Séminaire N. Bourbaki

Friedrich Hirzebruch
 The topology of normal singularities of an algebraic surface

Séminaire N. Bourbaki, 1962-1964, exp. no 250, p. 129-137.
http://www.numdam.org/item?id=SB_1962-1964__8__129_0
© Association des collaborateurs de Nicolas Bourbaki, 1962-1964, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE TOPOLOGY OF NORMAL SINGULARITIES OF AN ALCEBRAIC SURFACE
by Friedrich HIRZEBRUCH
($d^{\mathbf{2}}$ après un article de D. MUMFORD [4])

We shall study MUMFORD's results in the complex-analytic case.

1. Regular graphs of curves.

Let X be a complex manifold of complex dimension 2 . A regular graph Γ of curves on X is defined as follows.
i. $\Gamma=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$.
ii. Each E_{i} is a compact connected complex submanifold of X of complex dimension 1 -
iii. Each point of X lies on at most two of the E_{i} -
iv. If $x \in E_{i} \cap E_{j}$ and $i \neq j$, then E_{i}, E_{j} intersect regularly in x and $E_{i} \cap E_{j}=\{x\}$.
Γ defines a graph Γ^{\prime} in the usual sense (i. e. a one-dinensional finite simplicial complex) by associating to each E_{i} a vertex e_{i} and by joining e_{i} and e_{j} by an edge if and only if $E_{i} \cap E_{j}$ intersect. Γ^{\prime} becomes a "weighted graph" by attaching to each e_{i} the self-intersection number $E_{i} \cdot E_{i}$, i. e. the Euler number of the normal bundle of E_{i} in X. We have the symmetric matrix

$$
S(\Gamma)=\left(\left(E_{i} \bullet E_{j}\right)\right)
$$

where $E_{i} \bullet E_{j}(i \neq j)$ equals 1 if $E_{i} \cap E_{j} \neq \varnothing$ and equals 0 if $E_{i} \cap E_{j}=\varnothing$. This matrix is called the intersection matrix of Γ and defines a bilinear symmetric form S over the $\underset{\sim}{Z}$-module $V=\underset{\sim}{Z} e_{1}+\underset{\sim}{Z} e_{2}+\cdots+Z e_{n}$. The matrix $S(\Gamma)$ depends (up to the ordering of the q_{1}) onlyom the weighted tree and may be denoted by $S\left(\Gamma^{\prime}\right)$. The subset A of X is called a tubular neighbourhood of Γ if
i. $A=\bigcup_{i=1}^{n} A_{i}$,
where A_{i} is a (compact) tubular neighkourhood of E_{i},
ii. $E_{i} \cap E_{j}=\varnothing$ implies $A_{i} \cap A_{j}=\ell$
iii. $E_{i} \cap E_{j}=\{x\}$ implies the existence of a local coordinate system $\left(z_{1}, z_{2}\right)$ with center x and a positive number ε such that the open neighbourhood

$$
U=\left\{p|\quad p \in X \wedge| z_{1}(p)|<2 \varepsilon \wedge| z_{2}(p) \mid<2 \varepsilon\right\}
$$

is defined in this coordinate system and

$$
\begin{gathered}
A_{i} \cap U=\left\{p|\quad p \in U \cap| z_{2}(p) \mid \leqslant \varepsilon\right\} \\
A_{j} \cap U=\left\{p|\quad p \in U \cap| z_{1}(p) \mid \leqslant \varepsilon\right\} \\
A_{i} \cap A_{j} \subset U
\end{gathered}
$$

Such tubular neighbourhoods always exist.
A is a compaci 4mdimensional manifold (differentiable except "corners") whose boundary M is a 3-dimensional manifold (without boundary). It is easy to see that A has $E=\bigcup_{i=1}^{n} E_{i}$ as deformation retsact. Thus

$$
\begin{equation*}
H_{i}(A) \sim H_{i}\left(E^{\prime}\right. \tag{1}
\end{equation*}
$$

