SÉMINAIRE N. BOURBAKI

FRIEDRICH HIRZEBRUCH The topology of normal singularities of an algebraic surface

Séminaire N. Bourbaki, 1962-1964, exp. nº 250, p. 129-137.

<http://www.numdam.org/item?id=SB_1962-1964__8__129_0>

© Association des collaborateurs de Nicolas Bourbaki, 1962-1964, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE TOPOLOGY OF NORMAL SINGULARITIES OF AN ALGEBRAIC SURFACE

by Friedrich HIRZEBRUCH

(d'après un article de D. MUMFORD [4])

We shall study MUMFORD's results in the complex-analytic case.

1. Regular graphs of curves.

Let X be a complex manifold of complex dimension $2 \cdot A$ regular graph Γ of curves on X is defined as follows.

i. $\Gamma = \{E_1, E_2, \dots, E_n\}$.

ii. Each $\underset{i}{\text{E}}$ is a compact connected complex submanifold of X of complex dimension 1.

iii. Each point of X lies on at most two of the E_{i} .

iv. If $x \in E_i \cap E_j$ and $i \neq j$, then E_i , E_j intersect regularly in x and $E_i \cap E_j = \{x\}$.

 Γ defines a graph Γ ' in the usual sense (i. e. a one-dimensional finite simplicial complex) by associating to each E_i a vertex e_i and by joining e_i and e_j by an edge if and only if $E_i \cap E_j$ intersect. Γ ' becomes a "weighted graph" by attaching to each e_i the self-intersection number $E_i \cdot E_i$, i. e. the Euler number of the normal bundle of E_i in X. We have the symmetric matrix

$$S(\Gamma) = ((E_i \cdot E_j))$$

where $E_{j} \cdot E_{j}$ $(i \neq j)$ equals 1 if $E_{j} \cap E_{j} \neq \emptyset$ and equals 0 if $E_{j} \cap E_{j} = \emptyset$. This matrix is called the intersection matrix of Γ and defines a bilinear symmetric form S over the Z-module $V = Ze_{1} + Ze_{2} + \cdots + Ze_{n}$. The matrix $S(\Gamma)$ depends (up to the ordering of the e_{j}) only on the weighted tree and may be denoted by $S(\Gamma^{*})$. The subset A of X is called a tubular neighbourhood of Γ if

i. $A = \bigcup_{i=1}^{n} A_{i}$, where A_{i} is a (compact) tubular neighbourhood of E_{i} , ii. $E_{i} \cap E_{j} = \emptyset$ implies $A_{i} \cap A_{j} = \emptyset$

F. HIRZEBRUCH

iii. $E_i \cap E_j = \{x\}$ implies the existence of a local coordinate system (z_1, z_2) with center x and a positive number ε such that the open neighbourhood

$$U = \{p | p \in X \land |z_1(p)| < 2 \varepsilon \land |z_2(p)| < 2 \varepsilon \}$$

is defined in this coordinate system and

$$\begin{array}{l} \mathbb{A}_{i} \cap \mathbb{U} = \{ p \mid p \in \mathbb{U} \cap |z_{2}(p)| \leq \varepsilon \} \\ \mathbb{A}_{j} \cap \mathbb{U} = \{ p \mid p \in \mathbb{U} \cap |z_{1}(p)| \leq \varepsilon \} \\ \mathbb{A}_{i} \cap \mathbb{A}_{j} \subset \mathbb{U} \end{array},$$

Such tubular neighbourhoods always exist.

A is a compact 4-dimensional manifold (differentiable except "corners") whose boundary M is a 3-dimensional manifold (without boundary). It is easy to see that A has $E = \bigcup_{i=1}^{n} E_i$ as deformation retract. Thus

(1)
$$H_{i}(A) \sim H_{i}(E)$$

Suppose that the graph Γ' is connected. This is the case if M is connected. If, moreover, Γ' has no cycles, then E is homotopically equivalent to a wedge of n compact oriented topological surfaces with the genera $g_i = \text{genus}(E_i)$. If Γ' has p linearly independent cycles, then the homotopy type of E is the wedge of n surfaces as above and p one-dimensional spheres. The first Betti number of E is given by the formula

(2)
$$b_1(E) = 2 \sum_{i=1}^{n} g_i + p$$

We have the exact sequence (rational cohomolcgy)

(3)
$$H^{1}(A, M) \rightarrow H^{1}(A) \rightarrow H^{1}(M)$$

By Poincaré duality $H^{1}(A, M) \cong H_{3}(A)$ which vanishes by (1).

