SÉminaire N. Bourbaki

Friedrich Hirzebruch

 Singularities and exotic spheres

 Singularities and exotic spheres}

Séminaire N. Bourbaki, 1966-1968, exp. n ${ }^{0} 314$, p. 13-32.
http://www.numdam.org/item?id=SB_1966-1968__10__13_0
© Association des collaborateurs de Nicolas Bourbaki, 1966-1968, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

BRIESKORN has proved [4] that the n-dimensional affine algebraic variety $z_{0}^{3}+z_{1}^{2}+\ldots+z_{n}^{2}=0$ (n odd, $n \geqq 1$) is a topological manifold though the variety has an isolated singular point (which is normal for $n \geqq 2$). Such a phenomenon cannot occur for normal singularities of 2-dimensional varieties, as was shown by MUMFORD ([12], [6]). BRIESKORN's result stimulated further research on the topology of isolated singularities (BRIESKORN [5], MIINOR [11] and the speaker [5], [7]). BRIESKORN [5] uses the paper of F. PHAM [14], whereas the speaker studied certain singularities from the point of view of transformation groups using results of BREDON ([2], [3]), W.C. HSIANG and W.Y. HSIANG [8] and JÄNICH [9].
§ 1. The integral homology of some affine hypersurfaces. PHAM [14] studies the non-singuiar subvariety $V_{a}=V\left(a_{o}, a_{1}, \ldots, a_{n}\right)$ of \mathbb{C}^{n+1} given by

$$
z_{0}^{a_{0}}+z_{1}^{a_{1}}+\ldots+z_{n}^{a_{n}}=1 \quad(n \geqq 0)
$$

where $a=\left(a_{0}, \ldots, a_{n}\right)$ consists of integers $a_{j} \geqq 2$.
Let $G_{a_{j}}$ be the cyclic group of order a_{j} multiplicatively written and generated by w_{j}. Define the group $G_{a}=G_{a_{o}} \times G_{a_{1}} \times \ldots \times G_{a_{n}}$ and put $\varepsilon_{j}=\exp \left(2 \pi i / a_{j}\right)$.

Then ${ }^{w_{0}}{ }_{0}^{k_{0}}{ }_{w_{1}}^{k_{1}} \ldots{ }_{n}^{k_{n}}$ is an element of G_{a} whereas $\varepsilon_{0}{ }_{0}{ }_{0} \varepsilon_{1} k_{1} \ldots \varepsilon_{n}{ }_{n}$ is a complex number. G_{a} operates on V_{a} by

$$
{ }_{w_{0}}^{k_{0}} \ldots w_{n}^{k_{n}}\left(z_{0}, \ldots, z_{n}\right)=\left(\varepsilon_{0}^{k_{0}} z_{0}, \ldots, \varepsilon_{n}^{k_{n}} z_{n}\right)
$$

Let $\hat{G}_{a_{j}}$ be the group of $a_{j}-$ th roots of unity and $x \mapsto \hat{x}$ the isomorpnism $G_{a_{j}} \rightarrow \hat{G}_{a_{j}}$ given by $\quad w_{j} \longmapsto \varepsilon_{j}=\hat{w}_{j}$.

PHAM considers the following subspace U_{a} of V_{a}

$$
U_{a}=\left\{z \mid z \in V_{a} \text { and } z_{j}{ }^{j} \text { real } \geqq 0 \text { for } j=0, \ldots, n\right\}
$$

IFMMA. - The subspace U_{a} is a deformation retract of V_{a} by a deformation compatible with the operations of G_{a}.
For the proof see PHAM [14], p. 338.
U_{a} can also be described by the conditions

$$
z_{j}=u_{j}\left|z_{j}\right| \text { with } u_{j} \in \hat{G}_{a_{j}} \quad(j=0, \ldots, n)
$$

Put $\left|z_{j}\right|^{a}=t_{j}$ 。 Then U_{a} becomes tine space of $(n+1)$-tpls of complex numbers

$$
t_{0} u_{0} \oplus t_{1} u_{1} \oplus \ldots \oplus t_{n} u_{n}
$$

with

$$
u_{j} \in \dot{G}_{a_{j}}, t_{j} \geqq 0, \sum_{j=0}^{n} t_{j}=1
$$

Thus U_{a} can be identified with the join $G_{a_{0}} * G_{a_{1}} * \ldots * G_{a_{n}}$ of the finite sets $G_{a_{j}}$ (see MILNOR [10])。
LHENMA 2.1 in [10] states in particular that the reduced integral homology groups of the join $A * B$ of two spaces A, B without torsion are given by a canonical isomorphism

$$
\tilde{H}_{r+1}(A * B) \cong \sum_{i+j=r} \tilde{H}_{i}(A) \otimes \tilde{H}_{j}(B)
$$

whereas IEHMNA 2.2 in [10] shows that $A * B$ is simply connected provided B is arcwise connected and A is any non-vacuous space. These properties of the join together with its associativity imply

THEORFM. The subvariety V_{a} of \mathbb{C}^{n+1} is $(n-1)$-connected. Moreover

$$
\begin{equation*}
\tilde{H}_{n}\left(V_{a}\right) \cong \tilde{H}_{0}\left(G_{a_{0}}\right) \otimes \tilde{H}_{0}\left(G_{a_{1}}\right) \otimes \ldots \otimes \tilde{H}_{0}\left(G_{a_{n}}\right) \tag{1}
\end{equation*}
$$

This is a free abelian group of rank $r=\pi\left(a_{j}-1\right)$.
The isomorphism (1) is compatible with the operations of G_{a}.
All other reduced integral homology groups of V_{a} vanish.
It can be shown that V_{a} has the homotopy type of a connected union $S^{n} \vee \ldots \vee S^{n}$ of r spheres of dimension n.

