces kerD and cokerD.
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The analytic index of D is the element 7(D) of the representation ring
R(G) of G defined by
(D) = ker D — cokerD .

When G consists of the identity element, R(G) = Z and this definition
coincides with 25.2 (4).

On the other hand it is possible to define a topological index y (D) €R (G)
which reduces to that defined in 25.3 when G is the identity. The defini-
tion involves, not only the symbol of D and the PONTRJAGIN classes of X,
but also the fixed point sets X7 of elements g €G.

The second proof of the ATIvAH-SINGER index theorem (25.5) can
be given in terms of Kgtheory, and then shows that v(D) = ¢ (D} for
every elliptic differential operator D compatible with the action of G.
There is a G-invariant metric on X, and hence a G-action on the disc
bundle B(X) for which S(X) is a G-stable subspace. The elliptic integral,
or “pseudo-differential”, operators of SEELEY are used to define homo-
morphisms

z: Ko(B(X), S(X)) > R(G),

7: Ke(B(X), S(X)) > R(G) ,

which are then proved to coincide.

Consider the special case in which G is a cyclic group, and in which the
generator g : X - X has only simple fixed points [a fixed point x € X is
simple if det{l — dg,) #+ 0, where dg_ is the induced map on the tangent
space to X at x; this implies that x is an isolated fixed point]. In this
special case the formula (D) = y (D) is also given by a “LEFSCHETZ
fixed point formula” (ATivaB-BotrT [4]). The latter theorem, which
is proved by quite different methods, applies to more general maps
f: X -~ X (again with only simple fixed points, but not necessarily the
generator of a cyclic group acting on X). As in 25.4, applications follow
by considering particular differential operators D. Thus the operator of
25.4a) gives a theorem, on the fixed points of a holomorphic map
f: V>V of a compact complex manifold V, which is analogous to
R-R. The operator of 25.4b) gives 1) a theorem analogous to the
HirzeBrUCH index theorem, and 2) the original LerscHETZ fixed point
formula, for a compact oriented differentiable manifold. Full details of
these results, with a sketch of the proof of the general formula, can be
found in AtivAau-Botr [4].

§ 26. Integrality theorems for differentiable manifolds

26.1. The ATivAH-SINGER index theorem implies in particular
[25.4 a)] that the T-characteristic T(V,, ) of a complex analytic
GL (g, C)-bundle % over a compact complex manifold ¥, is an integer.
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This is a.special case of a more general theorem for continuous
GL (g, C)-bundles over compact oriented differentiable manifolds.

Let {4, (p1,. .-, #»)} be the multiplicative sequence with characteristic
—.%T defined in 1.6. The power series—_—‘lﬁz
sinh2yz . sinh} )z
defines a multiplicative sequence {4;(p,, . . ., p;)} with 4; = 2% 4,.

Throughout this paragraph we assume that X is a compact oriented
differentiable manifold of dimension m with PONTRJAGIN classes #;.

Theorem 26.1.1. Let d be an element of H*(X, Z) whose reduction
mod2 is the WHITNEY class w,(X), and n a continuous GL{g, C)-bundle
over X. Then

fi( ,%d,n)zx'”[e‘}'d'Ch’?'_f A b---r?f)]
=0

" 15 an integer. ‘

Remark: Since X is oriented, w,;,,(X) is the reduction modulo 2
of an integral STIEFEL-WHITNEY class W,;i,(X). The exact sequence
0—>2Z—>Z - Z,—> 0 defines a cohomology coboundary homomorphism
dsuch that dw,;(X) = Wy, (X). Hence thereis an element € H%4(X, Z)
whose restriction modulo 2 is w,;(X) if and only f W,;,,(X)=0. In
particular Theorem 26.1.1 can be applied only if W,(X) = 0.

Ii m is odd then 4(X,5d,7)=0. Tt is therefore sufficient to

prove Theorem 26.1.1 when # is even. In 26.3—26.5 we give references
to three proofs of 26.1.1. We first note two important special cases which
have been proved already in 24.5.

1) Let X be an almost complex manifold with tangent GL(», €)-
bundle § and 7 a continuous U{g)-bundle over X. Let d = ¢;(#) and
Ps=p:(0(0)). Then equation 1.7 (12) shows that

td6 = 3“.:20 A (b .. )

7

power series @(z) =

and therefore 4 (X, —;,:—d, 97) = T(X, 7). Since the reduction of ¢, (6)

modulo 2 is w,(X), Theorem 26.1.1 implies Theorem 24.5.4: the Topp
characteristic T'(X, n) is an integer.

2) Let 5 be a continuous U (g)-bundle over the 2#-dimensional sphere
St The PONTRJAGIN classes $;(S?") are zero for ¢ > 0 (see 7.2.1) and
therefore A (827, 0, 7) = x**[chy] = (ch,n) [$*"]. Thus 26.1.1 implies
Theorem 24.5.2: (ch,7) [8%"] is an integer.

26.2. The integrality theorem {26.1.1) is itself a special case of a
“non-stable” integrality theorem due to Maver [1]. Let £ be a
SO (k)-bundle over X with & = 2s or 2s + 1 and consider a formal fac-

torisation p (&) = H (1+ 3.
foml
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Theorem 26.2.1 (MAaYERr [1]). Let d be an elemeni of HMX, Z)
whose reduction mod 2 is wy (X) -+ wy (&), and  a continuous GL (g, C)-bundle
over X. Then

3 ]
2¢ [eld +chn - T cosh (%) 2 A p,)]
is an inleger.

In certain cases Theorem 26.2.1 can be improved by a factor of two
(MAvER [1]). The corollaries of 26.2.1 include

1) if £ is the zero bundle, Theorem 26.1.1;

II) if 2= m and £ is the tangent bundle of X, the integrality of
the L-genus (see 1.5 and 8.2);

IIT) if & is the normal bundle of an embedding or immersion of X
in S™+* the non-embedding theorems of ATrvan-HIrRzZEBRUCH [2]
and the non-immersion theorems of SANDERSON-SCHWARZENBERGER [1].

The proof of 26.2.1 is by an application of the ATivAH-SINGER index
theorem and is outlined in 26.3.

26.3. Let X be a compact oriented differentiable manifold of dimen-
sion m = 2n, and W a complex vector bundle over X associated to a
U(g)-bundle 5. If Spin(2#x) is the universal covering group of SO (2n)
there is an exact sequence

1> Zy > Spin (2%) —> SO (2%) > 1.