Suppose that the graph $\Gamma^{\mathbf{t}}$ is connected. This is the case if M is connected. If, moreover, Γ^{ℓ} has no cycles, then E is homotopically equivalent to a wedge of n compact oriented topological surfaces with the genera $g_{i}=\operatorname{genus}\left(E_{i}\right)$. If $\Gamma^{\text {t }}$ has p linearly independent cycles, ther the homotopy type of E is the wedge of n surfaces as above and p one-dimensional spheres. The first Betti number of E is given by the formula

$$
\begin{equation*}
b_{1}(E)=2 \sum_{i=1}^{n} g_{i}+p \tag{2}
\end{equation*}
$$

We have the exact sequence (rational cohomolcgy)

$$
\begin{equation*}
H^{1}(A, M) \rightarrow H^{1}(A) \rightarrow H^{1}(M) \tag{3}
\end{equation*}
$$

By Poincaré duality $H^{1}(A, M i) \simeq \mathrm{H}_{3}(A)$ which vanishes by (1).
Therefore $H^{1}(A)$ maps injectively into $H^{1}(M)$ which proves in virtue of (1) and (2):

IEMMA. - If the regular graph of curves $\Gamma:=\left\{E_{1}, \ldots, E_{n}\right\}$ has a tubular neighbourhood A whose boundary M is a rational homology sphere, then the graph Γ^{\prime} is a tree (i. e. Γ^{\prime} is connected and has no cycles). Furthermore, the genera of the curves are all 0 , thus all the E_{i} are 2-spheres.

2. The fundamental group of the "tree manifold" M.

Suppose M is obtained as in Section 1 , assume that Γ^{\prime} is a tree and all the E_{i} are 2-spheres. By the lemma of Section 1 this is true-if M is a rational homology sphere. The fundamental. group $\pi_{1}(M)$ is presented by the following theorem.

THEOREM. - Fut $S(\Gamma)=\left(\left(E_{i} \cdot E_{j}\right)\right)=s_{i j}$. Then, with the above assumptions, $\pi_{1}(M)$ is isomorphic with the free group generated by the vertices e_{1}, \ldots, e_{n} of $\Gamma^{:}$modulo the relations
(a)
$e_{i} e_{j}^{s_{i j}}=e_{j}^{s_{i j}} e_{i}$
(b)

$$
1=\prod_{1 \leqslant j \leqslant n} e_{j}^{\mathfrak{j} j j}
$$

the product in (b) being ordered from leift to right by increasing j - Recall
that the exponents $s_{i j}$ are all 1 or 0 (for $i \neq j$).
Remark. - Each weighted tree with a numbering of its vertices defines by this recipe a group. A change of the numbering gives an isomorphic group. This is not difficult to prove. Thus it makes sense to speak (up to an isomorphism) of $\pi_{1}\left(\Gamma^{t}\right)$ where Γ^{\prime} is any weighted tree.

We sketch a proof of the theorem. The boundary of A_{i}, denoted by ∂A_{i}, is a circle bundle over S^{2} with Euler number $s_{i i}$. A generator e_{i} of $\pi_{1}\left(\partial \Lambda_{i}\right)$ is represented by a fibre. The only relation is

$$
e_{i}^{s i i}=1
$$

Recall $M=\partial A$ and put $B_{i}=\partial A \cap A_{i}$ which is a 3-dimensional manifold obtained from ∂A_{i} by removing for each j with $j \neq i$ and $s_{i j} \neq 0$ a fibre preserving neighbourhood of some fibre This neighbourhood to be removed has in local coordinates (Section 1, (iii)) the description $\left(\left|z_{1}\right|<\varepsilon,\left|z_{2}\right|=\varepsilon\right)$ and thus is of the type $D^{2} \times S^{1}$. The boundary of B_{i} consists of a certain number of 2-dimensional tori (one for each j with $j \neq i$ and $s_{i j} \neq 0$). The fundamental group $\pi_{1}\left(B_{i}\right)$ has generators $e_{j}\left(j=i\right.$ or $\left.s_{i j} \neq 0\right)$ with the only rela.tions
(b)