Therefore $H^{1}(A)$ maps injectively into $H^{1}(M)$ which proves in virtue of (1) and (2):

IEMMA. - If the regular graph of curves $\Gamma := \{E_1, \dots, E_n\}$ has a tubular neighbourhood A whose boundary M is a rational homology sphere, then the graph Γ' is a tree (i. e. Γ' is connected and has no cycles). Furthermore, the genera of the curves are all 0, thus all the E_i are 2-spheres.

2. The fundamental group of the "tree manifold" M $\ensuremath{\mathsf{M}}$.

Suppose M is obtained as in Section 1, assume that Γ' is a tree and all the E_i are 2-spheres. By the lemma of Section 1 this is true-if M is a rational homology sphere. The fundamental group $\pi_1(M)$ is presented by the following theorem.

THEOREM. - Put $S(\Gamma) = ((E_i \cdot E_j)) = s_{ij} \cdot \underline{\text{Then, with the above assumptions,}}$ $\pi_1(M) \xrightarrow{\text{is isomorphic with the free group generated by the vertices}}_{\text{modulo the relations}} e_1, \cdots, e_n$

(a)
$$e_i e_j^{s_{ij}} = e_j^{s_{ij}} e_j$$

(b)
$$1 = \prod_{1 \leq j \leq n} e_j^{j}$$

the product in (b) being ordered from left to right by increasing $j \cdot \frac{\text{Recall}}{\text{that the exponents}} s_{ij}$ are all 1 or 0 (for $i \neq j$).

Remark. - Each weighted tree with a numbering of its vertices defines by this recipe a group. A change of the numbering gives an isomorphic group. This is not difficult to prove. Thus it makes sense to speak (up to an isomorphism) of $\pi_1(\Gamma^t)$ where Γ^t is any weighted tree.

We sketch a proof of the theorem. The boundary of A_i , denoted by ∂A_i , is a circle bundle over S^2 with Euler number s_{ii} . A generator e_i of $\pi_1(\partial A_i)$ is represented by a fibre. The only relation is

$$e_{i}^{s_{ii}} = 1$$

Recall $M = \partial A$ and put $B_i = \partial A \cap A_i$ which is a 3-dimensional manifold obtained from ∂A_i by removing for each j with $j \neq i$ and $s_{ij} \neq 0$ a fibre preserving neighbourhood of some fibre This neighbourhood to be removed has in local coordinates (Section 1, (iii)) the description $(|z_1| < \varepsilon$, $|z_2| = \varepsilon$) and thus is of the type $D^2 \times S^1$. The boundary of B_i consists of a certain number of 2-dimensional tori (one for each j with $j \neq i$ and $s_{ij} \neq 0$). The fundamental group $\pi_1(B_i)$ has generators e_j (j = i or $s_{ij} \neq 0$) with the only relations

(a)
(b)

$$e_i e_j = e_j e_i$$

 $e_i^{-3} i = \prod e_i$,

the product is in increasing order of j (over those e_j with $j \neq i$ and $s_{ij} \neq 0$). Here e_j is representable by any fibre, thus also by a fibre on the

 j^{th} torus. e_j is represented on the j^{th} torus by ($z_1 = \epsilon^{2\pi i t}$, $z_2 = cons$ tant of absolute value 1). It becomes a fibre in B_{i} . Since $M = \bigcup B_{i}$, we can use van Kampen's theorem to present $\pi_1(M)$ as the free product of the $\pi_1(B_1)$ modulo amalgamation of certain subgroups $\pi_1(S^1 \times S^1)$. This gives the theorem. Our notation takes automatically care of the amalgamation because for $s_{ij} \neq 0$ and $i \neq j$ the symbols e_j , e_j denote elements of $\pi_1(B_j)$ and of $\pi_1(\tilde{B}_j)$. Of course, there is all the trouble with the base point which we have neglected in this sketch. The trouble is not serious, mainly because Γ^* is a tree. A further remark to visualize the relations : B_i , as a circle bundle over S^2 - (disjoint union of small disks), is trivial. Thus e_i lies in the center of $\pi_1(B_i)$. There is a section of ∂A_i over the oriented $\overline{S^2}$ with one singular point. This gives an "oriented disk-like 2-chain" in ∂A_i with $e_i^{-s_{ii}}$ as boundary (characteristic class = negative transgression!). The small disks lift to disks in that 2-chain. They have to be removed and have the e_j $(j \neq i, s_{ij} \neq 0)$ as boundary. Knowledge of the fundamental group of a lisk with small disks removed gives (b).