The tangent bundle of X is an element gf € H*(X, SO(2#).). It can be
shown that there is an exact sequence of cohomology sets with distinguish-
ed elements with coboundary map é: H*(X, 50 (2n),) + H*(X, Z,) such
that §(g6) = w,(X). Therefore gf is associated to a Spin{2#)-bundle
if and only if w,(X) = 0 (Borer-HirzesrucH [1], § 26.3).

Suppose that w,(X) = 0. Then it is possible, using the two irreducible
spinor representations of Spin {2#), to construct complex vector bundles
W?*, W™ and an elliptic differential operator (the DIRAC operator; see
Pavars [1]) D: I'(W*) - I'(W") such that (D) = 4(X, 0, ). By the
ATIVAH-SIRGER index theorem y (D) is an integer. This gives the following
special case of Theorem 26.1.1.

Theorem 26.3.1. Let X be a compact oriented differentiable manifold of
dimension 2n with w,(X) = 0. L& 5 be a continuous U (g)-bundle over X
and d¢ H¥(X, Z). Then A (X, d, n) is an integer.

Proof: There is a U(l)-bundle & with ¢;{(£§) =d (see 3.8). Then
A(X,d,m) = A(X, 0, ¢ ®n) is an integer by the above argument.

Corollary: If wy(X) = 0 then the A-genus of X is an integer.

The proofs of 26.1.1 and 26.2.1 are similar. Let 1,,: Spin{2n + 2) -
—S80(2n 4+ 2) and A4,y 5:Spin(2n + k 4+ 2) > SO(2» + 2+ 2) be the
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2-fold covering maps and put
Gyp = 473 (S50(27) X SO(2)), Gy, = Az +5(50(2%) X SO (%) X $0(2)).

Then G,,, is isomorphic to the complex spinor group Spin¢(2#) defined in
ATivaB-BorT-SHAPIRO [1] (see also HIRzEBRUCH, A RIEMANN-Rochm
theorem for differentiable manifolds, Séminaire BourBaAki, 11 (1958/59)
and MAYER [1]). There is an exact sequence

1-U(1)>6G,,—>S02n) > 1

and the tangent bundle gf of X is associated to a G,,,-bundle if and only if
w,(X) is the reduction mod2 of an integral class d ¢ H*(X, Z). The proof
of Theorem 26.1.1 now proceeds similarly to that of 26.3.1 but using the
irreducible representations of G,,. Similarly zf ® & is associated to a
Gy, i-bundle if and only if w,(X) + w,(£) is the reduction mod2 of an
integral class, and the proof of Theorem 26.2.1 proceeds using the
irreducible representations of G,,, .

Alternatively, 26.1.1 and 26.2.1 can be proved by a direct application
of 26.3.1 to a certain fibre bundle over X (RoBERTS [1]).

In certain cases Theorems 26.2.1 and 26.3.1 can be improved by
a factor of two. The following theorem, due originally to ATIvAH-
HirzeBrUcH [1], generalises a theorem of RoHLIN [1]. A proof using
complex spinor representations and the ATIVAH-SINGER index theorem
has been given by MAYER [1] (see also PaLais [1]).

Theorem 26.3.2. Let X be a compact oriented differentiable manifold
with dim X = 4 mod8 and w,(X) = 0. Let & be a continuous O (k)-bundle
over X. Then A(X, 0, p(&)) is an even integer.

26.4. A second proof of Theorem 26.1.1 can be found in Parts I
and IIT of BorerL-HirzeBrucH [1]. In this approach Theorem 26.1.1 is
deduced from the integrality of the Topp genus (Theorem 24.5.4).
A proof of the integrality of the TopD genus except for powers of two
is given in 14.3; it depends essentially on the index theorem (8.2.2) and
hence on cobordism theory. Another direct proof of the integrality of the
Topp genus has been given by MiLNor [3]: it involves the complete
determination of the complex cobordism ring (see the bibliographical
note to Chapter Three) showing that for each almost complex manifold
we can find an algebraic manifold with the same CHERN numbers. By
R-R the Topp genus is then an integer also for almost complex
manifolds.

26.5. A more direct proof of the irtegrality theorems is due to
Atiyan-HirzeBrucH [1]. As was remarked in 25.5 it is not necessary
to apply the full ATIVAH-SINGER theorem; the method of 24.5 is sufficient.
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Every m-dimensional differentiable manifold can be embedded
in $*m, Theorem 24.5.2 implies that (ch,, b) [$**] is an integer for all
b€ K(S*"). Therefore 26.1.1 is a consequence of 24.5.2 and the following
generalisation of 24.5.3:

Theorem 26.5.1. Let X, Y be compact connected oriented differentiable
manifolds with AimY — dimX = 2N and lel j: X — Y be an embedding.
Let d¢ H*(Y,Z) be an element whose reduction mod2 1s w,(X) —j* w4 (Y).
Then for each element aC K(X)-there exists an element jya such tha

ta 5 Zpy (D). 2T = o (cha et £ 20, 5,(50))

(1
where 7, : H* (X, Q) > H*(Y, Q) is the GYSIN homomorphism.
. Let » be the normal SO(2N)-bundle of X in Y. The reduction mod2
of d is wy(») and (1) can be written
. . 1 = -1
chiyg =7, (cha . (e-rdiz;ﬁ,-(pl ), ... pi(r))) ) .
Let B and S be the unit disc and unit sphere bundles associated to»
and identify B with a tubular neighbourhood of X in Y. There is a
map 7: Y — B/S obtained by collapsing the complement of B—Sin Y
to a point, and hence a homomorphism r': K(B, S} - K(Y). To con-
struct an element j,a€ K(Y) which satisfies (1*) it is sufficient to
construct an element b ¢ K (B, S) such that

b= g (44 5 20100, 200) )

where @, : H(X, Q) > H+2¥ (Y, Q) is the TEoM isomorphism (24.3).
The existence of b is proved by means of the representations of Spin° (2N)
mentioned already in 26.3.

The same method applied to the GROTHENDIECK ring of real vector
bundles yields the original proof of Theorem 26.3.2. Theorem 26.5.1 can
also be generalised to give:

Theorem 26.5.2 (Arrvan-HirzesrucH [1]). L& X, Y be compact
connected oriented differentiable manifolds with dimX = dimY mod?2. Let
[: XY be a continuous map, and d¢ H2(X,Z) an clement whose
reduction mod2 is wy(X) — f* wy(Y). Then for each elemeni a€ K(X)
there exists an element f, a € K(X) such that

Chfnd'igoﬁ‘(ﬁl(Y), cab(Y) =1 (Gh“'dd"é) A (X), .. Pi(X)))

where fy : H*(X, Q) > H*(Y, Q) 4s the GYSIN homomorphism.