$$
\begin{align*}
& e_{i} e_{j}=e_{j} e_{i} \tag{a}\\
& e_{i}^{-s}=\prod e_{j}
\end{align*}
$$

the product is in increasing order of f (over those e_{j} with $j \neq i$ and $\left.s_{i j} \neq 0\right)$. Here e_{i} is representable by any fibre, thus also by a fibre on the
$j^{\text {th }}$ torus. e_{j} is represented on the $j^{\text {th }}$ torus by $\left(z_{1}=\varepsilon^{2 \pi i t}, z_{2}=\right.$ constant of absolute value 1). It becomes a fibre in B_{j}. Since $M=U B_{i}$, we can use van Kampen's theorem to present $\pi_{1}(M)$ as the free product of the $\pi_{1}\left(B_{i}\right)$ modulo amalgamation of certain subgroups $\pi_{1}\left(S^{1} \times S^{1}\right)$. This gives the theorem. Our notation takes automatically care of the amalgamation because for $s_{i j} \neq 0$ and $i \neq j$ the symbols e_{i}, e_{j} denote elements of $\pi_{1}\left(B_{i}\right)$ and of $\pi_{1}\left(B_{j}\right)$. Of course, there is all the trouble with the base point which we have neglected in this sketch. The trouble is not serious, mainly because Γ^{\prime} is a tree. A further remark to visualize the relations : B_{i}, as a circle bundle over S^{2} - (disjoint union of small disks), is trivial. Thus e_{i} lies in the center of $\pi_{1}\left(B_{i}\right)$. There is a section of ∂A_{i} over the oriented S^{2} with one singular point. This gives an "oriented disk-like 2-chain" in ∂A_{i} with $e_{i}^{-s_{i j}}$ as boundary (characteristic class $=$ negative transgression!). The small disks lift to disks in that 2 -chain. They have to be removed and have the $e_{j}\left(j \neq i, s_{i j} \neq 0\right)$ as boundary. Knowledge of the fundamental group of a disk with small disks removed gives (b).

COROLLARY. - The determinant of the matrix $\left(s_{i j}\right)$ is different from 0 if and only if
of $H_{1}(M ; Z)$
(M) is finite. If this is so, then
$\left|\operatorname{det}\left(s_{i j}\right)\right|$ equals the order

Froof. - Recall that $H_{1}(M ; Z)$ is the abelianized $\pi_{1}(M)$. The corollary follows from relation (b) of the theorem. The resialt can also be obtained directly from the exact homology sequence of the pair (A, M) which identifies $H_{1}(M ; Z)$ with the cokernel of the homomorphism $V \rightarrow V^{*}$ defined by the quadratic form S (for the notation see Section 1). $H_{2}(A ; Z)$ may be identified with V and $H_{2}(A, M ; Z)$ by Poincaré duality with $V^{*}=\operatorname{Hom}(V, Z)$.

3. Elementary trees.

In this section we shall prove a purely algebraic result.
A weighted tree is a finite tree with on integer associated to each vertex.
An elementary transformation (of the first kind) of a weighted tree adds a new vertex x, joins it to an old vertex y by a new edge, gives x the weight - 1 and y tho old weight diminished by 1 . Everything else remains unchanged.

An elementary transformation (of the second kind) adds a new vertex x, joins it to the two vertices y_{1}, y_{2} of an edge k by edges k_{1}, k_{2}, removes k,
gives x the weight -1 and $y_{i}(i=1,2)$ the old weight of y_{i} diminished by 1 . The following proposition is easy to prove.

PROPOSITION. - If Γ^{\prime} is a weighted tree and $\Gamma^{\prime \prime}$ obtainable from Γ by an elementary transformation, then $S\left(\Gamma^{\prime \prime}\right)$ is negative definite if and only if $S\left(\Gamma^{\prime}\right)$ is. Furthermore $\pi_{1}\left(\Gamma^{\prime}\right) \sim \pi_{1}\left(\Gamma^{\prime \prime}\right)$ (for the notation see Section 1 and the Remark in Section 2).