The identification of U_{a} with a join was explained to the speaker by MIINOR .
$U_{a}=G_{a_{0}} * G_{a_{1}} * \ldots * G_{a_{n}}$ is an n-dimensional simplicial complex which has an n-simplex for each element of G_{a}. The n-simplex belonging to the unit of $G a$ is denoted by e. All other n-simplices are obtained from e by operations of G_{a}. Thus we have for the n-dimensional simplicial chain group

$$
\begin{equation*}
C_{n}\left(U_{a}\right)=J_{a} e \tag{2}
\end{equation*}
$$

where J_{a} is the group ring of G_{a}. The homology group $\tilde{H}_{n}\left(U_{a}\right)=\tilde{H}_{n}\left(V_{a}\right)$ is an additive subgroup of $J_{a} e=C_{n}\left(U_{a}\right) \cong J_{a}$.

The face operator ∂_{j} commutes with all operations of G_{a} on $C_{n}\left(U_{a}\right)$ and furthermore satisfies $\partial_{j}=w_{j} \partial_{j}$. Therefore
(3)

$$
\mathrm{h}=\left(1-\mathrm{w}_{0}\right)\left(1-\mathrm{w}_{1}\right) \ldots\left(1-w_{n}\right) e
$$

is a cycle. Thus $h_{f} \tilde{H}_{n}\left(U_{a}\right)$. It follows easily that $\tilde{H}_{\dot{n}}\left(V_{a}\right)=J_{a} h$. This yields the

THEOREM. The map $w \rightarrow$ wh ($w \in G_{a}$) induces an isomorphism

$$
J_{a} / I_{a} \cong \tilde{H}_{n}\left(V_{a}\right)=J_{a} h
$$

where $I_{a} \subset J_{a}$ is the annihilator ideal of h which is generated by the elements

$$
1+w_{j}+w_{j}^{2}+\ldots+w_{j}^{a_{j}^{-1}}, \quad(j=0, \ldots, n)
$$

Therefore $w_{0}^{k_{0}}{ }_{w_{1}}^{k_{1}} \ldots w_{n}^{k_{n}} h$ (where $0 \leqq k_{j} \leqq a_{j}-2, j=0, \ldots, n$) is a basis of $\tilde{\tilde{H}}_{n}\left(V_{a}\right)$.

We recall that $\tilde{H}_{n}\left(V_{a}\right)$ is the integral singular homology group (of course with compact support). V_{a} is a $2 n$-dimensional oriented manifold without boundary (non-compact for $n \geqq 1$). Therefore the bilinear intersection form S is well defined over $\tilde{H}_{n}\left(V_{a}\right)$. It is symmetric for n even, skew-symmetric for n odd. It is compatible with the operations of G_{a}.

PHAM ([14], p.358) constructs an n-dimensional cycle \tilde{h} in V_{a} which is homologous to h and intersects U_{a} exactly in two interior points of the sinplices e and $w_{o} w_{1} \ldots w_{n} e$ (sign questions have to be observed). In this way he obtains (using the G_{a}-invariance of S) the following result, reformulated somewhat for our purposes.

THEOREM. Put $\eta=\left(1-w_{0}\right) \ldots\left(1-w_{n}\right)$. The bilinear form S over $J_{a} \eta \cdot \cong_{H_{n}}\left(V_{a}\right)$ is given by

$$
S(x \eta, y \eta)=f(\bar{y} x \eta), \quad\left(x, y \in J_{a}\right)
$$

where $f: J_{a} \rightarrow \mathbb{Z}$ is the additive homomorphism with

$$
\begin{aligned}
& f(1)=-f\left(w_{0} \ldots w_{n}\right)=(-1)^{\frac{n(n-1)}{2}} \\
& f(w)=0 \text { for } \quad w \in G_{a}, w \neq 1, \quad w \neq w_{0} \ldots w_{n}
\end{aligned}
$$

and where $y \mapsto \overline{\mathrm{y}}$ is the ring automorphism of the group ring J_{a} induced by $\quad w \mapsto w^{-1} \quad\left(w \in G_{a}\right)$.
§ 2. The quadratic form of V_{a}.
Let G be a finite abelian group, $J(G)$ its group ring. The ring automorphism of $J(G)$ induced by $g \mapsto g^{-1}(g \xi G)$ is denoted by $\mathbf{x} \mapsto \bar{x}(x \in J(G))$. Give an element $\eta_{\epsilon} J(G)$ and a function $f: G \rightarrow \mathbb{Z}$. The additive homomorphism $J(G) \rightarrow \mathbb{Z}$ induced by f is also called f. Put $\hat{f}=\sum_{W \in G} f(w) w$. We assume
a) $f(\bar{x} \eta)=f(x \eta)$ for all $x \in J(G)$, [equivalently $\hat{f} \bar{\eta}=\overline{\hat{f}} \eta$] or
b) $f(\bar{x} \eta)=-f(x \eta)$ for all $x \in J(G)$, [equivalently $\hat{f} \bar{\eta}=-\overline{\hat{f}} \eta$].