COROLLARY. - The determinant of the matrix (s_{ij}) is different from 0 if and only if $H_1(M; \underline{Z})$ is finite. If this is so, then $|\det(s_{ij})|$ equals the order of $H_1(M; \underline{Z})$.

<u>Froof.</u> - Recall that $H_1(M; Z)$ is the abelianized $\pi_1(M)$. The corollary follows from relation (b) of the theorem. The result can also be obtained directly from the exact homology sequence of the pair (A, M) which identifies $H_1(M; Z)$ with the cokernel of the homomorphism $V \to V^*$ defined by the quadratic form S (for the notation see Section 1). $H_2(A; Z)$ may be identified with V and $H_2(A, M; Z)$ by Poincaré duality with $V^* = Hom(V, Z)$.

3. Elementary trees.

In this section we shall prove a purely algebraic result.

A weighted tree is a finite tree with an integer associated to each vertex.

An elementary transformation (of the first kind) of a weighted tree adds a new vertex x, joins it to an old vertex y by a new edge, gives x the weight - 1 and y the old weight diminished by 1. Everything else remains unchanged.

An elementary transformation (of the second kind) adds a new vertex x, joins it to the two vertices y_1 , y_2 of an edge k by edges k_1 , k_2 , removes k,

132

gives x the weight - 1 and y_i (i = 1, 2) the old weight of y_i diminished by 1. The following proposition is easy to prove.

PROPOSITION. - If Γ' is a weighted tree and Γ'' obtainable from Γ by an elementary transformation, then $S(\Gamma'')$ is negative definite if and only if $S(\Gamma')$ is. Furthermore $\pi_1(\Gamma') \sim \pi_1(\Gamma'')$ (for the notation see Section 1 and the Remark in Section 2).

An elementary tree is a weighted tree obtainable from the one-vertex-tree with weight -1 by a finite number of elementary transformations.

THEOREM. - Let Γ' be a weighted tree. Suppose that $\pi_1(\Gamma')$ is trivial and that the matrix (integral quadratic form) $S(\Gamma')$ is negative definite. Then Γ' is an elementary tree.

For the proof a group theoretical lemma is essential whose proof we omit.

LEMMA. - Let G_1 , G_2 , G_3 be non-trivial groups, and $a_i \in G_i$. Then the free product $G_1 \star G_2 \star G_3$ modulo the relation $a_1 a_2 a_3 = 1$ is a non-trivial group. Inductive proof of the theorem. Suppose it is proved if the number of vertices in the weighted tree is less than n. Let Γ ' have n vertices e_1 , ..., e_n .

<u>First case.</u> - There is no vertex in Γ^{*} which is joined by edges with at least three vertices.

Then Γ is linear

where a_i is the associated weight. It follows that one of the a_i must be -1, if not det $S(\Gamma')$ would be up to sign the numerator of the continued fraction

$$|a_1| - \frac{1}{|a_2|} - \frac{1}{|a_n|}$$
 $(a_i \leq -2)$

which is not 1. This contradicts the corollary in Section 2. Thus Γ^{\bullet} is an elementary transform of a tree Γ^{\bullet} with n = 1 vertices. By the proposition and the induction assumption Γ^{\bullet} is elementary.

<u>Second case</u>. - <u>There is a vertex</u> e_1 , <u>say</u>, joined with e_2 , ..., e_m $(m \ge 4)$. We may choose this notation since the numbering plays no rôle for the fundamental group (see the Remark in Section 2).