(1%)
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Proof: Factorise f as the composition of an embedding X — Y x §2¥
and a product projection Y X $2¥ Y. The theorem is true for the
embedding (26.5.1) and for the projection (24.5.1). Hence it is true for £.

In the special case in which X, Y are connected almost complex
manifolds and 4 = ¢, (X) — f* ¢, (Y), Theorem 26.5.2 gives the following
differentiable analogue of G-R-R: for each clement a &€ K(X) there
exists an element fya € K(Y) such that

cbfya-1d(Y) = fy(che - td(X)) .
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graphed lecture notes: Lectures on characteristic classes, Princeton 1957, by J.
MiLNoR; Lectures on K (X), Harvard 1962, by R. Bott; Topology seminar, Harvard
1962, lectures by M. F. Ativan, R. Borr and I. M. SiNGER; Seminar, Bonn 1963,
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The ATIvAH-SINGER index theorem for actions of a compact L1 group G, and
the Arrvan-Botr fixed point formula, have been mentioned briefly in 25.6. Until
complete published versions become available, the following temporary references
will be found useful: Arivar-Borr {3] and a lecture by Bort in the Séminaire
Boursaxki, 18 (1965/66). In addition the notes Equivariant K-thgory give the
explicit construction of the topological index (D) in the case that G is a torus
or cyclic group, with remarks on the definition for an arbitrary compact L1 group.
A survey lecture by HirzesrucH (Elliptische Differentialoperatoren auf Mannig-
faltigkeiten, WEIERSTRASS Festband, Westdeutscher Verlag, Opladen 1966) states
the theorems for differentiable maps f: X — X in the two cases: f has only simple
Jfized poinis (fixed point formula; see 25.6) and f has finite order (index theorem for G
cyclic). The main part of the lecture contains applications when V, is a compact
complex manifold, f : ¥ — ¥ is a holomorphic map, K is the canonical line bundle, and
@ HYV, K7y - H*(V, K*) is the homomorphism induced by f. The above theo-
rems then give an explicit formula, in terms of the characteristic classes of ¥V and the
fixed point set of f, for the complex number

2V B = 2 (—1)f trace ®
t=0

which reduces to the RieMANN-Rocm theorem y(V, K} = T'(V, K*) when f is
the identity. An application, due jointly to Arivam, Borr and HIRZEBRUCH, is
sketched in which M is a bounded homogeneous symmetric domain, and 4 is a
group satisfying properties (a), (b) of 22.2. The formula for y(V, K", f} is applied
with ¥ = M|I" where I' is a subgroup of 4 given by Theorem 22.2.2. The method
of 22.3 is then used to compute the dimension 77, (M, 4) of the space of antomorphic
forms of weight r. The results agree with those originally proved by LANGLANDs [1],
and reduce fo those given in 22.3 when 4 acts freely on M; for this see ATivan-
Botr [4], ATrvAaE-SEGAL [1], ATIVAR-SINGER [2], [5], HirzEBRUCH [7].
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A spectral sequence for complex analytic bundles
by ARMAND BOREL

The spectral sequence to be discussed here relates the d-cohomology
of the total space, the base space and the typical fibre of a complex fibre
bundle with compact connected fibres. In addition to the usual fibre- and
base-degrees, it carries a bigrading stemming from the type of differential
forms. The precise statement is given in 2.1, the proof in Sections 3 to 6.
The latter proceeds along more or less expected lines, albeit in a rather
cumbersome notation, one point of interest however being the exactness
of the sequence 3.7 (4), which is essentially a consequence of smoothness
properties of a GREEN operator. The main applications of 2.1 given here
concern the multiplicative behaviour of the y,-genus (8.1) and the
0-cohomology of the CALABI-ECKMANN manifolds (9.5).

Familiarity with spectral sequences of fibre bundles is assumed. As
to the rest, we follow the notation and conventions of this book, with
some minor deviations to be mentioned explicitly. References to sections
of this paper are in ordinary type; those to other sections of this book in
boldface.

This is a revised version of a paper written in 1953, quoted in the
bibliography of the first edition of this book, but not published.

§ 1. Preliminaries

1.1. Manifolds are HAUSDORFF and paracompact; smooth means
differentiable of class C*. The sheaves on a manifold M are always
€ (M) modules, [where €, (M) is the sheaf of germs of smooth complex
valued functions on M], and tensor products of sheaves are over C, (M).

1.2, Let M be a complex manifold, W a complex vector bundle over
M, and B the sheaf of germs of smooth sections of W. Then A%4(W)
denotes the space of smooth exterior differential forms on M, of type
(p. q), with coefficients in W (see 15.4), and A%*(W) is the sheaf of
germs of such forms. If W =1 is the trivial bundle M x €, then we
omit (W) in the preceding notation. We have

I (W) = W@ Wy, ALI(W) = TAHW)). (1)

A%, (W) denotes the sum of the A%,7(W), where p + g =1, 4, (W) the
sum of the 4%, (W), and similarly for the corresponding sheaves.
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Let U be an open subset of M over which W may be (and has been)
identified with the trivial bundle U >< €;. We recall that 4%¢(W|,) is
canonically identified to the set of d-ples of ordinary exterior differential
(p, g)-forms on U. If w€ A%4(W|,) corresponds to (wy, ..., wg), then
dw corresponds to (Jwy, ..., Ow,). Assume moreover that U is a co-
ordinate neighbourhood, with local coordinates z, ..., 2,. For a subset
I={i,....5}of{1,..., n}, weput

dZI—'—-dzilA"'Adzi., dflzdzﬁl\-'.l\dfiu‘

Then the above form w; may be written uniquely
;= 12]7 forg-dzndzy, 2

where I (resp. J} runs through the subsets of p (resp. ¢) elements of
{1,...,n}, and f, 1, s is a smooth complex valued function on U.

1.3. The direct sum of the spaces H??(}M) [resp. H»7(M, W), see
15.4] is denoted H3(M) [rvesp. Hz(M, W)], and k»7 or A*7(M) [resp.
- 2(W) or W#7(M, W)] is the dimension of H»9(M) [resp. H*¢(M, W)].
The space H3(M) is in a natural way an anticommutative bigraded
algebra. If W= M >< F isa trivial bundle, then H3{M, W) >~ H3;(M)® F,
as follows directly from the definitions.