The bilinear form S over the lattice $J(G) \eta$ defined by

$$
S(x \eta, y \eta)=f(\bar{y} x \eta),(x, y \in J(G))
$$

is symmetric in case a), skew symmetric in case b). Since S is a form with integral coefficients, its determinant is well-defined. The signature

$$
\left.\tau(S)=\tau^{+}(S)-\tau^{-}(S), \text { case } a\right)
$$

is the number $\tau^{+}(S)$ of positive minus the number $\tau^{-}(S)$ of negative diagonal entries in a diagonalisation of S over R. Let X run through the characters of G.

LEMMA. With the preceeding assumptions

$$
\begin{gathered}
\pm \operatorname{det} S=\prod_{x} x(\hat{f}) \text {. order of the torsion subgroup of } J(G) / J(G) \eta \\
x(\eta)
\end{gathered}
$$

and in case a)

$$
\begin{aligned}
& \tau^{+}(S)=\text { number of characters } x \text { with } x(\hat{\mathrm{f}} \bar{\eta})>0 \\
& \tau^{-}(S)=\text { number of characters } x \text { with } x(\hat{\mathrm{n}} \bar{\eta})<0 .
\end{aligned}
$$

The proof is an exercise as in [1], p. 444.
The lemma and the last theorem of § 1 imply for the affine hypersurface $v_{a}=v\left(a_{0}, \ldots, a_{n}\right)$ the

THEORFM. Let S be the intersection form of V_{a} - Then

$$
\begin{equation*}
\pm \operatorname{det} S=\prod_{1 \leqq k_{j} \leq a_{j}-1}\left(1-\varepsilon_{0}^{k_{o}} \varepsilon_{1}^{k_{1}} \ldots \varepsilon_{n}^{k_{n}}\right) \tag{1}
\end{equation*}
$$

where $\varepsilon_{j}=\exp \left(2 \pi i / a_{j}\right)$. For n even, we have

$$
\begin{aligned}
\tau^{+}(S)= & \text { number of }(n+1) \text {-tpls of integers }\left(x_{0}, \ldots, x_{n}\right), 0<x_{j}<a_{j}, \\
& \text { with } 0<\sum_{j=0}^{n} \frac{x_{j}}{a_{j}}<1 \bmod 2 \pi
\end{aligned}
$$

(2)

$$
\begin{aligned}
\tau^{-}(S)= & \text { number of }(n+1)-t p l s \text { of integers }\left(x_{0} \ldots, x_{n}\right), 0<x_{j}<a_{j}, \\
& \text { with }-1<\sum_{j=0}^{n} \frac{x_{j}}{a_{j}}<0 \bmod 2 \pi
\end{aligned}
$$

See [5] for details.
RFMMARK. The intersection form S of $V\left(a_{0}, \ldots, a_{n}\right)$ with $n \equiv 0 \bmod 2$ is even, i.e. $S(x, x) \equiv 0 \bmod 2$ for $x \in \tilde{H}_{n}\left(V_{n}\right)$. Therefore, by a well-known theorem , det $S= \pm 1$ implies $\tau^{+}(S)-\tau^{-}(S)=\tau(S) \equiv 0 \bmod 8$.

Following MILNOR we introduce for $a=\left(a_{0}, \ldots, a_{n}\right)$ the graph $\Gamma(a)$: $\Gamma(a)$ has the $(n+1)$ vertices a_{0}, \ldots, a_{n}. Two of them (say a_{i}, a_{j}) are joined by an edge if and only if the greatest common divisor $\left(a_{i}, a_{j}\right)$ is greater than 1. Then we have [5]

LFMMA. det S as given in the preceeding theorem equals ± 1 if and only if $\Gamma(a)$ satisfies
a) $\Gamma(a)$ has at least two isolated points, or,
b) it has one isolated point and at least one connectedness component K with an odd number of vertices such that $\left(a_{i}, a_{j}\right)=2$ for

$$
a_{i}, a_{j} \in K(i \neq j)
$$

Now suppose n even and $a=\left(a_{0}, \ldots, a_{n}\right)=(p, q, 2, \ldots, 2)$ with p, q odd and $(p, q)=1$. Then $\operatorname{det} S= \pm 1$ and

$$
\begin{equation*}
(-1)^{n / 2} \cdot \tau(S)=\frac{(p-1)(q-1)}{2}+2\left(N_{p, q}+N_{q, p}\right) \tag{3}
\end{equation*}
$$

where $N_{p, q}$ is the number of $q \cdot x\left(1 \leqq x \leqq \frac{p-1}{2}\right)$ whose remainder mod p of smallest absolute value is negative. This follows from the precading theorem. Observe that by the above remark $\tau(S)$ is divisible by 4 (even by 8) and that this is related to one of the proofs of the quadratic reciprocity law ([1], p. 450).

