SÉMINAIRE N. BOURBAKI

FRIEDRICH HIRZEBRUCH Singularities and exotic spheres

Séminaire N. Bourbaki, 1966-1968, exp. nº 314, p. 13-32. http://www.numdam.org/item?id=SB1966-1968 10 13 0>

© Association des collaborateurs de Nicolas Bourbaki, 1966-1968, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Séminaire BOURBAKI 19e année, 1966/67, n°314

SINGULARITIES AND EXOTIC SPHERES

by Friedrich HIRZEBRUCH

ERIESKORN has proved [4] that the n-dimensional affine algebraic variety $z_0^3 + z_1^2 + \ldots + z_n^2 = 0$ (n odd, $n \ge 1$) is a topological manifold though the variety has an isolated singular point (which is normal for $n \ge 2$). Such a phenomenon cannot occur for normal singularities of 2-dimensional varieties, as was shown by MUMFORD ([12], [6]). ERIESKORN's result stimulated further research on the topology of isolated singularities (ERIESKORN [5], MILNOR [11] and the speaker [5], [7]). ERIESKORN [5] uses the paper of F. PHAM [14], whereas the speaker studied certain singularities from the point of view of transformation groups using results of EREDON ([2], [3]), W.C. ESIANG and W.Y. ESIANG [8] and JÄNICH [9].

§ 1. The integral homology of some affine hypersurfaces.

PHAM [14] studies the non-singular subvariety $V_a = V(a_0, a_1, \dots, a_n)$ of C^{n+1} given by

 $z_{o}^{a_{0}} + z_{1}^{a_{1}} + \dots + z_{n}^{a_{n}} = 1$ (n \geq 0),

where $\mathbf{a} = (\mathbf{a}_0, \ldots, \mathbf{a}_n)$ consists of integers $\mathbf{a}_j \ge 2$.

Let G_{a_j} be the cyclic group of order a_j multiplicatively written and generated by w_j . Define the group $G_a = G_{a_0} \times G_{a_1} \times \cdots \times G_{a_n}$ and put $\varepsilon_j = \exp(2\pi i/a_j)$.

$$\overset{k_{o}}{w_{o}} \cdots \overset{k_{n}}{w_{n}} (z_{o}, \dots, z_{n}) = (\overset{k_{o}}{\varepsilon_{o}} z_{o}, \dots, \overset{k_{n}}{\varepsilon_{n}} z_{n}).$$

Let \hat{G}_{a_j} be the group of a_j -th roots of unity and $x \mapsto \hat{x}$ the isomorphism $G_{a_j} \to \hat{G}_{a_j}$ given by $w_j \mapsto \varepsilon_j = \hat{w}_j$.

PHAM considers the following subspace U_{a} of V_{a}

$$\mathbb{U}_{a} = \{z \mid z \in \mathbb{V}_{a} \text{ and } z_{j}^{j} \text{ real} \geq 0 \text{ for } j = 0, \dots, n\}$$

LEMMA. - The subspace U_a is a deformation retract of V_a by a deformation compatible with the operations of G_a .

For the proof see PHAM [14], p. 338.

U_a can also be described by the conditions

$$z_j = u_j |z_j|$$
 with $u_j \in \hat{G}_{a_j}$ $(j = 0, \dots, n).$

Put $|z_j|^{a_j} = t_j$. Then U_a becomes the space of (n+1)-tpls of complex numbers

$$t_{u_0} \oplus t_{1^{u_1}} \oplus \cdots \oplus t_{n^{u_n}}$$

with

$$u_{j} \in \hat{G}_{a,j}, t_{j} \ge 0, \sum_{j=0}^{n} t_{j} = 1$$

Thus U_a can be identified with the join $G_a * G_a * \cdots * G_a$ of the finite sets G_{a_i} (see MILNOR [10]).

LEMMA 2.1 in [10] states in particular that the reduced integral homology groups of the join A * B of two spaces A, B without torsion are given by a canonical isomorphism

$$\widetilde{\mathbb{H}}_{r+1}(\mathbb{A} * \mathbb{B}) \cong \sum_{i+j=r} \widetilde{\mathbb{H}}_{i}(\mathbb{A}) \otimes \widetilde{\mathbb{H}}_{j}(\mathbb{B}),$$

whereas LEMMA 2.2 in [10] shows that A * B is simply connected provided B is arcwise connected and A is any non-vacuous space. These properties of the join together with its associativity imply

THEOREM. The subvariety V_a of C^{n+1} is (n-1)-connected. Moreover

(1)
$$\widetilde{H}_{n}(\mathbb{V}_{a}) \cong \widetilde{H}_{o}(\mathbb{G}_{a_{o}}) \otimes \widetilde{H}_{o}(\mathbb{G}_{a_{1}}) \otimes \ldots \otimes \widetilde{H}_{o}(\mathbb{G}_{a_{n}}).$$

This is a free abelian group of rank $r = TT(a_{j}-1)$.