An elementary tree is a weighted tree obtainable from the onemvertex-tree with weight -1 by a finite number of elementary transformations.

THEOREM. - Let Γ^{\prime} be a weighted tree. Suppose that $\pi_{1}\left(\Gamma^{8}\right)$ is trivial and that the matrix (integral quadratic form) $S\left(\Gamma^{1}\right)$ is negativ definite. Then Γ^{\prime}
is an elementary tree.
For the proof a group theoretical lerma is essential whose proof we omit.

IEMMA. - Let G_{1}, G_{2}, G_{3} be non-trivial groups, and $a_{i} \in G_{i}$. Then the free product $G_{1} * G_{2} * G_{3}$ modulo the relation $a_{1} a_{2} a_{3}=1$ is a non-trivial group.

Inductive proof of the theorem. Suppose it is proved if the number of vertices in the weighted tree is less than n. Let Γ^{i} have n vertices e_{1}, \ldots, e_{n} •

First case. - There is no vertex in Γ^{\prime} which is joined by edges with at least three vertices.

Then Γ^{\prime} is linear

where a_{i} is the associated weight. It follows that one of the a_{i} must be -1 , if not $\operatorname{det} S\left(\Gamma^{\prime}\right)$ would be up to sign the numerator of the continued fraction
which is not 1 . This contradicts the corollary in Section 2. Thus Γ^{2} is an elementary transform of a tree $\Gamma^{\prime \prime}$ with $n-1$ vertices. By the proposition and the induction assumption Γ^{p} is elementary.

Second case. - There is a vertex e_{1}, say, joined with $e_{2}, \cdots, e_{m}(m \geqslant 4)$.
We may choose this notation since the numbering plays no role for the fundamental group (see the Remark in Section 2).

Take Γ^{t} remove e_{1} and the edges joining it to e_{2}, \cdots, e_{m}. The remaining one-dimensional complex is a union of $m-1$ trees T_{2}, \ldots, T_{m} where T_{i} has e_{i} as edge. The free product of the $\pi_{1}\left(T_{i}\right), i=2, \cdots, m$, modulo the relation $e_{2} e_{3} \cdots e_{m}=1$ gives obviously (see Section 2) the group $\pi_{1}\left(\Gamma^{\prime}\right)$ modulo $e_{1}=1$. By assumption $\pi_{1}\left(\Gamma^{2}\right)$ is trivial. By the lemma at least one of the groups $\pi_{1}\left(T_{i}\right)$, say $\pi_{1}\left(T_{2}\right)$, is trivial. By induction assumption T_{2} is elementary and thus can be reduced by removing a vertex x with weight -1 to give a weighted tree T_{2}^{\prime} of which T_{2} is an elementary transform of first or second kind. If $x \neq e_{2}$ or if $x=e_{2}$ and joined only with one vertex in T_{2}, then Γ^{2} is elementary transform of the tree consisting of the $T_{i}:(i=3, \ldots, m), T_{2}$, and e_{1} (with the weight unchanged or increased by it respectively). By induction and the proposition, Γ^{\prime} would be elementory. In the remaining case $x=e_{2}$ and e_{2} is joined with exactly three vertices in Γ^{\prime}, namely e_{1} and, say, e_{m+1}, e_{m+2} of T_{2}. hgain, either Γ^{\prime} would be elementary transform of a smaller tree, or the weight of e_{1} or e_{m+1} or e_{m+2} would be -1 . But the latter case cannot occur, since the quadratic form takes on $e_{r}+e_{S} \in V$ (see Section 1) the value 0 , if e_{r}, e_{s} have weight -1 and are joined by an edge, and this would be true for $r=2$ and $s=1, m+1$ or $m+2$ and contradict the negative definiteness of $S\left(\Gamma^{\dagger}\right)$.