In particular, for n even and $\left(a_{0}, \ldots, a_{n}\right)=(3,6 k-1,2, \ldots, 2)$ the signature $\tau(S)$ equals $(-1)^{n / 2} .8 \mathrm{k}$.

§ 3. Exotic spheres.

A k-dimensional compact oriented differentiable manifold is called a k -sphere if it is homeomorphic to the k -dimensional standard sphere. A k-sphere not diffeomorphic to the standard k-sphere is said to be exotic. The first exotic sphere was discovered by MILNOR in 1956. Two k-spheres are called equivalent if there exists an orientation preserving diffeomorphism between them. The equivalence classes of k-spheres constitute for $k \geqq 5$ a finite abelian group Θ_{k} under the connected sum operation. Θ_{k} contains the subgroup $b P_{k+1}$ of tinose k-spheres which bound a parallelizable manifold. $\mathrm{bP}_{4 \mathrm{~m}}(\mathrm{~m} \geqq 2)$ is cyclic of order

$$
2^{2 m-2}\left(2^{2 m-1}-1\right) \text { numerator }\left(\frac{4 B_{m}}{m}\right)
$$

where B_{m} is the m-th Bernoulli number. Let g_{m} be a generator of $b P_{4 m}$. If a $(4 \mathrm{~m}-1)$-sphere Σ bounds a parallelizable manifold B of dimension 4 m , then the signature $\tau(B)$ of the intersection form of B is divisible by 8 and

$$
\begin{equation*}
\Sigma=+\frac{\tau(B)}{8} g_{m} \tag{1}
\end{equation*}
$$

(g_{m} should be chosen in such a way that we have always the plus-sign in (1)). For $m=2$ and 4 we have

$$
\mathrm{bP}_{8}=\oplus_{7}=\mathbb{Z}_{28}, \quad b P_{12}=\Theta_{11}=\mathbb{Z}_{992}
$$

All these results are due to MILNOR-KERVAIRE. The group $b P_{2 n}$ (n odd, $n \geqq 3$) is either 0 or \mathbb{Z}_{2}. It contains only the standard sphere and the KFRVAIRE sphere (obtained by plumbing two copies of the tangent bundle of S^{n}). It is known that $\mathrm{bP}_{2 n}$ is \mathbb{Z}_{2} (equivalently that the KRRVAIRE sphere is exotic) if $n \equiv 1 \bmod 4$ and $n \geqq 5$ (E. BROWN-F. PEITERSON).

Let $V_{a}^{0}=V^{0}\left(a_{0}, a_{1}, \ldots, a_{n}\right) \subset \mathbb{C}^{n+1} \quad$ (where $a_{j} \geqq 2$) be defined by

$$
z_{0}^{a_{0}}+z_{1}^{a_{1}}+\ldots+z_{n}^{a_{n}}=0
$$

This affine variety has exactly one singular point, namely the origin of \mathbf{c}^{n+1}. Let

$$
S^{2 n+1}=\left\{z \mid z \in \mathbb{C}^{n+1}, \sum_{j=0}^{n} z_{j} \bar{z}_{j}=1\right\}
$$

Then $\Sigma_{a}=\Sigma\left(a_{0}, \ldots, a_{n}\right)=V_{a}^{0} \cap S^{2 n+1}$ is a compact oriented differentiable manifold (without boundary) of dimension $2 n-1$.

THEOREM. Let $n \geqq 3$. Then Σ_{a} is ($n-2$)-connected. It is a ($2 n-1$)-sphere if and only if the graph $\Gamma(a)$ defined in $\S 2$ satisfies the condition a) or b). If Σ_{a} is a (2n-1)-sphere, then it belongs to $\mathrm{bP}_{2 n}$. If, moreover, $n=2 m$, then

$$
\Sigma_{a}=\frac{\tau}{8} g_{m}
$$

where $T=\tau^{+}-\tau^{-}$and τ^{+}, τ^{-}are as in $§ 2$ (2). In particular

$$
\begin{aligned}
& \sum_{i=0}^{2 m} z_{i} \bar{z}_{i}=1 \\
& z_{0}^{3}+z_{1}^{6 k-1}+z_{2}^{2}+\ldots+z_{2 m}^{2}=0
\end{aligned}
$$

is a $(4 m-1)$-sphere embedded in $S^{4 m+1} \subset \mathbb{C}^{2 m+1}$ which represents the element $(-1)^{m_{k}} \mathrm{~g}_{\mathrm{m}} \in \mathrm{bP}{ }_{4 \mathrm{~m}}$. Example : For $m=2$ and $k=1, \ldots, 28$ we get the 28 classes of 7 -spheres, for $m=3$ and $k=1, \ldots, 992$ the 992 classes of 11-spheres.

COROLLARY. The affine variety $V^{0}\left(a_{0}, \ldots, a_{n}\right), n \geqq 3$, is a topological manifold if and only if the graph $\Gamma(a)$ satisfies $a)$ or b) of $§ 2$.