The isomorphism (1) is compatible with the operations of G_a .

All other reduced integral homology groups of Va vanish.

It can be shown that ${\tt V}_a$ has the homotopy type of a connected union $s^n \vee \ldots \vee \, s^n$ of r spheres of dimension n.

The identification of U_{a} with a join was explained to the speaker by MILNOR.

 $U_a = G_a + G_a + \dots + G_a$ is an n-dimensional simplicial complex which has an n-simplex for each element of G_a . The n-simplex belonging to the unit of G_a is denoted by e. All other n-simplices are obtained from e by operations of G_a . Thus we have for the n-dimensional simplicial chain group

(2)
$$C_n(U_a) = J_a$$

where J_a is the group ring of G_a . The homology group $\tilde{H}_n(U_a) = \tilde{H}_n(V_a)$ is an additive subgroup of $J_a = C_n(U_a) \cong J_a$.

The face operator ∂_j commutes with all operations of G_a on $C_n(U_a)$ and furthermore satisfies $\partial_j = w_j \partial_j$. Therefore

(3) $h = (1-w_0)(1-w_1)...(1-w_n) e$

is a cycle. Thus $h_{\tilde{t}} \widetilde{H}_{n}(U_{a})$. It follows easily that $\widetilde{H}_{n}(V_{a}) = J_{a}h$. This yields the

THEOREM. The map $w \rightarrow wh (we G_a)$ induces an isomorphism

$$J_{a}/I_{a} \cong \tilde{H}_{n}(V_{a}) = J_{a}h$$

where $I_a \subset J_a$ is the annihilator ideal of h which is generated by the elements

 $1 + w_{j} + w_{j}^{2} + \dots + w_{j}^{a_{j}-1}, \quad (j = 0, \dots, n).$ $\underline{\text{Therefore}}_{w_{0}} w_{1}^{k} \dots w_{n}^{k} \text{ h (where } 0 \leq k_{j} \leq a_{j}-2, j = 0, \dots, n) \quad \underline{\text{is a basis}}$ $\underline{\text{of }}_{H_{n}}(V_{a}).$

We recall that $\tilde{H}_n(V_a)$ is the integral singular homology group (of course with <u>compact</u> support). V_a is a 2n-dimensional oriented manifold without boundary (non-compact for $n \ge 1$). Therefore the bilinear intersection form S is well defined over $\tilde{H}_n(V_a)$. It is symmetric for n even, skew-symmetric for n odd. It is compatible with the operations of G_a .

PHAM ([14], p.358) constructs an n-dimensional cycle \tilde{h} in V_a which is homologous to h and intersects U_a exactly in two interior points of the sinplices e and $w_0 w_1 \dots w_n$ e (sign questions have to be observed). In this way he obtains (using the G_a -invariance of S) the following result, reformulated somewhat for our purposes.

THEOREM. Put $\eta = (1 - w_0) \dots (1 - w_n)$. The bilinear form S over $J_a \eta \cong \tilde{H}_n(V_a)$ is given by

$$\begin{split} \mathrm{S}(\mathbf{x}\Pi,\mathbf{y}\Pi) &= \mathrm{f}(\overline{\mathbf{y}}\ \mathbf{x}\Pi)\ , \qquad (\mathbf{x},\mathbf{y}\in \mathrm{J}_{\mathbf{a}}),\\ \underline{where}\ \mathrm{f}: \mathrm{J}_{\mathbf{a}} \to \mathbb{Z}\ \underline{\mathrm{is\ the\ additive\ homomorphism\ with}}\\ \mathrm{f}(1) &= -\mathrm{f}(\mathrm{w}_{\mathrm{o}}\ldots\mathrm{w}_{\mathrm{n}}) = (-1)^{\frac{\mathrm{n}(\mathrm{n}-1)}{2}}\\ \mathrm{f}(\mathrm{w}) &= 0\ \underline{\mathrm{for}}\ \mathrm{w}\in\mathrm{G}_{\mathbf{a}}\ ,\ \mathrm{w}\neq 1\ ,\ \mathrm{w}\neq\mathrm{w}_{\mathrm{o}}\ldots\mathrm{w}_{\mathrm{n}}\ ,\\ \underline{\mathrm{and\ where}}\ \mathrm{y}\longmapsto\overline{\mathrm{y}}\ \underline{\mathrm{is\ the\ ring\ automorphism\ of\ the\ group\ ring}}\ \mathrm{J}_{\mathbf{a}}\ \underline{\mathrm{induced}}\\ \underline{\mathrm{by}}\ \mathrm{w}\longmapsto\mathrm{w}^{-1}\ (\mathrm{w}_{\mathrm{G}}_{\mathbf{a}}). \end{split}$$

§ 2. The quadratic form of V_{a} .

