F. Hirzebruch

Let X be a rational homology manifold in the sense of Thon (Symp. Intern. Top. Alg. 1956, p. 54-67, Universidad de México 1958). Thom defines Pontrjagin classes

$$
p_{i}(x) \in H^{4 i}(X, Q)
$$

Instead of defining

$$
p(x)=1+p_{1}(x)+p_{2}(x)+\ldots \varepsilon H^{*}(X, \mathbb{Q})
$$

one can define

$$
\mathcal{L}(X)=1+L_{1}(X)+L_{2}(X)+\ldots E H^{*}(X, Q)
$$

(see Hirzebruch, Topological methods in algebraic geometry, third edition, Springer 1966, © 1). The classes $p(X)$ and $\mathcal{L}(X)$ determine each other.

Let G_{m} be the group of $m{ }^{\text {th }}$ roots of unity and

$$
G_{b}=G_{b_{0}} \times \ldots \times G_{b_{n}} \text { where } b=\left(b_{0}, \ldots, b_{n}\right), b_{k} \geqslant 1
$$

Let G_{b} act on the complex projective space $P_{n}(C)$ (homogeneous coordinates
t_{0}, \ldots, t_{n}) as follows:

$$
\begin{aligned}
\alpha\left(t_{0}, \ldots, t_{n}\right) & =\left(\alpha_{0} t_{0}, \ldots, \alpha_{n} t_{n}\right), \\
& \text { where } \alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) E G_{b} .
\end{aligned}
$$

The orbit space $P_{n}(C) / Q_{b}$ is a rational homology manifold. The map $p: P_{n}(C) \rightarrow P_{n}(C) / G_{b}$ induces an isomorphism

$$
\mathrm{p}^{*}: H^{*}\left(P_{n}(0) / G_{b}, Q\right) \rightarrow H^{*}\left(P_{n}(0), \mathbb{Q}\right)
$$

$H^{*}\left(P_{n}(C), Q\right)$ is the truncated polynomial ring $Q[x] /\left(x^{n+1}\right)$ where $x \in H^{2}\left(P_{n}(C), \mathbb{Z}\right)$ is the Poincare dual of the hyperplane. Bott (not yet published) has calculated the

Pontrjagin classes of $P_{n}(C) / G_{b}$.

$$
\begin{equation*}
p^{*} \ell\left(P_{n}(C) / G_{b}\right)=\frac{1}{\left[b_{0}, \cdots, b_{n}\right.} \sum_{0 \leqslant \xi<\pi} \prod_{k=0}^{n} \frac{b_{k} x}{\operatorname{tanb} b_{k}(x+i \xi)} \tag{1}
\end{equation*}
$$

where $\left[b_{0}, \ldots, b_{n}\right]$ is the greatest common divisor of b_{0}, \ldots, b_{n}. The sum is over all real numbers ξ with $0 \leqslant \xi<\pi$. Observe, however, that for any natural number $a \geqslant 1$ the term $(\tanh a(x+i \xi))^{-1}$ is a power series in x if $a \xi \neq 0$ mod $\mathbf{z} \pi$. Therefore, $\prod_{k=0}^{n} \frac{b_{k}}{\tanh b_{k}(x+i \xi)}$ is divisible by x^{n+1}, and thus vanishes in the truncated polynomial ring, if for all k we have $b_{k} \xi \neq 0$ mod $\mathbb{Z} \pi$. Therefore, the above sum (1) is actually only over the finitely many ξ for which

$$
b_{\mathbf{k}} \xi \equiv 0 \bmod \mathbb{Z} \pi
$$

for at least one k with $0 \leqslant k \leqslant n$.
Let N be a common multiple of b_{0}, \ldots, b_{n} and consider hypersurface

$$
x^{N}: t_{0}^{N}+\ldots+t_{n}^{N}=0
$$

in $P_{n}(c)$. Then $\alpha\left(X^{N}\right)=X^{N}$ for $\alpha \in G_{b}$ and $X^{N} / G_{b} \subset P_{n}(c) / G_{b}$. This "submanifold" X^{N} / G_{b} of $P_{n}(C) / G_{0}$ has a normal bundle ν in the sense of Them (loco. cit.). It is a $U(1)$-bundle whose lift to X^{N} is the normal bundle of X^{N} in $P_{n}(C)$. Observe that for each $\alpha \in G_{b}$ the set $P_{n}(C)^{\alpha}$ of fixed points is transversal to X^{N}. We obtain for the signature of X^{N} / G_{b}

$$
\begin{aligned}
\operatorname{sign} X^{N} / G_{b}= & \text { coefficient of } x^{n} \text { in } \\
& \tanh (N x) \cdot \sum_{0 \leqslant \xi<\pi} \prod_{k=0}^{n} \frac{x}{\tanh b_{k}(x+i \xi)}
\end{aligned}
$$