1.4. Let now M be compact. The spaces H?7(M, W) are then finite
dimensional (15.4.2). Let further G be a L1r group operating continuously
on M, by means of bi-holomorphic transformations, and let ¢ : G > AutM
be the map defined by this action. Then ¢ induces a continuous representa-
tion @° of G into H?9(M). If M is kihlerian, then ¢° is constant on each
connected component of G; in fact, in this case, Hz (M) may be canonically
identified with the usual cohomology algebra H* (M, C) of M (see e. g.
WEIL [2], Chap. IV), by an isomorphism which clearly comnmutes with
the natural representations of G in Hz(M) and H*(M,C) ; our assertion
is then a consequence of the homotopy axiom. In the non-kiihlerian case
however, this need not be true, as is shown by an example of Kopaira
[cf. GuGENHEIM and SPENCER, Proc. A. M. S. 7 (1956), 144—152].

1.5. Let &= (E, B, F, ) be a complex analytic bundle (3.2), where
E is the total space, B the base space, F the standard fibreand n: E — B
the projection map. We assume F to be compact connected. By defini-
tion (loc. cit.) the structure group G of & is a complex L1E group, acting
on F by means of a holomorphic map 9:G X F — F. Let & be defined
by means of the transition functions f.z: U, N Uz — G, where (Un)ue o
is a suitable covering of B. It is clear that bgB HAUE), (Fp = m-1{b),

b€ B), is in a natural way the total space of a smooth vector bundle
over B, whose transition functions fJ; are obtained by composing the
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f«p With the given representation ¢° of G in GL(H??(F)). This bundle is
denoted H”?(F), and Hz(F) is the direct sum of the H?(F).

If ¢° is constant on the connected components of G, in particular if F
is killerian, then Hyz (F) is a holomorphic complex veclor bundle over B
(with locally constani transition functions).

In fact, the f2,; are then locally constant functions, hence may be
viewed as holomorphic maps of U, N1 Uy into GL(H3(F)).

§ 2. The spectral sequence

2.1. Theorem. Let &£ = (E, B, F, n) be a complex analytic fibre bundle,
where E, B, F are connected and F is compact. Let W be a complex vector
bundle on B, and W = a* W iis inverse image on E. Assume that every
connected component of the structure group G of & acts trivially on H3(F).
Then there exisis a speciral sequence (E,, d,), (r = 0), with the following
properties: '

(i) E, is 4-graded, by the fibre-degree, the base-degree and the type.
Let 9E%* be the subspace of elements of E, of type (b, q), fibre-degree s,
base degrec t. We have #9ES* =0 if p+q+s-+t, or if oneof p, q, s, ¢
s < 0. The differential d_ maps 9E3* info #-I+1ESTr=r+1,

(i) If p+ q = s + ¢, we have
PIEY o~ 3] H»~4(B, W @ BF ~#1-*+1(F)).
i=0

(iii) The speciral sequence comverges to Hz(E, W). For all $,q = 0,
we have

GrHP(E, W)= J #»IESE,
sti=ptg
for a suitable filtration of HH4(E, W)

{iv) If W=1, then (E,, d,) consists of differential anticommuiative
algebras, and the isomorphism of (iii) is compatible with the products.

2.2. Remarks. (1) Under our assumption on G, the bundle Hz(F) is
holomorphic so that (ii) makes sense. This condition is automatically
fulfilled if F is kihlerian (1.4).

(2) 2.1 (ii) shows that E, has a 4-grading which is finer than the
one mentioned in 2.1 (i), namely the 4-grading given by the type of
differential forms on B and on F. The proof will show that this 4-grading
is also present in E,, E,.

Since #9E%* = 0 unless p +- ¢ = s + £, the superscript ¢ is in fact
redundant and it would be more correct to say that the spectral sequence
is trigraded by the type ($, ¢) and s, where s will turn out to be the degree
associated to the filtration underlying the spectral sequence. The total
degree is of course $ + g. The degree ¢ has been added however to bring
closer the analogy with the usual spectral sequence of fibre bundles,
but it will be omitted in §§ 4, 5, 6.
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§ 3. Auxiliary sheaves and exact sequences

3.1. Until § 6 inclusive, & W, W, G are as in 2.1, 98 is the sheaf
of germs of smooth sections of W, and C; stands for C,(B). We re-
mark however that no assumption about the action of G on H3(F) is
needed before 6.1.

¥ = (Uec s is a locally finite open covering of B by coordinate
neighbourhoods over which W and ¢ are trivial. We let

@ Wg,>Ua X €y and v, 7 (U)> U, XF, (x€H)
be allowable trivialisations and
Pap: UsNUs—GL(m, C) and v, 5:U.NU;>G, (o f€ ),

be the corresponding transition functions.

For every z€ U, N Up, the map 4,5(2) induces an automorphism of
A g, to be denoted sometimes by 44 (2).

(25, - . ., z) is a set of local coordinates on U, and 7, 5 is the change
of local coordinates in U, N Ug(e, f € ).

3.2, Let ¢ be the complex tangent vector bundle along the fibres of &
(BoreL-HirzeBRUCH [1], §74). We let ¢%? be the bundle of (a, b)-
forms associated to @. Thus ¢@%®= (1%¢) A (1%p), where § is the
conjugate bundle to @. Let %% be the space of smooth sections of
@%b, For every z€ B, the restriction #, of an element x€ #%? to the
fibre F, = n~1(2) is an (4, b)-form on F,, and thus x may be viewed as a
family of (a, b)-forms on the fibres, parametrized by B, and smooth in an
obvious sense. x is called a fibre (a, b)-form (on B). There is a Cy-linear
map 0 : F & - F o4+l characterised by 7, (0p¥) =0 (7, %), (2€ B, s F19)
{for all this, see KoDAIRA-SPENCER [5], 1, §2).

Let % ? be the sheaf of germs on B of fibre (a, b)-forms. We have
I'(@s?)=F%?, and dg is the map of sections induced by a homo-
morphism of C;-modules of F%? into F*?+1, also denoted by 0p. Let
8% CF*? be its kernel. By definition, the sequence

0> 8o -5 gar 2 5L(gen 50, (1)

where £ is the inclusion map, ¢s exact.

. 3.3, More generally we shall consider the fibre W-(a, b)-forms on B.
They may be defined first as the smooth sections of W @ ¢%? (see
KODAIRA-SPENCER [5], I, § 2); for this, W could of course be any complex
vector bundle on E. If x is such a form, then 7, (x) is a (4, b)-form on F,,
with coefficients in the trivial bundle V, X F,, where ¥V, is the fibre over
zof W, Clearly, we may identify these forms with the sections of the sheaf
B © F»d.
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34. Let
Mebved—T(WoF >0 A", (4,0,6,d€Z;a,b,c,d20).