Let G be a finite abelian group, J(G) its group ring. The ring automorphism of J(G) induced by $g \mapsto g^{-1}(g \in G)$ is denoted by $x \mapsto \overline{x} (x \in J(G))$. Give an element $\eta \in J(G)$ and a function $f: G \to \mathbb{Z}$. The additive homomorphism $J(G) \to \mathbb{Z}$ induced by f is also called f. Put $\hat{f} = \sum_{w \in G} f(w)w$. We assume $w \in G$

a)
$$f(\bar{x}\eta) = f(x\eta)$$
 for all $x \in J(G)$, [equivalently $\hat{f}\eta = \hat{f}\eta$]

or

b)
$$f(\bar{x}\eta) = -f(x\eta)$$
 for all $x_{f}J(G)$, [equivalently $\hat{f}\eta = -\hat{f}\eta$]
The bilinear form S over the lattice $J(G)\eta$ defined by

$$S(x\eta, y\eta) = f(\overline{y}x\eta), (x, y \in J(G))$$

is symmetric in case a), skew symmetric in case b). Since S is a form with <u>integral</u> coefficients, its determinant is well-defined. The signature

$$\tau(S) = \tau^{+}(S) - \tau^{-}(S)$$
, case a),

is the number $\tau^+(S)$ of positive minus the number $\tau^-(S)$ of negative diagonal entries in a diagonalisation of S over R. Let χ run through the characters of G.

LEMMA. With the preceeding assumptions

$$\underbrace{+}_{\chi(\eta)\neq 0} \det S = \Pi \chi(f) \text{ . order of the torsion subgroup of } J(G)/J(G)$$

and in case a)

 $\tau^+(S) = \text{number of characters } \chi \text{ with } \chi(\hat{f}\bar{\eta}) > 0$

 $\tau^-(S)$ = number of characters χ with $\chi(\widehat{f\eta})<0$.

The proof is an exercise as in [1], p. 444.

The lemma and the last theorem of § 1 imply for the affine hypersurface $V_a = V(a_0, \dots, a_n)$ the

(1)
$$\underbrace{+ \det S}_{1 \leq k_j \leq a_j - 1} \prod_{1 \leq k_j \leq a_j - 1} (1 - \varepsilon_0^{n_0} \varepsilon_1^{n_1} \cdots \varepsilon_n^{n_n})$$

where
$$\varepsilon_{j} = \exp(2\pi i/a_{j})$$
. For n even, we have
 $\tau^{+}(S) = \underline{\text{number of}} \quad (n+1) - \underline{\text{tpls of integers}} \quad (\mathbf{x}_{0}, \dots, \mathbf{x}_{n}), \quad 0 < \mathbf{x}_{j} < \mathbf{a}_{j},$
 $\underline{\text{with}} \quad 0 < \sum_{j=0}^{n} \frac{\mathbf{x}_{j}}{a_{j}} < 1 \mod 2\mathbf{x}$
(2)

$$\tau^{-}(S) = \underline{\text{number of}} \quad (n+1) - \underline{\text{tpls of integers}} \quad (x_0, \dots, x_n), \ 0 < x_j < a_j,$$
$$\underline{\text{with}} \quad -1 < \sum_{j=0}^{n} \frac{x_j}{a_j} < 0 \mod 2Z \quad .$$

See [5] for details.

REMARK. The intersection form S of $V(a_0, ..., a_n)$ with $n \equiv 0 \mod 2$ is even, i.e. $S(x,x) \equiv 0 \mod 2$ for $x \in \widetilde{H}_n(V_n)$. Therefore, by a well-known theorem, det $S = \pm 1$ implies $\tau^+(S) - \tau^-(S) = \tau(S) \equiv 0 \mod 8$.

Following MILNOR we introduce for $\mathbf{a} = (\mathbf{a}_0, \dots, \mathbf{a}_n)$ the graph $\Gamma(\mathbf{a})$: $\Gamma(\mathbf{a})$ has the (n+1) vertices $\mathbf{a}_0, \dots, \mathbf{a}_n$. Two of them (say $\mathbf{a}_i, \mathbf{a}_j$) are joined by an edge if and only if the greatest common divisor $(\mathbf{a}_i, \mathbf{a}_j)$ is greater than 1. Then we have [5]

LEMMA. det S as given in the preceeding theorem equals ± 1 if and only if $\Gamma(a)$ satisfies

- a) $\Gamma(a)$ has at least two isolated points, or,
- b) it has one isolated point and at least one connectedness component K with an odd number of vertices such that $(a_i, a_j) = 2$ for $a_i, a_j \in K \ (i \neq j)$.