For this theorem and for the case n odd see BRIESKORN [5].
Proof. If we remove from V_{a}^{0} the points with $z_{n}=0$ we get a space \tilde{V}_{a} whose fundamental group has $\pi_{1}\left(V_{a}-\{0\}\right) \cong \pi_{1}\left(\Sigma_{a}\right)$ as homomorphic image. $\tilde{\mathrm{V}}_{\mathrm{a}}$ is fibred over \mathbb{C}^{*} with $\mathrm{V}\left(a_{0}, \ldots, a_{n-1}\right)$ as fibre which is simply-connected. Thus $\pi_{1}\left(\tilde{V}_{a}\right) \cong \mathbb{Z}$ and $\pi_{1}\left(\Sigma_{a}\right)$ is commutative. Because of this and by SMALEPOINCARE we have to study only the homology of Σ_{a}.

Let $V_{a}^{\varepsilon} \subset \mathbb{C}^{n+1}$ be the affine variety

$$
z_{0}^{a_{0}}+z_{1}^{a_{1}}+\ldots+z_{n}^{a_{n}}=\varepsilon
$$

$\left(V_{a}=V_{a}^{1}\right)$. Let $D^{2 n+2}$ be the full ball in \mathbb{C}^{n+1} with center 0 and radius 1 and $S^{2 n+1}$, as before, its boundary. Σ_{a} is diffeomorphic to $\Sigma_{a}^{\varepsilon}=S^{2 n+1} \cap V_{a}^{\varepsilon}$ for $\varepsilon>0$ and small. It is the boundary of $B_{a}^{\varepsilon}=D^{2 n+2} \cap V_{a}^{\varepsilon}$ whose interior (for ε small) is diffeomorphic to V_{a}^{ε} and V_{a}. The exact homology sequence of the pair $\left(B_{a}^{\varepsilon}, V_{a}^{\varepsilon}\right)$ shows that Σ_{a} is ($n-2$)-connected. Using POINCARE duality we get the exact sequence

$$
0 \rightarrow H_{n}\left(\Sigma_{a}\right) \rightarrow H_{n}\left(V_{a}\right) \stackrel{\sigma}{\rightarrow} \operatorname{Hom}\left(H_{n}\left(V_{a}\right), Z\right) \rightarrow H_{n-1}\left(\Sigma_{a}\right) \rightarrow 0
$$

where the homomorphism σ is given by the bilinear intersection form S of V_{a} (see § 2). This determines $H^{*}\left(\Sigma_{a}\right)$ completely $: H_{n}\left(\Sigma_{a}\right)=0$ if and only
if $\operatorname{det} S \neq 0$. If $\operatorname{det} S \neq 0$, then $|\operatorname{det} S|$ equals the order of $H_{n-1}\left(\Sigma_{a}\right)$. The manifold B_{a}^{ε} is parallelizable since its normal bundle is trivial. This finishes the proof in view of $\S 2$.

§4. Manifolds with actions of the orthogonal group.

$O(n)$ denotes the real orthogonal group with $O(m) \subset O(n), m<n$, by

$$
A \longmapsto\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right),(A \in O(m), \quad 1=\text { unit of } O(n-m))
$$

Let X be a compact differentiable manifold of dimension $2 n-1$ on which $O(n)$ acts differentiably $(n \geqq 2)$. Suppose each isotropy group is conjugate to $O(n-2)$ or $O(n-1)$. Then the orbits are either Stiefel manifolds $O(n) / O(n-2)$ (of dimension $2 n-3$) or spheres $O(n) / O(n-1)$ (of dimension n-1). Suppose that the 2-dimensional representation of an isotropy group of type $O(n-2)$ normal to the orbit is trivial whereas the n-dimensional representation of an isotropy group of type $O(n-1)$ normal to the orbit is the 1-dimensional trivial representation plus the standard representation of $O(n-1)$. Under these assumptions the orbit space is a compact 2-dimensional manifold X^{\prime} with boundary, the interior points of X^{\prime} corresponding to orbits of type $O(n) / O(n-2)$, the boundary points of X^{\prime} to the orbits of type $O(n) / O(n-1)$. Suppose finally that X^{\prime} is the 2-dimensional disk.

It follows from the classification theorems of [8] and [9] that the classes of manifolds X with the above properties under equivariant diffeomorphisms are in one-to-one correspondence with the non-negative integers. We let $W^{2 n-1}(d)$ be the $(2 n-1)$-dimensional $O(n)$-manifold corresponding to the integer $d \geqq 0$. The fixed point set of $0(n-2)$ in $W^{2 n-1}(d)$ is a 3-dimensional $O(2)$-manifold, namely $W^{3}(d)$, which by ([9], §5, Korallar 6) is the lens
space $L(d, 1)$. Thus in order to determine the d associated to a given $0(n)$-manifold of our type we just have to look at the integral homology group H_{1} of the fixed point set of $0(n-2)$. $W^{2 n-1}(0)$ is $S^{n} \times S^{n-1}$, the manifold $W^{2 n-1}(1)$ is $S^{2 n-1}$, the actions of $O(n)$ are easily constructed. Consider for $d \geqq 2$ the manifold $\Sigma(d, 2, \ldots, 2)$ in \mathbb{c}^{n+1} given by

$$
z_{o}^{d}+z_{1}^{2}+\ldots+z_{n}^{2}=0
$$

$$
\begin{equation*}
\sum_{i=0}^{n} z_{i} \bar{z}_{i}=1 \tag{1}
\end{equation*}
$$