Take Γ^* remove e_1 and the edges joining it to e_2 , ..., e_m . The remaining one-dimensional complex is a union of m - 1 trees T_2 , ..., T_m where T_i has e_i as edge. The free product of the $\pi_1(T_i)$, i = 2 , ... , m , modulo the relation $e_2 e_3 \cdots e_m = 1$ gives obviously (see Section 2) the group $\pi_1(\Gamma^*)$ modulo $e_1 = 1$. By assumption $\pi_1(\Gamma^*)$ is trivial. By the lemma at least one of the groups $\pi_1(T_i)$, say $\pi_1(T_2)$, is trivial. By induction assumption T_2 is elementary and thus can be reduced by removing a vertex x with weight -1 to give a weighted tree T_2^{\prime} of which T_2^{\prime} is an elementary transform of first or second kind. If $x \neq e_2^{\prime}$ or if $x = e_2$ and joined only with one vertex in T_2 , then Γ ' is elementary transform of the tree consisting of the $T_{i, j}$ (i = 3, ..., m), T_2^i , and e_1 (with the weight unchanged or increased by 1 respectively). By induction and the proposition, Γ' would be elementary. In the remaining case $x = e_2$ and e_2 is joined with exactly three vertices in Γ' , namely e_1 and, say, e_{m+1} , e_{m+2} of T2 . Again, either I' would be elementary transform of a smaller tree, or the weight of e_1 or e_{m+1} or e_{m+2} would be - 1 . But the latter case cannot occur, since the quadratic form takes on $e_r + e_s \in V$ (see Section 1) the value 0, if e_r , e_s have weight -1 and are joined by an edge, and this would be true for r = 2 and s = 1, m + 1 or m + 2 and contradict the negative definiteness of $S(\Gamma')$.

4. A blowing-down theorem.

THEOREM. - Let X be a complex manifold of complex dimension 2 and $\Gamma = \{E_1, E_2, \dots, E_n\}$ a regular graph of curves on X. Suppose the boundary of some tubular neighbourhood of Γ be simply-connected and the matrix $S(\Gamma^{*})$ negative-definite. Then the topological space X/E (i.e. X with $E = \bigcup_{i=1}^{n} E_i$ collapsed to a point) is a complex manifold in a natural way: The projection $X \to X/E$ is holomorphic and the bijection $X - E \to X/E - E/E$ is biholomorphic.

<u>Proof.</u> - By the lemma in Section 1 and the theorem in Section 3 all curves E_i are 2-spheres and Γ' is an elementary tree. If Γ' has only one vertex, then the above theorem is due to GRAUERT or, in the classical algebraic geometric case, to CASTELNUOVO-ENRIQUES. By the very definition of an elementary tree and easy properties of "quadratic transformations" the result follows.

5. Resolution of singularities.

Let Y be a complex space of complex dimension 2 in which all points are nonsingular except possibly the point y_{n} which is supposed to be normal. The theorem on desingularization states that there exist a complex manifold X, a regular (see Section 1) graph Γ of curves E_1 , ..., E_n on X, a holomorphic map $\pi: X \to Y$ with n

Thus the topological investigation of A and M (Section 1) which we have carried through so far contains as special case the investigation of singularities. A theorem, which we do not prove here, states that $S(\Gamma)$ is negative-definite if Γ comes from desingularizing a singularity.

6. The Main theorem of Mumford.

THEOREM. - Let Y, y₀ be as in Section 5. Suppose that y₀ has in Y a neighbourhood U homeomorphic to R^4 by local coordinates t_1 , ..., t_4 . Then y₀ is non-singular.

"Desingularize" y_0 as in Section 5. Take a tubular neighbourhood A of Γ . We can find a positive number δ such that $K = \pi^{-1} \{p \mid p \in U \land \Sigma t_i^2(p) < \delta\} \subset A$. There exists a tubular A' with

$A^{1} \subset K \subset A$

and such that A' is obtained from A just by multiplying the "normal distances" by a fixed positive number r < 1. Any path in A - E is homotopic to a path in A' - E which is nullhomotopic in A - E because $\pi_1(K - E) = \pi_1(\mathbb{R}^4 - \{0\})$ is trivial. The theorem in Section 4 together with the theorem mentioned at the end of Section 5 completes the proof.