Now suppose n even and $a = (a_0, ..., a_n) = (p,q,2,..., 2)$ with p, q odd and (p,q) = 1. Then det $S = \pm 1$ and

(3)
$$(-1)^{n/2} \cdot \tau(S) = \frac{(p-1)(q-1)}{2} + 2(N_{p,q} + N_{q,p}),$$

where $N_{p,q}$ is the number of $q.x (1 \le x \le \frac{p-1}{2})$ whose remainder mod p of smallest absolute value is negative. This follows from the preceding theorem. Observe that by the above remark $\tau(S)$ is divisible by 4 (even by 8) and that this is related to one of the proofs of the quadratic reciprocity law ([1], p. 450).

In particular, for n even and $(a_0, \dots, a_n) = (3, 6k-1, 2, \dots, 2)$ the signature $\tau(S)$ equals $(-1)^{n/2}.8k$.

§ 3. Exotic spheres.

A k-dimensional compact oriented differentiable manifold is called a k-sphere if it is homeomorphic to the k-dimensional standard sphere. A k-sphere not diffeomorphic to the standard k-sphere is said to be exotic. The first exotic sphere was discovered by MILNOR in 1956. Two k-spheres are called equivalent if there exists an orientation preserving diffeomorphism between them. The equivalence classes of k-spheres constitute for $k \ge 5$ a finite abelian group Θ_k under the connected sum operation. Θ_k contains the subgroup bP_{k+1} of those k-spheres which bound a parallelizable manifold. bP_{dm} ($m \ge 2$) is cyclic of order

$$2^{2m-2}(2^{2m-1} - 1)$$
 numerator $(\frac{4B_m}{m})$,

where B_m is the m-th Bernoulli number. Let g_m be a generator of bP_{4m} . If a (4m-1)-sphere Σ bounds a parallelizable manifold B of dimension 4m, then the signature $\tau(B)$ of the intersection form of B is divisible by 8 and

(1)
$$\Sigma = + \frac{\tau(B)}{8} \varepsilon_{\rm m}$$

 $(g_m \text{ should be chosen in such a way that we have always the plus-sign in (1)).$ For m = 2 and 4 we have

$${}^{bP_8} = \Theta_7 = \mathbb{Z}_{28}$$
, ${}^{bP_{12}} = \Theta_{11} = \mathbb{Z}_{992}$

All these results are due to MILNOR-KERVAIRE. The group bP_{2n} (n odd, $n \ge 3$) is either 0 or \mathbb{Z}_2 . It contains only the standard sphere and the KERVAIRE sphere (obtained by plumbing two copies of the tangent bundle of S^n). It is known that bP_{2n} is \mathbb{Z}_2 (equivalently that the KERVAIRE sphere is exotic) if $n \ge 1 \mod 4$ and $n \ge 5$ (E. BROWN-F. PETERSON).

Let
$$\mathbb{V}_{\mathbf{a}}^{\mathbf{o}} = \mathbb{V}^{\mathbf{o}}(\mathbf{a}_{\mathbf{o}}, \mathbf{a}_{1}, \dots, \mathbf{a}_{n}) \subset \mathbb{C}^{n+1}$$
 (where $\mathbf{a}_{\mathbf{j}} \ge 2$) be defined by
 $\mathbf{z}_{\mathbf{o}}^{\mathbf{a}} + \mathbf{z}_{1}^{\mathbf{a}} + \dots + \mathbf{z}_{n}^{\mathbf{a}} = 0$.

This affine variety has exactly one singular point, namely the origin of C^{n+1} . Let

$$s^{2n+1} = \{z \mid z \in \mathbb{C}^{n+1}, \sum_{j=0}^{n} z_j \overline{z}_j = 1\}$$
.

Then $\Sigma_{\mathbf{a}} = \Sigma(\mathbf{a}_0, \dots, \mathbf{a}_n) = \mathbb{V}_{\mathbf{a}}^0 \cap S^{2n+1}$ is a compact oriented differentiable manifold (without boundary) of dimension 2n-1.

THEOREM. Let $n \ge 3$. Then Σ_a is (n-2)-connected. It is a (2n-1)-sphere if and only if the graph $\Gamma(a)$ defined in § 2 satisfies the condition a) or b). If Σ_a is a (2n-1)-sphere, then it belongs to bP_{2n} . If, moreover, n = 2m, then

$$\Sigma_{\mathbf{a}} = \frac{\tau}{8} \mathbf{g}_{\mathbf{m}} ,$$
where $\tau = \tau^{+} - \tau^{-}$ and τ^{+}, τ^{-} are as in § 2 (2). In particular
$$\sum_{i=0}^{2m} \mathbf{z}_{i} \ \overline{\mathbf{z}}_{i} = 1$$

$$\mathbf{z}_{0}^{3} + \mathbf{z}_{1}^{6k-1} + \mathbf{z}_{2}^{2} + \ldots + \mathbf{z}_{2m}^{2} = 0$$

is a (4m-1)-sphere embedded in $S^{4m+1} \subset \mathbb{C}^{2m+1}$ which represents the element $(-1)^m k.g_m \epsilon bP_{4m}$. Example : For m = 2 and k = 1, ..., 28 we get the 28 classes of 7-spheres, for m = 3 and k = 1, ..., 992 the 992 classes of 11-spheres.