Its elements are to be thought of as “(¢, d)-forms on B with coefficients
in the fibre W-(a, b)-forms”. In the notation of 3.1, an element
h¢ M#,b.¢.4 js given by its restrictions A, to the open subsets U,, and 4,
is an array of differential m-forms A, , which may be written

ha,{ =IZJ' h,,, I~ dz; A di}‘ ,

where I and [ run respectively through the subsets of ¢ and d elements
of {1, ..., n}, and where h, ; ;, ;€ F&¥(U,), is a fibre (, b)-form on U,.

Thus k, is identified with a W-(a + ¢, b + d) differential form on
7 YU,). But of course, this identification depends essentially on the
local trivialisations, and 4 itself cannot be viewed as a differential form.
To be more precise, k, and k; are related by the transformations defined
by @up Pup, and 7.5. However, if we want to describe the differential
form k, in Uy N U, by means of the local coordinates (zf) and the local
trivialisations over Ugs, then we have also to take into account the
derivatives of the y,; with respect to z. This implies that in these new
coordinates, A, will be equal to the sum of ks and of differential forms of
base-degree >¢ -+ d.

3.5. Although this is not needed in the sequel, we remark here,
without going into details, that if we allow vector bundles to have infinite
dimensional fibres, we may also view the elements. of M®b¢.¢ ag
{c, d)-forms on B with coefficients in a vector bundle.

In fact, A%? is a FRECHET space in a natural way (SERRE [3]), and any
automorphism of F induces a homeomorphism of 4%°. Thus the transi-
tion functions ¢, 5: U, N Up—> Aut A%® allow one to define over B an
associated bundle u%® with standard fibre A%®. Furthermore, the
transition functions are smooth in the sense that if g: U, N Up—~> A%
is smooth, then y,4 ¢ p is also smooth. Thus it makes sense to speak of
the smooth sections of u®?®. It may then be seen that the elements of
M¢.? 04 are just the (¢, d)-forms on B, with coefficients in W @ u%*.

3.6. The sheaf 38 ® A5* is locally free over Cy, therefore the sequence

0>W 3+ @AY > WRF** 0 A3’ > W@ 0(F°) @A >0, (2

obtained by tensoring 3.2 (1) by 2 @ 3% is also exact. Moreover, since
A4 is fine (3.5), the sequence

0>TI(®Be g~ u’) > I'BeF’ e Ay~ .
> e dr(F) e 435>0, ®

derived from (2), is exact (2.10.1, 2.11.1).
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3.7. Let ¢ be the map which sends a d-closed form on F into its
d-cohomology class. This map defines a Cp-homomorphism, also to be
denoted ¢, of 8%? into the sheaf $%?®(F) of germs of smooth sections
of the bundle H%. *(F) defined in 1.5. We claim that Zhe sequence

0> Jp@*0-1) > god 2> 9o0(F) >0, (@20,6=1), (4

1s exact.

That ¢ o4 = 0 is clear. Furthermore, since H%?(F) is finite dimen-
sional, it is readily seen that ¢ is surjective. There remains to prove that
im# D> kerg. This amounts to the following assertion:

Let 2¢ B and U an open neighbourhood of z in B, w a fibre {a, b)-
form over U, i.e. a map assigning.to x€ U an (4, b)-form o{x) on F
depending smoothly on x. Assume that for each x, there exists an
(8, b — 1)form », on F such that w(x) = 0%,. Then there exists a neigh-
bourhood V of z in U and a fibre {@, b~ 1)-formz on ¥ such that
w(x) =0z(x)forall x¢ V.

In other words, we may choose », so as to depend smoothly on x.
This assertion is contained in Theorems 7, 8 of KopAIRA-SPENCER [7].

3.8. In the same way as the exactness of (3) was deduced from that
of (1), it follows from 3.7 that the sequence

0 I'(S @ 32" ® A5

->T(@8 e 3% e %) — I'EB e 9(F) ® %) >0 6]
is exact. On the other hand, there is a natural isomorphism
B ® 9%(F) = G(W © Ho(F)), ®

where &(W @ H%*(F)) is the sheaf of germs of smooth sections of the
tensor product bundle W @ He ®(F). Therefore, we also have

T(@® @ 9% (F) @ A%¥) o ASHW @ H4(F)) = (S (W © H>* (F)) @ A7),
g

§ 4. The filtration. Proof of 2.1 (i), (iii), (iv)

4.1. Let us say that an open subset UCE is small if £ and W are
trivial over #(U) and if an allowable trivialisation of & over %{U) carries
U into the product of coordinate neighbourhoods of B and F. For every
small open set U and positive integer %, let L,{U) be the set of elements
of Ay(W|y) which, when expressed in terms of local coordinates (z;)
on B and {y,) on F, are sums of monomials dz;A dZ; A dyp AdFy,
in which |I] -+ |J] = %, where |4]| denotes the number of elements in a
finite set A. It is clear that L,(U) is invariant under change of coordi-
nates (but the set of elements for which [I| +|J| = % is not, and conse-
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quently the filtration introduced below is not associated to a grading).
Let

L, ={w¢ Ag(W); o]y € Ly (U) for every small open subset U of E}. (1)

It is of course enough to check this condition when U runs through the
elements of one open covering of E by small sets. We have

Ly=Ag(W),Ly=0(k>dimgB); LyD Ly, 0(Ly)CLy (= 0), (2)

which shows that the L, define a bounded decreasing filtration of the
differential C-module (4z(W), d) by submodules stable under 9. The
corresponding spectral sequence is by definition the spectral sequence
(E,, d,) of 2.1. We have clearly

Ly=2'%L,, (MLk =L N A%’q(W)) ,
b.q

which means that the filtration is compatible with the bigrading provided
by the type, hence also with the total degree. Moreover, d is homo-
geneous of degree 1 in ¢, of degree 0 in p, hence this bigrading is also
present in the spectral sequence. We denote by #9E%* or #9E] [see
2.2 (2)] the space of elements of E, of type (p, g), total degree s 1 ¢, and
degree s in the grading defined by the filtration. As is usual, s and ¢
will be called respectively base-degree and fibre-degree. Of course,
PES = Qifp g5+ 8.

The assertions 2.1 (i), (iii) then follow from standard general facts
about convergent spectral sequences of filtered-graded differential
modules.

If now W =1 is the trivial bundle with fibre €, then Agz(W) is
an anticommutative differential algebra. Again from general principles,
this product shows up in the spectral sequence, and we have 2.1 (iv).
There remains to prove 2.1 (ii).