4. A blowing-down theorem.

THEOREM. - Let X be a complex manifold of complex dimension 2 and $\Gamma=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ a regular graph of curves on X. Suppose the boundary of some tubular neighbourhood of Γ be simplymconnected and the matrix $S\left(\Gamma^{\ell}\right)$ negative-definite. Then the topological space X / E (i. e. X with $E=\sum_{i=1}^{0} E$ collapsed to a point) is a complex manifold in a natural way : The projection $X \rightarrow X / E$ is holomorphic and the bijection $X-E \rightarrow X / E-E / E$ is biholomorphic.

Proof. - By the lemma in Section 1 and the theorem in Section 3 all curves E_{i} are 2-spheres and Γ^{\prime} is an elementary tree. If Γ^{\prime} has only one vertex, then the above theorem is due to GRAUERT or, in the classical algebraic geometric case, to CASTELNUOVO-ENRIQUES. By the very definition of an elementary tree and easy properties of "quadratic transformations" the result follows.

5. Resolution of singularities.

Let Y be a complex space of complex dimension 2 in which all points are non singular except possibly the point y_{0} whichis supposed to be normal. The theorem
on desingularization states that there exist a complex manifold X, a regular (see Section 1) graph Γ of curves E_{1}, \ldots, E_{n} on X, a holomorphic map $\pi: X \rightarrow Y$ with

$$
\begin{gathered}
\pi(E)=\left\{\nabla_{0}\right\}, \text { where } E=\bigcup_{i=1}^{n} E_{i}, \\
\pi \mid X-E: X-E \rightarrow Y-\left\{y_{0}\right\} \text { biholomorphic }
\end{gathered}
$$

Thus the topological investigation of A and M (Section 1) which we have carried through so far contains as special case the investigation of singularities. A theorem, which we do not prove here, states that $S(\Gamma)$ is negativemdefinite if Γ comes from desingularizing a singularity,

6. The Main theorem of Yumford.

 y_{0} is non-singular.
"Desingularize" y_{0} as in Section 5. Take a tubular neighbourhood A of Γ. We can find a positive number δ such that $K=\pi^{-1}\left\{p \mid p \in U \wedge \sum t_{i}^{2}(p)<\delta\right\} \subset A$. There exists a tubular A^{\prime} with

$$
A^{\prime} \subset K \subset A
$$

and such that A ' is obtained from A just by multiplying the "normal distances" by a fixed positive number $r<1$. Any path in $A-E$ is homotopic to a path in $A^{\prime}-E$ which is nullhonotopic in $A-E$ because $\pi_{1}(K-E)=\pi_{1}\left(R^{4}-\{0\}\right)$ is trivial. The theorem in Section 4 together with the theorem mentioned at the end of Section 5 completes the proof.

7. Further remarks.

For any weighted tree Γ^{\prime} the construction in Section 1 can be topologized (assume genus $\left(E_{i}\right)=0$). In this way we may attach to each weighted tree Γ^{\prime} a 3-dimensional manifold $M\left(\Gamma^{\prime}\right)$ (see von RANDOW [5]) which, as can be shown, depends only on Γ^{\prime} (up to a homeomorphism).

We have $\pi_{1}\left(M\left(\Gamma^{\prime}\right)\right)=\pi_{1}\left(\Gamma^{\prime}\right)$ (See Section 2). Von RANDOW [5] has investigated the tree manifold $M\left(\Gamma^{\prime}\right)$ and shown in analogy to Mumford's theorem (Section 6) that $M\left(\Gamma^{\prime}\right)$ is homeomorphic S^{3} if $\pi_{1}\left(\Gamma^{\prime}\right)$ is trivial. Thus there is no counter example to Poincaré's conjecture in the class of tree manifolds $M\left(\Gamma^{\prime}\right)$. Von Randow's investigations and also the torological part of Mumford's paper are in