COROLLARY. <u>The affine variety</u> $V^{0}(a_{0},...,a_{n}), n \ge 3$, <u>is a topological</u> <u>manifold if and only if the graph</u> $\Gamma(a)$ <u>satisfies</u> a) <u>or</u> b) <u>of</u> § 2. For this theorem and for the case n odd see <u>BRIESKORN</u> [5]. <u>Proof</u>. If we remove from V_{a}^{0} the points with $z_{n} = 0$ we get a space \tilde{V}_{a} whose fundamental group has $\pi_{1}(V_{a} - \{0\}) \cong \pi_{1}(\Sigma_{a})$ as homomorphic image. \tilde{V}_{a} is fibred over \mathbb{C}^{*} with $V(a_{0},...,a_{n-1})$ as fibre which is simply-connected. Thus $\pi_{1}(\tilde{V}_{a}) \cong \mathbb{Z}$ and $\pi_{1}(\Sigma_{a})$ is commutative. Because of this and by SMALE-POINCARÉ we have to study only the homology of Σ_{a} .

Let $V_{\mathbf{a}}^{\epsilon} \subset \mathbb{C}^{n+1}$ be the affine variety

$$z_0^{a_0} + z_1^{a_1} + \dots + z_n^{a_n} = \varepsilon$$

 $(V_a = V_a^1)$. Let D^{2n+2} be the full ball in \mathbb{C}^{n+1} with center 0 and radius 1 and S^{2n+1} , as before, its boundary. Σ_a is diffeomorphic to $\Sigma_a^{\varepsilon} = S^{2n+1} \cap V_a^{\varepsilon}$ for $\varepsilon > 0$ and small. It is the boundary of $B_a^{\varepsilon} = D^{2n+2} \cap V_a^{\varepsilon}$ whose interior (for ε small) is diffeomorphic to V_a^{ε} and V_a . The exact homology sequence of the pair $(B_a^{\varepsilon}, V_a^{\varepsilon})$ shows that Σ_a is (n-2)-connected. Using POINCARÉ duality we get the exact sequence

$$0 \rightarrow \mathbb{H}_{n}(\Sigma_{a}) \rightarrow \mathbb{H}_{n}(\mathbb{V}_{a}) \xrightarrow{\sigma} \mathbb{H}_{n}(\mathbb{H}_{n}(\mathbb{V}_{a}), \mathbb{Z}) \rightarrow \mathbb{H}_{n-1}(\Sigma_{a}) \rightarrow 0$$

where the homomorphism σ is given by the bilinear intersection form S of V_a (see § 2). This determines $H^*(\Sigma_a)$ completely : $H_n(\Sigma_a) = 0$ if and only

if det $S \neq 0$. If det $S \neq 0$, then $|\det S|$ equals the order of $\mathbb{H}_{n-1}(\Sigma_{\mathbf{a}})$. The manifold $B_{\mathbf{a}}^{\epsilon}$ is parallelizable since its normal bundle is trivial. This finishes the proof in view of § 2.

§ 4. Manifolds with actions of the orthogonal group.

O(n) denotes the real orthogonal group with $O(m) \subset O(n)$, m < n, by

$$\mathbb{A} \longmapsto \begin{pmatrix} 1 & 0 \\ 0 & \mathbb{A} \end{pmatrix}, \ (\mathbb{A}_{\epsilon} \circ (\mathbb{m}), \ 1 = \text{unit of } \circ (\mathbb{n} - \mathbb{m})).$$

Let X be a compact differentiable manifold of dimension 2n-1 on which O(n) acts differentiably $(n \ge 2)$. Suppose each isotropy group is conjugate to O(n-2) or O(n-1). Then the orbits are either Stiefel manifolds O(n)/O(n-2) (of dimension 2n-3) or spheres O(n)/O(n-1) (of dimension n-1). Suppose that the 2-dimensional representation of an isotropy group of type O(n-2) normal to the orbit is trivial whereas the n-dimensional representation of an isotropy group of type O(n-1) normal to the orbit is the 1-dimensional trivial representation plus the standard representation of O(n-1). Under these assumptions the orbit space is a compact 2-dimensional manifold X' with boundary, the interior points of X' corresponding to orbits of type O(n)/O(n-2), the boundary points of X' to the orbits of type O(n)/O(n-1). Suppose finally that X' is the 2-dimensional disk.