4.2. We give here a slight reformulation of the definition of the
filtration which will be useful below.

Let V= nY(U,), and identify V, to U, X F by means of p,.
We denote by M%"%4 the space of W-(c, d)-forms on B with coefficients
in the (&, b)-forms of the fibre (DE Ruau [1], Chap. II, §7). Using v,
we see that

Meodx Iy (B F oA, @)
Ay, (Wlg)= X M=%, 4
s8,b,c,d
Then
Ll={wedx(m;w‘V“EL3pu(aed)}' (5)
where
Lc,¢= 2 M:b""' (6)

et-dZs
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We remark that the isomorphism (3) and the direct sum decomposition
(4) depend on the trivialisation g, but, as before, the condition o|y, € L,,«
does not.

§ 5. The terms Ey, E;
5.1. Lemma. There exisis a canonical isomorphism

Paps  PES ~ 2?%@8"‘” g AYF) (5 ¢.520).

The sum ky of the maps 9K, carries dy onto 0.
We keep the previous notation. Let w € #-9L, and w, be its restriction
to z~1(U,) (€ o). We may write (4.2):

B = Z wi_i'q_ﬂ‘i’i"_i médLa-i— 1,27 (1)
2

where
w::b"”dEM::b’c’d#FUG(QB®8"'I’®Q[;§¢) . 2

We claim that, for each 4, the forms @f—%4-#+i43-7 (¢ €.of) match
so as to define a section w?—he~s+i5s~1 of P @ FP-HLe-2+i@ ULt
In fact, let o, § € & be such that U, N Ug=+=4. The elements w, and w;
represent the same differential form on U, n Up, hence are related by
a transformation f,; associated to the coordinate transformations
Voo p» Pa,pr Na,p- NOW [rg also involves the derivatives of the g, 4 with
respect to the local coordinates on B. However, as was already pointed
out (3.4), each term in which such a derivative occurs has a strictly
bigger total base-degree, hence belongs to L,;y,, Thus to go from
mg*‘:“—"”’ i3-i {o wg —i,a-#+i,4,5—f one may neglect these derivatives
and just apply the transformation defined by ., g, @, g, 7a,5; but this is
precisely how sections of the sheaf 98 ® §?—%2-*+{ @ AL *—* over U,
and Uy have to match in order to define a section over U, U Us.

We now associate to @ the sum of the @?—%2-#+%4%3~1 This defines
a map

Dyufs: pa] _,Z‘ F(QB ® t‘fgp—i,q-—:ﬂ ® g{%s—-i) )
%

which is obviously linear, with kernel #:9L,, ;, whence an injective linear
map
p,ak; . b,qEz =t 29 >3 (B Fr—ia-sti g g[%:-—i) .
7

To compute d, (), (@ € #+9E3), we have to apply 0 to a representative
o of @ in L,, and reduce mod L, 4. In local coordinates, this means that
we may disregard differentiation with respect to local coordinates on B,
and take into account only the coordinates on the fibres. But this is
how 0 is defined, whence

2,953 (dy @) = B> %3 () -
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There remains to show that #9%] is surjective. Let u ¢ M*.% ¢
Putp=a+c,g=>0+d, s=c+d Wehave to find o €#-¢L, such that
».9%3 () = %.

There exists a countable locally finite covering ¥ = (V) (7=1,2,...)
of E by small open subsets (see 4.1) such that for each j there exists
o = o(f) € for which =n(V;)CU,. Since E is paracompact, we may
further find a sequence of open coverings ¥® = (V) (1=1,2, ...
such that

V=V, VPV (iz).
Let us put
V’(m)=lgl Vl“) (jg l)'

Since ¥ is locally finite, it is clear that the V§ also form a covering of
- E (not necessarily open of course). Therefore, if (n;) is a sequence of
strictly positive integers, the union of the V{*’ is also an open covering.
The form « will be defined by means of its restrictions to the elements
of such a covering. .

In each V; we choose local coordinates once and for all. The restric-
tion u; of % to ¥; may then be identified with a differential form, with
coefficients in the typical fibre of W, also denoted ;. By definition
0® =u,on V. I V;\ VP =0, we put o® =w,on V;, o® =g,0n VP,
Suppose now V; N V¥ 4 g, In that intersection, we have o® =4, + 0o,
where o is a form whose base-degree (i. e. degree in the differentials of
local coordinates on B) is >c¢ + d. We can find a form v on V{" which
coincides with ¢ on V¥ n V' (this is a trivial extension problem, since &
is already defined in an open neighbourhood of ¥® n V{¥). We then let
@® be the differential form on V¥ U V{® which is equal to %, on VP,
touy+7on V.

Let now I = 2. Assume that there is a sequence of } strictly positive
integers n; (7= 1, . . ., 7} and a differential form w® defined on

VYo=Y, vim,
such that -
(0® — “5)‘;,9.,,» €L, (Vi) (1s5=1). 3
Let now I be the set of integers § between 1 and # for which
Vipan Vi) + 4.
In the intersection
VinnVo=Vign (iLeJI V}""") ,

the difference o = w® — 4, belongs to L,;,. As before, we may find
a form T on V. ; which coincides with ¢ on

PR (Y, PPt
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Let us define a sequence (ny,;,) of  + 1 integers by

M=, + L{GCD); man=n,, (1S5S Li¢]); g 41=2.
We let then w®+Y be the form on

Vasn = 1sigl+1 Vi,
which is equal to w® on V{"i+2 for j < I and to w4y +7 on V¥,
Then it satisfies the condition (3) with I replaced by / + 1.

In order to go from the domain of definition of w® to that of ¢+
we may have to shrink some of the V{*?, but not if V;n V4, =40.
Our covering being locally finite, given m = 1, there exists /() such that
Van V=0 for alll = I(m). As a consequence, for fixed 7, the sequence
#;,; becomes stationary and there exists an integer #; such that V(%
belongs to the domain of definition of @® for all Z = 1. By construction,
we have then o® = @® on V) for }, )’ = n;. There exists therefore a
differential form o on E such that o = o™ on VI for all j. It follows
then from (3) that #:9%* (w) = «.

5.2. Lemma. The map ?-%j of 5.1 induces an isomorphism ?>7k;
of $.9E onto 3 A=W ® Bo—%,0-++4(F).

This follows from 5.1, from the exactness of the sequences (3), (5)
of § 3, and from the isomorphisms 3.8 (7).

§ 6. The term Ej. Proof of 2.1 (if)

We let %, (resp. ;) be the direct sum of the maps #.%; (resp. #»9%3).
In view of our assumption on the structure group of &, the image space
of %, is the space of forms on B with coefficients in a holomorphic vector
bundle (1.5), therefore it is a differential module under ¢. The assertion
2.1 (ii) will then be a consequence of the

6.1. Lemma. The map k, carries &, onto 0. For all p, g, s, it induces
an isomorphism

,fS : e E 22s Z' Hi.a- i(B W @ H?—h1=-3+i(F)) .