Here we used the fact that the map p has degree $b_{0} \ldots b_{n} /\left[b_{0}, \ldots, b_{n}\right]$. Since N is a multiple of all the b_{k}, easy shifting of coordinates yields
(2) $\quad \operatorname{sign} X^{N} / G_{b}=$

$$
\sum_{0 \xi \xi<\pi} \operatorname{res}_{i \xi}\left[\tanh N z \cdot \prod_{k=0}^{n} \frac{1}{\tanh b_{k}^{2}}\right]
$$

where the sum is over those ξ with $0 \leqslant \xi<\pi$ such that $\left(\prod_{k=0}^{n} \tanh b_{k} z\right)^{-1}$ has a pole
in i ξ.

Let us denote the expression between brackets in (2) by $g(z)$. We integrate $g(z)$ along the following path γ_{M} in the z -plane.

The integrals along the "horizontal" parts of γ_{M} canoel each other since $g(z+\pi i)=g(z)$. The sum of the integrals along the vertical parts of γ_{M} converges for $M \rightarrow \infty$ to

$$
\pi i\left(1-(-1)^{n}\right)
$$

because $\tanh (M+i y)$ converges uniformly to 1 or -1 respectively if M converges to $+\infty$ or $-\infty$ respectively. The real dimension of X^{N} / G_{b} is $2(n-1)$. Therefore, we suppose n odd from now on. Otherwise the signature vanishes by definition. We obtain from (2)

$$
\begin{equation*}
\operatorname{sign} X^{N} / G_{b}=1-\sum_{0 \leqslant n<\pi} r e s_{i \eta} g(z) \tag{3}
\end{equation*}
$$

where the sum is now over those η with $0 \leqslant \eta<\pi$ such that $\tanh N z$ has a pole in in, which means

$$
\eta=\frac{\pi j}{2 N}, \quad j \text { odd, } \quad I \leqslant j<2 N_{0}
$$

The function tanh $N z$ has poles of order 1 at the $i n$. The residue in all these poles is $\frac{1}{N}$. By (3) we get (with $a_{k}=N / b_{k}$)
(4)

$$
\operatorname{sign} x^{N} / G_{b}-1=
$$

$$
\frac{(-1)}{N}^{(n-1) / 2} \sum_{\substack{j \text { oda } \\ 1 \leqslant j<2 N}} \cot \frac{\pi j}{2 a_{0}} \cot \frac{\pi j}{2 a_{1}} \ldots \cot \frac{\pi j}{2 a_{n}} .
$$

Brieskorn (Inventiones math. 2, 1-14 (1966)) has studied the non-singular affine hypersurface $V_{a_{1}}, a_{2}, \ldots, a_{n}$ in C^{n} given by

$$
\begin{equation*}
z_{1}^{a_{1}}+z_{2}^{a_{2}}+\ldots+z_{n}^{a_{n}}+1=0 ; \tag{5}
\end{equation*}
$$

its signature is related to the theory of exotic spheres.
Let E be the hyperplane $t_{0}=0$ in $P_{n}(C)$. Let N be any comnon multiple of $a_{0}, a_{1}, \ldots, a_{n}$ and

$$
\begin{equation*}
b_{k}=\frac{N}{a_{k}} \quad(\text { for } k=1, \ldots, n), b_{0}=1, a_{0}=N . \tag{6}
\end{equation*}
$$

$$
Y^{N}=X^{N}-X^{N} \cap E \text { is given in } P_{n}(c)-E \text { by }
$$

$$
t_{1}^{N}+t_{2}^{N}+\ldots+t_{n}^{N}+1=0\left(\text { put } t_{0}=1\right)
$$

By the map $z_{k}=t_{k}{ }_{k}$ from $P_{n}(c)-E$ to $C^{n}(k=1, \ldots, n)$ we have

$$
\begin{equation*}
\mathrm{v}_{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}}=\mathrm{y}^{\mathrm{N} / \mathrm{a}_{\mathrm{b}}} \tag{7}
\end{equation*}
$$

where $G_{b}=G_{b_{0}} \times G_{b_{1}} \times \ldots \times G_{b_{n}}$ and $b=\left(1, b_{1}, \ldots, b_{n}\right)$ as in (6).
The Lefschetz theorem on hyperplane sections implies the following fact. $X^{\mathbb{N}} \cap \mathrm{E}$ has a tubular neighbourhood T in X^{N} invariant under G_{b}. The middle dimensional homology group of I is infinite cyclic with a generator (invariant under G_{b}) of self-interseotion number +1 . By the Novikov additivity of the signature we get from (4) and (7)

Theorem Let n be odd and N any common multiple of a_{1}, \ldots, a_{n}. Then the signature of the Brieskorn variety $V_{a_{1}}, \ldots, a_{n}$ is given by the formula of Zagier
(8) $\quad \operatorname{sign} v_{a_{1}}, \ldots, a_{n}=\frac{(-1)^{(n-1) / 2}}{N} \sum_{\substack{j \text { odd } \\ 1 \leqslant j<2 N}} \cot \frac{\pi j}{2 N} \cot \frac{\pi j}{2 a_{1}} \ldots \cot \frac{\pi j}{2 a_{n}}$.