(see § 3). It is easy to check that this is an $O(n)$-manifold satisfying all our assumptions. The operation of $A \in O(n)$ on $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ is, of course, given by applying the real orthogonal matrix $A \in O(n)$ on the complex vector $\left(z_{1}, \ldots, z_{n}\right)$ leaving z_{o} untouched. The fixed point set of $0(n-2)$ is $\Sigma(\mathrm{d}, 2,2)$ which is $L(d, 1)$, see [6].

THEOREMM. The $O(n)$-manifold $\Sigma(d, 2, \ldots, 2)$ given by (1) is equivariantly diffeomorphic with $W^{2 n-1}(d), n \geqq 2$. It can also be obtained by equivariant plumbing of $d-1$ copies of the tangent bundle of S^{n} along the graph A_{d-1}

```
d-1 vertices .
```

For the proof it suffices to establish the $O(n)$-action on the manifold obtained by plumbing and check an properties :
$O(n)$ acts on S^{n} and on the unit tangent bundle of S^{n}. Since the action of $O(n)$ on S^{n} has two fixed points the plumbing can be done equivariantly. The fixed point set of $0(n-2)$ is the manifold obtained by plumbing $d-1$ tangent bundles of S^{2} which is well-known to be $L(d, 1)$, (see [6], resolution of the singularity of $z_{o}^{d}+z_{1}^{2}+z_{2}^{2}=0$).

The above theorem gives another method to calculate the homology of $\Sigma(d, 2, \ldots, 2)$ and to prove that $\Sigma(d, 2, \ldots, 2)$ for d odd and an odd number of $2^{\prime} \mathrm{s}$ is a sphere. In particular, $\Sigma(3,2,2,2,2,2)$ is the exotic 9-dimensional KERVAIRE sphere (see § 3). The calculation of the ARF invariant of the A_{d-1}-plumbing shows more generally that

$$
\Sigma(d, 2, \ldots, 2),(d \text { odd, an odd number of } 2 ' s)
$$

is the standard sphere for $d \equiv \pm 1 \bmod 8$ and the KFRVAIRE sphere for $d \equiv \pm 3 \bmod 8, \quad$ in agreement with a more general result in [5]. REMABKS. The $O(n)$-manifold $W^{2 n-1}(d)$ coincides with BREDON's manifolds $M_{k}^{2 n-1}$ for $d=2 k+1$, see BREDON [3]. $\Sigma(3,2,2,2)$ is the standard 5-sphere (since $\Theta_{5}=0$). Therefore S^{5} admits a differentiable involution α with the lens space $L(3,1)$ as fixed point set and a diffeomorphism β of period 3 with the real projective 3 -space as fixed point set. Compare [3].
α and P are defined on $\Sigma(3,2,2,2)$ given by (1) as follows

$$
\begin{aligned}
& \alpha\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\left(z_{0}, z_{1}, z_{2},-z_{3}\right) \\
& \beta\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\left(\varepsilon z_{0}, z_{1}, z_{2}, z_{3}\right), \text { where } \varepsilon=\exp (2 \pi i / 3)
\end{aligned}
$$

Many more such examples of "exotic" involutions etc. which are not
differentiably equivalent to orthogonal involutions etc. can be constructed.
§ 5. Manifolds associated to knots.
Let X be a compact differentiable manifold of dimension $2 n-1$ on which $O(n-1)$ acts differentiably $(n \geqq 3)$. Suppose each isotropy group is conjugate to $O(n-3)$ or $O(n-2)$ or is $O(n-1)$. Then the orbits are either Stiefel manifolds $0(n-1) / 0(n-3)$ (of dimension $2 n-5$) or spheres $0(n-1) / 0(n-2)$ (of dimension $\mathrm{n}-2$) or points (fixed points of the whole action). The
representations of the isotropy groups $O(n-3), O(n-2)$ and $O(n-1)$ respectively normal to the orbit are supposed to be the 4-dimensional trivial representation, the 3 -dimensional trivial plus the standard representation of $0(n-2)$, the 1-dimensional trivial plus the sum of two copies of the standard representation of $O(n-1)$. The orbit space X^{\prime} is then a 4-dimensional manifold with boundary. We suppose that X^{\prime} is the 4-dimensional disk D^{4}. Then the points of the interior of D^{4} correspond to Stiefel-manifoldorbits, the points of $\partial D^{4}=S^{3}$ to the other orbits. The set F of fixed points corresponds to a 1-dimensional submanifold of S^{3}, also called F. We suppose F non-empty and connected, it is then a knot in S^{3}. We shall call an $O(n-1)$-manifold of dimension $2 n-1$ a "knot manifold" if ail the above conditions are satisfied.