It follows from the classification theorems of [8] and [9] that the classes of manifolds X with the above properties under equivariant diffeomorphisms are in one-to-one correspondence with the non-negative integers. We let $W^{2n-1}(d)$ be the (2n-1)-dimensional O(n)-manifold corresponding to the integer $d \ge 0$. The fixed point set of O(n-2) in $W^{2n-1}(d)$ is a 3-dimensional O(2)-manifold, namely $W^{3}(d)$, which by ([9], § 5, Korollar 6) is the lens

space L(d,1). Thus in order to determine the d associated to a given O(n)-manifold of our type we just have to look at the integral homology group H_1 of the fixed point set of O(n-2). $W^{2n-1}(0)$ is $S^n \times S^{n-1}$, the manifold $W^{2n-1}(1)$ is S^{2n-1} , the actions of O(n) are easily constructed. Consider for $d \ge 2$ the manifold $\Sigma(d,2,\ldots,2)$ in C^{n+1} given by

$$z_{0}^{d} + z_{1}^{2} + \ldots + z_{n}^{2} = 0$$
(1)

$$\sum_{i=0}^{n} z_{i} \overline{z}_{i} = 1$$

(see § 3). It is easy to check that this is an O(n)-manifold satisfying all our assumptions. The operation of $A_{\varepsilon}O(n)$ on (z_0, z_1, \ldots, z_n) is, of course, given by applying the real orthogonal matrix $A_{\varepsilon}O(n)$ on the complex vector (z_1, \ldots, z_n) leaving z_0 untouched. The fixed point set of O(n-2) is $\Sigma(d,2,2)$ which is L(d,1), see [6].

THEOREM. The O(n)-manifold $\Sigma(d,2,...,2)$ given by (1) is equivariantly diffeomorphic with $W^{2n-1}(d)$, $n \ge 2$. It can also be obtained by equivariant plumbing of d-1 copies of the tangent bundle of S^n along the graph A_{d-1}

d-1 vertices .

For the proof it suffices to establish the O(n)-action on the manifold obtained by plumbing and check all properties :

O(n) acts on S^n and on the unit tangent bundle of S^n . Since the action of O(n) on S^n has two fixed points the plumbing can be done equivariantly. The fixed point set of O(n-2) is the manifold obtained by plumbing d-1 tangent bundles of S^2 which is well-known to be L(d,1), (see [6], resolution of the singularity of $z_0^d + z_1^2 + z_2^2 = 0$).

The above theorem gives another method to calculate the homology of $\Sigma(d,2,\ldots,2)$ and to prove that $\Sigma(d,2,\ldots,2)$ for d odd and an odd number of 2's is a sphere. In particular, $\Sigma(3,2,2,2,2,2,2)$ is the exotic 9-dimensional KERVAIRE sphere (see § 3). The calculation of the ARF invariant of the A_{d-1} -plumbing shows more generally that

$$\Sigma(d,2,\ldots,2)$$
, (d odd, an odd number of 2's)
is the standard sphere for $d = \pm 1 \mod 8$ and the KERVAIRE sphere for
 $d = \pm 3 \mod 8$, in agreement with a more general result in [5].
REMABKS. The O(n)-manifold $W^{2n-1}(d)$ coincides with EREDON's manifolds
 $M_k^{2n-1} \xrightarrow{\text{for}} d = 2k+1$, see EREDON [3]. $\Sigma(3,2,2,2)$ is the standard 5-sphere
(since $\Theta_5 = 0$). Therefore S^5 admits a differentiable involution α with
the lens space $L(3,1)$ as fixed point set and a diffeomorphism β of period
3 with the real projective 3-space as fixed point set. Compare [3].
 $\alpha \xrightarrow{\text{and}} \beta \xrightarrow{\text{are defined on}} \Sigma(3,2,2,2) \xrightarrow{\text{given by}} (1) \xrightarrow{\text{as follows}} \alpha(z_0, z_1, z_2, z_3) = (z_0, z_1, z_2, z_3), \text{ where } \varepsilon = \exp(2\pi i/3).$
Many more such examples of "exotic" involutions etc. which are not
differentiably equivalent to orthogonal involutions etc. can be constructed.

§ 5. Manifolds associated to knots.

Let X be a compact differentiable manifold of dimension 2n-1 on which O(n-1) acts differentiably $(n \ge 3)$. Suppose each isotropy group is conjugate to O(n-3) or O(n-2) or is O(n-1). Then the orbits are either Stiefel manifolds O(n-1)/O(n-3) (of dimension 2n-5) or spheres O(n-1)/O(n-2) (of dimension n-2) or points (fixed points of the whole action). The

representations of the isotropy groups O(n-3), O(n-2) and O(n-1) respectively normal to the orbit are supposed to be the 4-dimensional trivial representation, the 3-dimensional trivial plus the standard representation of O(n-2), the 1-dimensional trivial plus the sum of two copies of the standard representation of O(n-1). The orbit space X' is then a 4-dimensional manifold with boundary. We suppose that X' is the 4-dimensional disk D^4 .

Then the points of the interior of D^4 correspond to Stiefel-manifoldorbits, the points of $\partial D^4 = S^3$ to the other orbits. The set F of fixed points corresponds to a 1-dimensional submanifold of S^3 , also called F.