7. Further remarks.

For any weighted tree Γ' the construction in Section 1 can be topologized (assume genus $(E_i) = 0$). In this way we may attach to each weighted tree Γ' a 3-dimensional manifold $M(\Gamma')$ (see von RANDOW [5]) which, as can be shown, depends only on Γ' (up to a homeomorphism).

We have $\pi_1(M(\Gamma^{*})) = \pi_1(\Gamma^{*})$ (See Section 2). Von RANDOW [5] has investigated the tree manifold $M(\Gamma^{*})$ and shown in analogy to Mumford's theorem (Section 6) that $M(\Gamma^{*})$ is homeomorphic S^3 if $\pi_1(\Gamma^{*})$ is trivial. Thus there is no counterexample to Poincaré's conjecture in the class of tree manifolds $M(\Gamma^{*})$. Von Randow's investigations and also the topological part of Mumford's paper are in

135

F. HIRZEBRUCH

close connection to the classical paper of SEIFERT [6]. The oriented Seifert manifolds (fibred in circles over S^2 with a finite number of exceptional fibres) are special tree manifolds [5].

Interesting trees (always with genus $(E_i) = 0$) occur when desingularizing the singularities

$$(z_1^2 + z_2^n)^{1/2}$$
, $(n \ge 2)$, $(z_1(z_2^2 + z_1^n))^{1/2}$, $(n \ge 2)$,
 $(z_1^3 + z_2^4)^{1/2}$, $(z_1(z_1^2 + z_2^3))^{1/2}$, $(z_1^3 + z_2^5)^{1/2}$.

Each of these algebroid function elements generates a complex space with a singular point at the origin.

These singularities give rise to the well known trees A_{n-1} , D_{n+2} , E_6 , E_7 , E_8 of Lie group theory (all vertices weighted by -2). The corresponding manifolds M are homeomorphic to S^3/G where G is a finite subgroup of S^3 (cyclic, binary dihedral, binary tetrahedral, binary octahedral, binary pentagondodecahedral). Up to inner automorphisms these are the only finite subgroups of S^3 . The manifold $M(E_8)$ is specially interesting. Since det $S(E_8) = 1$, it is by the corollary in Section 2 a Poincaré manifold, i. e. a 3-dimensional manifold with non-trivial fundamental group and trivial abelianized fundamental group. $M(E_8)$ was constructed by "plumbing" 8-copies of the circle bundle over S^2 with Euler number -2. By replacing this basic constituent by the tangent bundle of S^{2k} one obtains a manifold $M^{4k-1}(E_8)$ of dimension 4k - 1. This carries a natural differentiable structure. For $k \ge 2$ it is homeomorphic to S^{4k-1} , but not diffeomorphic (Milnor sphere).

The above mentioned singularities are classical (e. g. DU VAL [1]). For the preceding remarks see also [3].

For quadratic transformations, desingularization, etc. see the papers of ZARISKI and also [2]. We have only been able to sketch some aspects of Mumford's paper, leaving others aside, e. g. the local Picard variety, etc.

BIBLIOGRAPHY

- [1] DU VAL (P.). On isolated singularities of surfaces which & not affect the conditions of adjunction, Proc. Cambr. phil. Soc., t. 30, 1934, p. 453-459.
- [2] HIRZEBRUCH (Friedrich). Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Annalen, t. 126, 1953, p. 1-22.

- [3] HIRZEBRUCH (Friedrich). Differentiable manifolds and quadratic forms, Lectures delivered at the University of California, Notes by Sebastian S. KOH. - Berkeley, University of California, 1962.
- [4] MUMFORD (D.). The topology of normal singularities of an algebraic surface and a criterion for simplicity. - Paris, Presses universitaires de France, 1961 (Institut des Hautes Etudes Scientifiques, Publications mathématiques, 9).
- [5] RANDOW (R. von). Zur Topologie von dreidimensionalen Baummannigfaltigkeiten.
 Bonn, 1962 (Bonner mathematische Schriften, 14).
- [6] SEIFERT (H.). Topologie dreidimensionaler gefaserter Räume, Acta Mathematica, t. 60, 1933, p. 147-238.
- [7] ZARISKI (Oscar). Algebraic surfaces. Berlin, J. Springer, 1935 (Ergebnisse der Mathematik, Band 3, n° 5).