The second assertion follows directly from the first one, which we
prove now.

Let 22 be the map of the space Z(Ey) of dy-cocycles of E, onto E,.
In view of 5.1, 5.2, we have the following commutative diagram

> r@esged;) — X I'(Be H(F) e A9
ctdzs c+ds
I"o ky (l)

Z(EY)

ES

1



212 Appendix 1I. A spectral sequence for complex analytic bundles

where
=28, Ei= ) #E; (1=0,1,..), 2)
X4
and ¢ is as in 3.8 (5). We denote y,, the projection of L, onto E§ = L, [L,
=0,1,...).

Let g, b, ¢, d be positive integers, and set p=a+¢, ¢g=0-14d,
s=c+d Let u¢ (W ® 9%*(F) ® AL and %' an element of
I'®B @ 8% ® A4 such that o(x’) = «, which exists by 3.8. Let
v = k;yl(x) and v' = k3*(u’). We have to prove:

Fy(dyv) = 0. (3)
By definition, v €Z(Ej). There exists therefore " ¢L, such that
9(v"y € L4, and p,(v"’) = v’. By the above, we have then

=k (V) =0 kot i (07) - “)

On the other hand, the definition of d, gives &, v = »? * u,, (0 v"’) hence,
also, by (1),

By(dy0) =0 ko phs1(90") . (5)
Therefore, (3) is equivalent to
koo fery (00") = 0. (6)

It is enough to prove this for the restriction of v" to u—(U,), for all
a € . We may write (4.2} :

2" = ys.b,¢,8 + ps—1,0,e41,d + g8, b—~1,6,8+1 mOdL,+,'¢ s

where v75H*C 'y (B @ F*F @ AL*); by construction, »%2 ¢4 may
be identified with «’. We have then

gvn - a'“, + 5(va—1,b,c+1,d + y%, 21, c,d+1) modL,H,“ .

Since we compute modL,, , ,, we may neglect all terms of base degree
>c¢ 4 d 4 1; this means that we also have:

31}” — g“! + gp(va-—l,b,e-l—l,d + vc,b—l,c,d-}-l) mOdL,+3,¢ s
ko,“.+1 6‘(1}1:) — g“r + gr(va—l,b,c-l—l,d + vc,b—l,c,¢+1) .
The second term on the right hand side, being a dgcoboundary, is
annihilated by ¢, hence
ko4, 0(0") =03 .
But it is clear that
6-0(w)=0(c(w))=0du,
whence the equality (6).

Remark. A similar proof yields a construction by means of differen-
tial forms of the spectral sequence in real cohomology of a differentiable
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fibre bundle. The differential algebra is the space of real valued dif-
ferential forms on E, filtered by the degree in base coordinates, as in 4.1.
The proof is basically the same, simpler in notation since we dispense
with W and the type. If F is compact, the exactness of the sequence
corresponding to 3.7 (4) follows again from the smoothness properties of
the GREEN operator (DE RuaMm [1], p. 157). In the general case, it is a
consequence of a result of vaNx Est [Proc. Konikl. Neder. Ak. van Wet.
Series A, 61 (1958), 399—413, Cor. 1 to Thm. 1].

§ 7. Elementary properties and applications of the spectral
sequence

We keep the notation and assumptions of 2.1.

7.1. If the bundle H5(F) is trivial, in particular if the structure group
of & is connected, then

PaESt = 37 HAs=5(B, W) @ HP=a-++4(F) .

This follows from 2.1 (ii) and 1.3.
7.2. The space #:9E2*+%° is a quotient of #+7E2+50 (r = 8). The
composition of the natural maps
H?9(B, W) 2 ?.9E2+9,0 > 2,0 Ep+0,0 ¢ HP,o(E, W),
is m*. It is injective if ¢ = 0.
The first assertion follows in the usual way from the construction
of the spectral sequence and from standard facts about “edge homo-

morphisms”. Since no element of type (p, 0) can be a d,-coboundary
{r = 0), the second one is then obvious.

7.3. By our assumption on G, the bundle H3(F) has the discrete
structure group G/G® where G° is the identity component of G. There
is then, in the usual manner, a homomorphism of the fundamental group
7, (B) of B into Aut H3(F), and H3(F) may be viewed as a local system of
coefficients. From this it is easily seen that if B is compact, then
H°(B, H?¢(F)) is isomorphic to the space H#:¢(F)= of fixed points of
7, (B) under the above action. Thus

2,9F0.9+0 2 HP,4(F)",
7.4. The space #19EH?P+9 may be identified with the space of d,_,-

cocycles of »9ERA+9 (r = 8). If W =1 and B is compact, the composition
of the natural maps

H? 9(E) » #.9E02+¢ ¢ P.aEQP+0 = H2,0(F)® ¢ H?9(F),

is snduced by the homomorphism associated to the inclusion map of a fibre.
This follows again from elementary facts about spectral sequences.
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7.5. If the structure group of & is connected, then
A e(E, W) < XY he4(B,W)-hs¥(F).

This is a consequence of 7.1 and of the relations
B9 (E, W) = dim#*9E < dim#:E,,

where we have put
”-“E,. = 2 9,«E:,t .
3,420

7.6. Finally we note that ¢f G is connected, and if i* : Hz (E) — H3(F)
is surjective, then H3(E) is additively isomorphic to H3(B) ® Hz(F).

In fact, E, may then be identified as an algebra with the tensor
product of the algebras Hz(F) ® 1 and 1 ® H3(B), which consist of
permanent cocycles.

§ 8. The multiplicative property of the yy-genus
8.1. Theorem. Let &= (E, B,F,7nn) be a complex amalytic fibre
bundle with connecied structure group, where E, B, F are compact, con-
nected, and F is kihlerian. Let W be a complex analytic vector bundle on B.

Then yy(E, n* W) = 2,(B, W) - 2, (F).