We suppose F non-empty and connected, it is then a knot in S^3 . We shall call an O(n-1)-manifold of dimension 2n-1 a "knot manifold" if all the above conditions are satisfied.

Let K be the set of isomorphism classes of differentiable knots (i.e. isomorphism classes of pairs $(S^3,F) - F$ a compact connected 1-dimensional submanifold - under diffeomorphisms of S^3). For the following theorem see JÄNICH ([9], § 6), compare also W.C. HSIANG and W.Y. HSIANG [8].

THEOREM. For any $n \ge 3$ there is a one-to-one correspondence

$$\varkappa_n : K \rightarrow \Phi_{2n-1}$$
,

where Φ_{2n-1} is the set of isomorphism classes of (2n-1)-dimensional knot manifolds under equivariant diffeomorphisms. κ_n^{-1} associates to a knot manifold the knot F considered above. REMARK. The 2-fold branched covering of S³ along a knot F is an O(1)-manifold which will be denoted by $\kappa_2(F)$.

If we plumb 8 copies of the tangent bundles of S^{n} (n \geq 1) according to the tree $E_{\rm g}$

we get a (2n-1)-dimensional manifold $M^{2n-1}(E_8)$. For n=2 this is S^3/G , where G is the binary pentagondodecahedral group [6]. For n odd, $M^{2n-1}(E_8)$ is the standard sphere, as the ARF invariant shows. For n = 2m≥4, the manifold $M^{4m-1}(E_8)$ is an exotic sphere, it is the famous MILNOR sphere which represents the generator $\pm g_m$ of bP_{4m} (see § 3).

 $M^{2n-1}(E_8)$ admits an action of O(n-1) as follows : O(n-1) operates as subgroup of O(n+1) on S^n and thus on the unit tangent bundle of S^n . The action on S^n leaves a great circle fixed.

When plumbing the eight copies of the tangent bundle we put the center of the plumbing operation always on this great circle ; (for one copy, corresponding to the central vertex of the E_8 -tree, we need three such centers, therefore, we cannot have an action of O(n), which has only 2 fixed points on S^n .) Then the action of O(n-1) on each copy of the tangent bundle is compatible with the plumbing and extends to an action of O(n-1) on $M^{2n-1}(E_8)$ which, for $n \ge 3$, becomes a knot manifold as can be checked. The resulting knot can be seen on a picture attached at the end of this lecture. The speaker had convinced himself that this is the torus knot t(3,5), but ZIESCHANG and VOGT showed him a better proof. This implies the THEOREM. Suppose $n \ge 3$. Then $\kappa_n(t(3,5))$ is equivariantly diffeomorphic to $M^{2n-1}(E_8)$ with the O(n-1)-action defined by equivariant plumbing. (This is still true for n=2, see Remark above).

We now consider the manifold $\Sigma(p,q,2,2,\ldots,2) \subset \mathbb{C}^{n+1}$ given by the equations (see § 3)

$$z_{0}^{p} + z_{1}^{q} + z_{2}^{2} + \dots + z_{n}^{2} = 0$$

$$\sum_{i=0}^{n} z_{i} \overline{z}_{i} = 1 \qquad (n \ge 3)$$

This is an O(n-1)-manifold, the action being defined similarly as in § 4. Suppose (p,q) = 1. Then it can be shown that $\Sigma(p,q,2,2,\ldots,2)$ is a knot manifold : It is $\varkappa_n(t(p,q))$ where t(p,q) is the torus knot. Therefore, by the preceeding theorem we have an equivariant diffeomorphism

$$M^{2n-1}(E_8) \cong \Sigma(3,5,2,...,2)$$
.

This gives a different proof (based on the classification of knot manifolds) that $\Sigma(3,5,2,\ldots,2)$ represents for $m \ge 2$ a generator of bP_{4m} .

(compare § 3).

§ 6. A theorem on knot manifolds.

Let F be a knot in S^3 . Then the signature $\tau(F)$ can be defined in the following way which MILNOR explained to the speaker in a letter. MILNOR also considers higher dimensional cases. We cite from his letter, but restrict to classical knots :

Let X be the complement of an open tubular neighbourhood of F in S^3 . Then the cohomology

where \hat{X} is the infinite cyclic covering of X, satisfies Poincaré duality just as if \hat{X} were a 2-dimensional manifold bounded by F. In particular the pairing

$$\cup : \operatorname{H}^{1} \otimes \operatorname{H}^{1} \to \operatorname{H}^{2} \simeq \mathbb{R}$$

is non-degenerate. Let t denote a generator for the group of covering transformations of \hat{X} . Then for a, $b \in \mathbb{H}^1$ the pairing

 $\langle a,b \rangle = a \cup t*b + b \cup t*a$

is symmetric and non-degenerate. Hence, the signature $\tau^+(F) - \tau^-(F) = \tau(F)$ is defined.