Let K be the set of isomorphism classes of differentiable knots (i.e. isomorphism classes of pairs $\left(S^{3}, F\right)-F$ a compact connected 1-dimensional submanifold - under diffeomorphisms of S^{3}). For the following theorem see JÄNICH ([9], § 6), compare also W.C. HSIANG and W.Y. HSIANG [8].

THEOREM. For any $n \geqq 3$ there is a one-to-one correspondence

$$
x_{n}: K \rightarrow \Phi_{2 n-1},
$$

where $\Phi_{2 n-1}$ is the set of isomorphism classes of (2n-1)-dimensional knot manifolds under equivariant diffeomorphisms. x_{n}^{-1} associates to a knot manifold the knot F considered above.
REMARK. The 2-fold branched covering of S^{3} along a knot F is an $O(1)$-manifold which will be denoted by $x_{2}(F)$.

If we plumb 8 copies of the tangent bundles of $S^{n}(n \geqq 1)$ according to the tree E_{8}

we get a $(2 n-1)$-dimensional manifold $M^{2 n-1}\left(E_{8}\right)$. For $n=2$ tinis is S^{3} / G, where G is the binary pentagondodecahedral group [6]. For n odd, $M^{2 n-1}\left(E_{8}\right)$ is the standard sphere, as the ARF invariant shows. For $n=2 m \geqq 4$, the manifold $M^{4 m-1}\left(E_{8}\right)$ is an exotic sphere, it is the famous MILNOR sphere which represents the generator $\pm g_{m}$ of $\mathrm{bP}_{4 \mathrm{~m}}$ (see § 3).

$$
M^{2 n-1}\left(E_{8}\right) \text { admits an action of } O(n-1) \text { as follows : } 0(n-1) \text { operates as }
$$ subgroup of $O(n+1)$ on S^{n} and thus on the unit tangent bundle of S^{n}. The action on S^{n} leaves a great circle fixed.

When plumbing the eight copies of the tangent bundle we put the center of the plumbing operation always on this great circle ; (for one copy, corresponding to the central vertex of the E_{8}-tree, we need three such centers, therefore, we cannot have an action of $O(n)$, which has only 2 fixed points on S^{n}.) Then the action of $0(n-1)$ on each copy of the tangent bundle is compatible with the plumbing and extends to an action of $O(n-1)$ on $M^{2 n-1}\left(E_{8}\right)$ which, for $n \geqq 3$, becomes a knot manifold as can be checked. The resulting knot can be seen on a picture attached at the end of this lecture. The speaker had convinced himself that this is the torus knot $t(3,5)$, but ZIESCHANG and VOGT showed him a better proof. This implies the THEOREM. Suppose $n \geqq 3$. Then $n_{n}(t(3,5))$ is equivariantly diffeomorphic to $M^{2 n-1}\left(E_{8}\right)$ with the $O(n-1)$-action defined by equivariant plumbing. (This is still true for $n=2$, see Remark above).

We now consider the manifold $\Sigma(p, q, 2,2, \ldots, 2) \subset \mathbf{c}^{n+1}$ given by the equations (see §3)

$$
\begin{aligned}
& z_{0}^{p}+z_{1}^{q}+z_{2}^{2}+\cdots+z_{n}^{2}=0 \\
& \sum_{i=0}^{n} z_{i} \bar{z}_{i}=1 \quad(n \geqq 3) .
\end{aligned}
$$

This is an $O(n-1)$-manifold, the action being defined similarly as in $§ 4$. Suppose $(p, q)=1$. Then it can be shown that $\Sigma(p, q, 2,2, \ldots, 2)$ is a knot manifold : It is $x_{n}(t(p, q))$ where $t(p, q)$ is the torus knot. Therefore, by the preceeding theorem we have an equivariant diffeomorphism

$$
m^{2 n-1}\left(E_{8}\right) \cong \Sigma(3,5, \underbrace{2, \ldots, 2}_{n-1}) .
$$

This gives a different proof (based on the classification of knot manifolds) that $\Sigma(3,5 \underbrace{2, \ldots, 2}_{2 m-1})$ represents for $m \geqq 2$ a generator of $\mathrm{bP}_{4 m}$. (compare § 3).
§ 6. A theorem on knot manifolds.
Let F be a knot in S^{3}. Then the signature $\tau(F)$ can be defined in the following way which MILNOR explained to the speaker in a letter. MILNOR also considers higher dimensional cases. We cite from his letter, but restrict to classical knots :

Let X be the complement of an open tubular neighbourhood of F in S^{3}. Then the cohomology

$$
H^{*}=H^{*}(\hat{X}, \partial \hat{X} ; R)
$$

where \hat{X} is the infinite cyclic covering of X, satisfies Poincaré duality just as if \hat{X} were a 2-dimensional manifold bounded by F.

In particular the pairing

$$
U: H^{1} \otimes H^{1} \rightarrow H^{2} \simeq \mathbb{R}
$$

is non-degenerate. Let t denote a generator for the group of covering trarsformations of \hat{X}. Then for $a, b \in H^{1}$ the pairing

$$
\langle a, b\rangle=a \cup t^{*} b+b U t^{*} a
$$

is symmetric and non-degenerate. Hence, the signature $\tau^{+}(F)-\tau^{-}(F)=\tau(F)$ is defined.