For the notation g, and x*, see 15.5. Since G is connected and F
is kihlerian, G acts trivially on the d-cohomology of the standard fibre
(1.4), therefore we may apply 2.1; we have moreover (7.1):

E,= H;(B, W) ® H;(F). (1
Let us put, in the notation of 7.4,

2 (E) =X (—1)*dim#<E,,

q
2y(Er) = %’ 2P (E) - y*.
It follows from 2.1 (iii) that

2 E, n*W) = 2, (E,) . (@)
A simple calculation, using (1), yields
%(Eq) = x5 (B, W) - 1, (F) . 3

Let WE, =3"#9E_(r= 2). This is a graded space, whose EULER

q
characteristic y ((®E,) is equal to y?(E,}; it is stable under 4,, and its
derived group is #*E,.;. By a well-known and elementary fact, we
have then y(#)E,) = g (®E,,,), hence y?(E,} = y?(E,+,}, 7 = 2, which,
together with (2) and (3), ends the proof.
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§9. The 7-cohomology of the CALABI-ECKMANN manifolds

9.1. We shall denote by 4°(X) the identity component of the group
A(X) of complex analytic homeomorphisms of a compact connected
complex manifold X. Although this is not really needed below, we recall
that, by a well-known result of BoCENER-MONTGOMERY, A(X) is a
complex LIt group. If X is the total space of a complex analytic fibering
(X, Y, F, x), then every element of A°(X) commutes with z, whence a
natural homomorphism #® : 49(X) —~ 4°(Y) (BLaxncHARD [3], Prop. 1. 1,
p. 160). In particular, if M and N are connected complex analytic
compact manifolds, then A%(M X N) = A%(M) x A°(N) (BLANCHARD
[3], p. 161).

9.2. We let M,,,;, (#,9€Z; %, v=0) be the product §2+*1x §22+1
endowed with one of the complex structures of CALABI-ECKMANN [1].
It is the total space of a principal complex analytic fibre bundle &, ,
over B, ,=P,(C) x P,(C), with standard fibre and structure group a
complex torus T of complex dimension one. We have

A%M, ) = (GL{# + 1,€) x GL(v + 1, O))/T,

where [I' is an infinite cyclic discrete central subgroup (Brancuaro {1}),
and the map

¥,,,:A°M, ) > A°B,,)=PGL(x+1,C) x PGL{v + 1,C),

associated to the projection =, , of M, , onto B, , (9.1) is the obvious
homomorphism.

For % = 0 or v = 0, M,,,, is a HopF manifold. Let o, , be the projec-
tion =, , followed by the projection of B, , on its first factor. Then o, ,
is the projection of a complex analytic fibering #,,, with typical fibre
M,,.. To see this, one may for instance use the fact (BLancuarp [1])
that M, , is the base space of a complex analytic principal bundle with
total space M, o X M, ,, structure group a complex 1-dimensional torus,
and projection map #, such that

Ryyp oV = Ty, 0 X ”o,v:MumX Mo.u»Bu,v-

9.3. Lemma. The group A°(M, .} acls trivially on Hz(M,,,).

The fibre bundle has a connected structure group and a kihlerian
fibre, namely T, and 2.1 applies. By 9.1, the group 4°(M,, ,) is an auto-
morphism group of the fibred structure, hence it operates on the spectral
sequence. This action is trivial on E, = H3(B,,,) ® H3(T), since both
B,,,and T are kihlerian (1.4), hence also on E . But E_ = Gr(H3; (M, ,))-
By full reducibility, any compact subgroup of A°(M,,,) acts trivially
on H3(M, ). The kernel of the action of 4°(M,,) on H3(M,,,) is then a
normal subgroup which contains all compact subgroups, hence is equal
to the whole group.



216 Appendix II. A spectral sequence for complex analytic bundles

9.4. Lemma. We have H-*(M, ) =0, (v = 1).

This lemma is known. We recall a proof for the sake of completeness.
M,,, may be defined as the quotient of C,., — {0} by the discrete group
generated by a homothetic transformation y:2z->c¢-2 (¢4 1). Let
@ be a holomorphic differential on M,,,. Its inverse image w* in
C,+1 — {0} may be written as w* =g, dz, + * * * + go41 * 4294, Where
the z;s are coordinates and the g;s are holomorphic in C,., — {0}.
The form w* is invariant under y; this implies

gl 2y=cm-g;{z2) MEZ,s=1,...,v+1),

and shows that if g;== 0, then g; is not bounded near the origin, in
contradiction with HARTOG’s theorem.

The ¢-cohomology of M, , will be generated by pure elements,
and subscripts will indicate the type.

9.5. Theorem. Let 4 < v. Then ‘
Hi_)(Mu.u) =C [xl, 1]/(;‘;’-{- 1) ®A (xv-f-l,m xo.l) -

We consider first the case where # = 0. In the spectral sequence of
the fibering &, , we have

E;=Clxy 1 1/(331Y) @ A(%y,0 %o,1) »

where the first factor on the right hand side represents the cohomology of
the base P,(C), and the second one the cohomology of the fibre T. The
element x,, generates %1E! and is mapped by &, into %2E29, which is
zero, hence dy (%) = 0. If dy(%,,¢) = 0, then x; ¢ would be a permanent
cocycle and would show up in E_ (see 7.4), which would contradict 9.4.
We may therefore assume that d,(x,,) = %,,;. A routine computation
then yields:
Es = A(Yg11,9 %o,1) »
where
Yor1,0 = w3 (X 41 ® %) €PHLOER™L.

Yo+1,0 aDd % ; have fibre degree one, hence are d,-cocycles for all » = 3,
whence E; = E . Since E__ is a free anticommutative graded algebra, we
have E_, = Hz(M,,,) also multiplicatively.

If now 0 <% =< v, consider the fibering 7, , of M, , over P ((),
with fibre My, , (9.2). Its structure group is connected, since the base
is simply connected, and it acts trivially on the -cohomology of the
standard fibre (9.3). We may therefore apply 2.1, and we have

Eg=Clx,]/(x31Y) ® A(¥p11,05 %o,1) -

As before, it is seen that x,, is a dy-cocycle, hence a permanent cocycle.
Since % < v, there is no element of type (v+ 1, v + 1) with a strictly
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positive base degree in the spectral sequence, hence x,.,,,is a per-
manent cocycle too. The base terms being always permanent cocycles,
it follows that 4,=0, (r = 2), and that E, = E_. We have therefore
E_=H3zM,,,) at least additively. But representatives of #,1,, 4 %p,1 in
H3(M,,,) are always of square zero, and there is a representative y,,; of
%3, namely 7, ,(%,1), such that ¥{1*=0. From this it follows imme-
diately that E, and H3(M,,,) are also isomorphic as algebras, which
proves the theorem.

Remark. The 6-cohomology of the Horr manifold M,, , is computed
in KODAIRA-SPENCER [5], § 15 for v=1, in IsE [1] for any v. Theorem 4
of Is [1] also describes the 0-cohomology of a HoPF manifold with
coefficients in a line bundle.
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