Brieskorn (lac. cit.) gives the following formula

$$
\operatorname{sign} v_{a_{1}}, \ldots, a_{n}=
$$

$$
\begin{array}{r}
\#\left\{0<x_{k}<a_{k} \left\lvert\, 0<\sum_{k=1}^{n} \frac{x_{k}}{a_{k}}<1 \bmod 2\right.\right\} \tag{9}\\
-\#\left\{0<x_{k}<a_{k} \left\lvert\, 1<\sum_{k=1}^{n} \frac{x_{k}}{a_{k}}<2 \bmod 2\right.\right\},
\end{array}
$$

$\left[\left(x_{1}, \ldots, x_{n}\right)\right.$ are n-tuples of integers $]$.

Cagier has proved by Fourier series and by other methods that the two expressions in (8) and (9) equal each other. The interesting formula (8) is due to him. In virtue of Zagier's result, we have given a new method (involving Fontrjagin classes) to calculate sign $V_{a_{1}}, \ldots, a_{n}$ and to prove (9).

We can identify (8) and (9) in the following way (which is essentially Zagier's method). Put

$$
\begin{aligned}
& ((x))=x-[x]-\frac{1}{2}, \quad \text { if } x \text { is not an integer; } \\
& ((x))=0 \quad \text { if } x \text { is an integer. }
\end{aligned}
$$

Then the expression in (9) is
(10)

$$
\begin{aligned}
& \operatorname{sign} v_{a_{1}, \ldots, a_{n}}= \\
& \quad 2 \sum_{0<x_{k}<a_{k}}\left(\left(\frac{x_{1}}{2 a_{1}}+\ldots+\frac{x_{n}}{2 a_{n}}+\frac{1}{2}\right)\right)-\left(\left(\frac{x_{1}}{2 a_{1}}+\ldots+\frac{x_{n}}{2 a_{n}}\right)\right)
\end{aligned}
$$

If $r=\frac{p}{q}$ is any positive rational number (where p, q are natural numbers, not necessarily coprime), then

$$
((r))=\frac{i}{2 q} \sum_{j=1}^{q-1} \cot \frac{\pi j}{q} e^{2 \pi i . j r}
$$

This is a formula of Eisenstein (see Rademacher, Lectures on Analytic Number Theory, Notes, Tata Institute, Bombay 1954-55, p.276). Feeding it into (10) gives (8).

Remark: The Dedekind sums studied by Rademacher are in olose relation to formula (8) and the Atiyah-Bott-Singer fixed point theorem applied to the "signature operator" as will be explained elsewhere.
H. A. Hamm (Dissertation Bonn-Gyttingen : see also the following paper) has studied the following affine varieties (given by r equations in C^{n})

$$
c_{j 1} z_{1}^{a_{1}}+\ldots+c_{j n} z_{n}^{a_{n}}+c_{j, n+1}=0
$$

$j=1, \ldots, r$ and $r \leqslant n$.
If all $s \times s$ subdeterminants of the $r \times(n+1)$ matrix $\left(c_{j k}\right)$ are different from 0 for $1 \leqslant s \leqslant r$, then the affine variety is a non-singular complete intersection of hypersurfaces. (Our conditions are stronger than those of Hamm.) We denote such a variety by $v_{a_{1}}^{r}, \ldots, a_{n}$. Its complex dimension is $n-r$. If we assume $n-r$ to be even, then the same method as above yields
(11)

$$
\operatorname{sign} v_{a_{1}}^{r}, \ldots, a_{n}=
$$

$$
-\sum_{\substack{1 \leqslant j<2 N \\ j \text { odd }}} \operatorname{res}_{\pi i j / 2 N}\left((\tanh N z)^{r} \operatorname{coth} z \prod_{k=1}^{n} \operatorname{coth} \frac{N_{z}}{a_{k}}\right)
$$

where N is any common multiple of a_{1}, \ldots, a_{n}. But it seems harder to get a formula similar to (8) or (9) because we have poles of order >1. Bott's proof of (1) involves also residue calculations and there is in f'act a short cut to (8) or (9) from a point on the way to (1). But it seemed amusing to adopt the view of somebody knowing (1) and not its proof and to begin to calculate.