There exist earlier definitions of the signature by MURASUGI [13] and TROTMER [17]. The signature is a cobordism invariant of the knot. A cobordism invariant mod 2 was introduced by ROBERTTELLO [15] inspired by an earlier paper of KFRVAIRE-MILNOR. Let F be a knot and Δ its Alexander polynomial, then the ROBERTELLO invariant $c(F)$ is an integer mod 2, namely

$$
\begin{aligned}
& c(F)=0, \quad \text { if } \Delta(-1) \equiv \pm 1 \bmod 8 \\
& c(F)=1, \quad \text { if } \Delta(-1) \equiv \pm 3 \bmod 8
\end{aligned}
$$

We recall that the first integral homology group of $n_{2}(F)$, the 2 -fold branched covering of the knot F (see a remark in §5), is always finite, its order is odd, and equals up to sign the determinant of F. We have $\pm \operatorname{det} F=\Delta(-1)$.

THEORFM. Let F be a knot, then $u_{n}(F), n \geqq 2$, is the boundary of a parallelizable manifold. For n odd, $x_{n}(F)$ is homeomorphic to $S^{2 n-1}$ and thus represents an element of $\mathrm{bP}_{2 n}$, it is the standard sphere if
$c(F)=0$, the KRRVAIRE sphere if $c(F)=1$. If $n=2 m$, then $x_{2 m}(F)$ is ($2 \mathrm{~m}-2$) -connected and $H_{2 m-1}\left(\kappa_{2 m}(F), \mathbb{Z}\right) \simeq H_{1}\left(x_{2}(F), \mathbb{Z}\right)$. For $m \geqq 2$ it is homeomorphic to $S^{4 m-1}$ if and only if $\operatorname{det} F= \pm 1$. Then $x_{2 m}(F)$ represents (up to sign) an element of ${ }^{\mathrm{bP}} \mathrm{Am}_{\mathrm{m}}$ which is $\pm \frac{\mathrm{T}(\mathrm{F})}{8} \cdot \mathrm{~g}_{\mathrm{m}}$ (see § 3). The proof uses an equivariant handlebody construction starting out from a Seifert surface [16] spanned in the knot F. For simplicity, not out of necessity, we have disregarded orientation questions in §5 and §6. RFMARK. § 2(3) gives up to sign a formula for the signature of the torus knot $t(p, q), \quad(p, q$ odd with $(p, q)=1)$.

BIBLIOGRAPHY

[1] S.BOREWICZ und I. ŠAFAREVIČ. - Zahlentheorie, Birkhäuser Verlag, Basel und Stuttgart 1966.
[2] G. BREDON - Transformation groups on spheres with two type of orbits, Topology 3 (1965), p. 103-113.
[3] G. BREDON - Examples of differentiable group actions, Topology 3 (1965), p. 115-122.
[4] E. BRIESKORN - Examples of singular normal complex spaces which are topological manifolds, Proc. Nat. Acad. Sci. USA 55 (1966), p. 1395-1397.
[5] E. BRIESKORN - Beispiele zur Differentialtopologie von Singularitäten, Inventiones mathematicae, 2 (1966), p. 1-14.
[6] F. HIRZEBRUCH - The topology of normal singularities of an algebraic surface (d'après un article de D. Mumford), Séminaire Bourbaki 15 ème année, 1962/63, n ${ }^{\circ} 250$.
[7] F. HIRZEBRUCH - $O(n)$ Mannigfaltigkeiten... in Vorbereitung.
[8] W. HSIANG und W.-Y. HSIANG - Some results on differentiable actions, Bull. Amer. Matn. Soc. 72 (1966), p. 134-138.
[9] K. JÅNICH - Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand, to appear in Topology.
[10] J. MILNOR - Construction of universal bundles II, Annals of Matn. 63 (1956), p. 430-436.
[11] J. MILNOR - On isolated singularities of hypersurfaces, mimeographed Princeton 1966.
[12] D. MUMFORD - The topology of normal singularities of an algebraic surface and a criterion for simplicity, Paris, Presses universitaires de France, 1961 (Institut des Hautes Etudes Scientifiques, Publications mathématiques, 9).
[13] K. MURASUGI - On a certain numerical invariant of link types, Trans. Americ. Matin. Soc. 117 (1965), p. 387-422.
[14] F. PHAM - Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. matin. France 93 (1965), p. 333-367.
[15] R. ROBERTELLO - An invariant of knot cobordism, Comm. Pure Appl. Mati. 18 (1965), p. 543-555.
[16] H. SEIFFRT - Über das Geschlecht von Knoten, Math. Annalen 110 (1934), p. 571-592.
[17] H.F. TROTTER - Homology of group systems with applications to knot theory, Annals of Matin. 76 (1962), p. 464-498.

ERRATUM

Page 314-07. Ligne 4 du bas, au lieu de "Let g_{m} be a generator of $b P_{4 m}$." lire: "Let g_{m} be the Milnor generator of $b P_{4 m}$, see p. 314-14."