There exist earlier definitions of the signature by MURASUGI [13] and TROTTER [17]. The signature is a cobordism invariant of the knot. A cobordism invariant mod 2 was introduced by ROBERTELLO [15] inspired by an earlier paper of KERVAIRE-MILNOR. Let F be a knot and Δ its Alexander polynomial, then the ROBERTELLO invariant c(F) is an integer mod 2, namely

$$c(F) = 0$$
, if $\Delta(-1) \equiv \pm 1 \mod 8$
 $c(F) = 1$, if $\Delta(-1) \equiv \pm 3 \mod 8$

We recall that the first integral homology group of $\kappa_2(F)$, the 2-fold branched covering of the knot F (see a remark in § 5), is always finite, its order is odd, and equals up to sign the determinant of F. We have $\pm \det F = \Delta(-1)$.

THEOREM. Let F be a knot, then $\varkappa_n(F)$, $n \ge 2$, is the boundary of a parallelizable manifold. For n odd, $\varkappa_n(F)$ is homeomorphic to S^{2n-1} and thus represents an element of bP_{2n} , it is the standard sphere if

c(F) = 0, the KERVAIRE sphere if c(F) = 1. If n = 2m, then $\kappa_{2m}(F)$ is (2m-2)-connected and $H_{2m-1}(\kappa_{2m}(F),\mathbb{Z}) \simeq H_1(\kappa_2(F),\mathbb{Z})$. For $m \ge 2$ it is homeomorphic to S^{4m-1} if and only if det $F = \pm 1$. Then $\kappa_{2m}(F)$ represents (up to sign) an element of bP_{4m} which is $\pm \frac{\tau(F)}{8} \cdot \mathbf{g}_m$ (see § 3). The proof uses an equivariant handlebody construction starting out from a Seifert surface [16] spanned in the knot F. For simplicity, not out of necessity, we have disregarded orientation questions in § 5 and § 6. REMARK. § 2(3) gives up to sign a formula for the signature of the torus knot t(p,q), (p,q) odd with (p,q) = 1).

BIBLIOGRAPHY

- S.BOREWICZ und I. ŠAFAREVIČ.- <u>Zahlentheorie</u>, Birkhäuser Verlag, Basel und Stuttgart 1966.
- [2] G. BREDON <u>Transformation groups on spheres with two type of orbits</u>, Topology 3 (1965), p. 103-113.
- [3] G. BREDON Examples of differentiable group actions, Topology 3 (1965), p. 115-122.
- [4] E. BRIESKORN Examples of singular normal complex spaces which are topological manifolds, Proc. Nat. Acad. Sci. USA 55 (1966), p. 1395-1397.
- [5] E. BRIESKORN <u>Beispiele zur Differentialtopologie von Singularitäten</u>, Inventiones mathematicae, 2 (1966), p. 1-14.
- [6] F. HIRZEBRUCH <u>The topology of normal singularities of an algebraic</u> <u>surface</u> (d'après un article de D. Mumford), Séminaire Bourbaki 15ème année, 1962/63, n° 250.
- [7] F. HIRZEBRUCH O(n)-Mannigfaltigkeiten... in Vorbereitung.
- [8] W. HSIANG und W.-Y. HSIANG <u>Some results on differentiable actions</u>, Bull. Amer. Math. Soc. 72 (1966), p. 134-138.
- [9] K. JÄNICH <u>Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume</u> <u>differenzierbarer</u> G-<u>Mannigfaltigkeiten ohne Rand</u>, to appear in Topology.
- [10] J. MILNOR <u>Construction of universal bundles</u> II, Annals of Math. 63 (1956), p. 430-436.
- [11] J. MILNOR <u>On isolated singularities of hypersurfaces</u>, mimeographed Princeton 1966.
- [12] D. MUMFORD <u>The topology of normal singularities of an algebraic surface</u> <u>and a criterion for simplicity</u>, Paris, Presses universitaires de France, 1961 (Institut des Hautes Études Scientifiques, Publications mathématiques, 9).

- [13] K. MURASUGI On a certain numerical invariant of link types, Trans. Americ. Math. Soc. 117 (1965), p. 387-422.
- [14] F. PHAM Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. math. France 93 (1965), p. 333-367.
- [15] R. ROBERTELLO <u>An invariant of knot cobordism</u>, Comm. Pure Appl. Math. 18 (1965), p. 543-555.
- [16] H. SEIFERT Über das Geschlecht von Knoten, Math. Annalen 110 (1934), p. 571-592.
- [17] H.F. TROTTER <u>Homology of group systems with applications to knot</u> <u>theory</u>, Annals of Math. 76 (1962), p. 464-498.

ERRATUM

<u>Page 314-07</u>. Ligne 4 du bas, au lieu de "Let g_m be a generator of bP_{4m} ." lire: "Let g_m be the Milnor generator of bP_{4m} , see p. 314-14."