F. HIRZEBRUCH

close connection to the classical paper of SEIFERT [6]. The oriented Seifert manifolds (fibred in circles over S^{2} with a f:inite number of exceptional fibres) are special tree manifolds [5].*

Interesting trees (always with genus ($\mathrm{E}_{\mathbf{i}}{ }^{\prime}=0$) occur when desingularizing the singularities

$$
\begin{array}{ll}
\left(z_{1}^{2}+z_{2}^{n}\right)^{1 / 2}, & (n \geqslant 2), \quad\left(z_{1}\left(z_{2}^{2}+z_{1}^{n}\right)\right)^{1 / 2}, \quad(n \geqslant 2) \\
\left(z_{1}^{3}+z_{2}^{4}\right)^{1 / 2}, & \left(z_{1}\left(z_{1}^{2}+z_{2}^{3}\right)\right)^{1 / 2}, \quad\left(z_{1}^{3}+z_{2}^{5}\right)^{1 / 2}
\end{array}
$$

Each of these algebroid function elements generates a complex space with a singular point at the origin.

These singularities give rise to the well known trees $A_{n-1}, D_{n+2}, E_{6}, E_{7}, E_{8}$ of Lie group theory (all vertices weighted by -2). The corresponding manifolds M are homeomorphic to S^{3} / G where G is a finite subgroup of S^{3} (cyclic, binary dihedral, binary tetrahedral, binary octahedral, binary pentagondodecahedral). Up to inner automorphisms these are the only finite subgroups of s^{3}. The manifold $M\left(E_{8}\right)$ is specially interesting. Since $\operatorname{det} S\left(E_{8}\right)=1$, it is by the corollary in Section 2 a Poincaré manifold, i. e. a 3-dimensional manifold with nontrivial fundamental group and trivial abelianized fundamental group. $M\left(E_{8}\right)$ was constructed by "plumbing" 8-copies of the circle bundle over s^{2} with Euler number - 2 . By replacing this basic constituent by the tangent bundle of $\mathrm{s}^{2 \mathrm{k}}$ one obtains a manifold $M^{4} \mathrm{k}-1\left(\mathrm{E}_{8}\right)$ of dimension $4 \mathrm{k}-1$. This carries a natural differentiable structure. For $k \geqslant 2$ it is homeomorphic to $s^{4 k-1}$, but not diffeomorphic (Milnor sphere).

The above mentioned singularities are classical (e. g. DU VAL [1]). For the preceding remarks see also [3].

For quadratic transformations, desingularization, etc. see the papers of ZARISKI and also [2]. We have only been able to sketch some aspects of Numford's paper, leaving others aside, e. g. the local Picard variety, etc.

BIBLIOGRAPHY

[1] DU VAL (P.). - On isolated singularities of surfaces which dc not affect the conditions of adjunction, Proc. Cambr. phil. Soc., t. 30, 1934, p. 453-459.
[2] HIRZEBRUCH (Friedrich). - Öber vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Annalen, t. 126, 1953, p. 1-22.
[3] HIRZEBRUCH (Friedrich). - Differentiable manifolds and quadratic forms, Lectures delivered at the University of California. Notes by Sebastian S. KOH. - Berkeley, University of California, 1962.
[4] MUMFORD (D.). - The topology of normal singularities of an algebraic surface and a criterion for simplicity. - Faris, Presses universitaires de France, 1961 (Institut des Hautes Etudes Scientifiques, Publications mathématiques, 9).
[5] RANDOW (R. von).-Zur Topologie von dreidimensionalen Baumannigfaltigkeiten. - Bonn, 1962 (Bonner mathematische Schriften, 14).
[6] SEIFERT (H.). - Topologie dreidimensionaler gefaserter Räume, Acta Mathematica, t. 60, 1933, p. 147-238.
[7] ZARISKI (Oscar). - Algebraic surfaces. - Berlin, J. Springer, 1935 (Ergebnisse der Mathematik, Band 3, n° 5).

