The Canonical Map for Certain Hilbert Modular
Surfaces
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It was a great pleasure for me to participate in the symposium in honor of
Shiing-shen Chern. In my lecture I intended to give a survey on Hilbert modular
surfaces. But actually I discussed examples of such Hilbert modular surfaces for
which specific information is available on their structure as algebraic surfaces.
The paper presented here is an extended version of the talk.

Algebraic surfaces are often investigated by means of their pluricanonical
maps (see for example Bombieri [2]). The properties of the canonical map itself
(given by the sections of the canonical bundle or in the case of Hilbert modular
surfaces by the cusp forms of weight 2) are relatively complicated (compare
Beauville [1]). In a certain range, namely for minimal surfaces of general type
with 2p, —4 < K 2g 2p, — 2, Horikawa’s results are available [21-25]. To apply
them, one has to prove that the surface being studied is minimal. For Hilbert
modular surfaces this is a difficult problem, which was attacked first by van der
Geer and Van de Ven [10]. Van der Geer has obtained many results on the
structure of special Hilbert modular surfaces [8, 9] including some of the
surfaces studied here.

The rough classification of Hilbert modular surfaces according to rational,
K3, elliptic, and general type was considered by Hirzebruch, Van de Ven, and
Zagier [17, 19, 16]. The present paper tries to show that in some cases a finer
classification of the surfaces of general type can be obtained.

1. Some Examples of Canonical Maps

Let X be a nonsingular n-dimensional compact algebraic manifold and
H%X,Q") the complex vector space of holomorphic n-forms. An element
w € H%X,Q") can be written with respect to a local coordinate system in the
form

w=a(u,uy,...,u)du du,- - du,
where a is holomorphic. The dimension of H°(X, Q") is the geometric genus Pe-

We shall sometimes write g instead of p,. If w,w,,...,w, is a base of
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H%X,Q"), then we have the canonical “map”
i i X P,_(C),

which is not necessarily everywhere defined.

The vector space HOX,Q") is the space of holomorphic sections of the
canonical bundle ¥ of X. The complete linear system || consists of all
canonical divisors (i.c. divisors of elements w € H°(X,Q")). These are exactly
the inverse images under ¢, of the hyperplanes of P,_(C). (Canonical divisors
are always assumed to be nonnegative if nothing is mentioned to the contrary.)

If n = 1, then X is a compact Riemann surface (algebraic curve) of genus g. If
g =0, then ¢ is not defined. For g = 1 the image ¢, (X) is a point. For g = 2, the
map i, realizes X as double cover of P,(C) with 6 ramification points. For g =3
the following holds (see Griffiths and Harris [12, p. 247]): The canonical map
is a biholomorphic map of X onto a nonsingular curve of degree 2g —2 in
P,_(C) (generic case), or the curve X is hyperelliptic and ¢, realizes X as a
double cover of the rational normal curve of degree g —1 in P,_(C) with
2g + 2 ramification points. The normal curve mentioned is the image of P,(C)
under the map given by the homogeneous polynomials of degree g — 1.

For n=2 not much is known about the canonical map. For algebraic
surfaces (n = 2) recent investigations are due to Beauville [1], but for specific
surfaces (e.g. Hilbert modular surfaces) it is difficult to obtain information on ¢.
We now restrict to the case n=2. Let us first recall some basic facts on
algebraic surfaces. By % we denote the canonical bundle, and by K a canonical
divisor. For a nonsingular curve S on X we have the adjunction formula

KS + SS = —e(S), )

where KS and SS are intersection numbers and e(S) is the Euler number of S,
which equals 2 — 2g(S) if S is irreducible. The formula (1) is true also if X is
negative.

The irreducible nonsingular curve S is called exceptional (of the first kind) if
g(S)=0and SS = —1 (or equivalently g(S) =0 and KS = —1). The surface X
is called minimal if it does not contain any exceptional curves.

An exceptional curve S is contained in every (nonnegative) canonical divisor
(because KS = —1). Therefore ¢, is not defined on an exceptional curve. The
exceptional curve S on X can be blown down to a point, the resulting surface Y
being nonsingular again. The vector spaces H(X,Q%) and HYY,Q%) are
isomorphic. Let 7 : X ~> Y be the natural map; then every canonical divisor on X
is of the form #*K, + S, where K, is a canonical divisor on Y. For a
nonsingular rational curve S with S§ = —2 we have KS = 0; therefore for every
canonical divisor K, the curve S either is contained in K or does not meet K. If
S is not contained in all canonical divisors, then ¢, maps S to a point.

Let us now assume that the nonsingular irreducible surface X is of general
type. Then X contains finitely many exceptional curves mutually disjoint. They
can be blown down. The resulting surface again may contain exceptional curves.
They are mutually disjoint and can be blown down. After a finite number of
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such blowing-down processes we reach a minimal algebraic surface, the unique
(nonsingular) minimal model in the birational equivalence class of X (see for
example Griffiths and Harris [12, pp. 510, 573), Bombieri [2], and Hirzebruch
and Van de Ven [17]).

The self-intersection number K? = KK is an important invariant. Since the
characteristic class of the canonical bundle equals — ¢,, where ¢, € H¥(X, Z) is
the first Chern class of X, we have

K*=ci[X].
Let e(X) denote the Euler number. M. Noether’s formula gives the relation
e(X)+ K= 12x(X), )
where
x(X)=1—-g+ Pe

(g = irregularity = half first Betti number of X) is the arithmetic genus of X (in
the terminology of [14]). If an exceptional curve is blown down, then e(X)
decreases by one and K? increases by one, whereas x(X) remains invariant. It is
a birational invariant; in fact g and p, are birational invariants.

For a minimal algebraic surface X of general type, K2 and x(X) are positive.
The number K2 of X is the maximal K2 of all nonsingular surfaces in the
birational equivalence class of X. By (1), the number K2 + 1 equals the genus of

a nonsingular irreducible curve C if C is a canonical divisor. We have the
inequality due to M. Noether (compare Bombieri [2, p. 208)),

K*> 2p, — 4, 3)
and also the Bogomolov—Miyaoka inequality (Miyaoka [28])
K% < 3e(X),

for which, of course, minimality is not needed.

We shall now give a few classical examples of minimal algebraic surfaces of
general type where the canonical map ¢, is well known from the nature of the
example.

ExaMPLE 1. Let X be the double cover of P,(C) ramified along a nonsingular
curve of degree 8. We have P = 3 and K2 =2. The natural map X — PyC)is
the canonical map ¢,. The complete linear system || consists of the lines in
P,(C) lifted to X. Observe that a (negative) canonical divisor of P,(C) is given
by —3L where L is a line and

-3L+1-8L=L.

The surface X is simply connected. The Euler number equals 46 by Noether’s
formula (2).

EXAMPLE 2. Consider two nonsingular quartic curves 4 and B in P,(C) intersect-
ing transversally. Let X be the fourfold cover of the plane obtained by first
taking the double cover Y of the plane ramified along A and then the double
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cover of Y ramified along the lift of B to Y. This construction is actually
symmetric in A and B. The surface X admits an action of Z/2 X Z /2 with the
plane as orbit space. We may denote the nontrivial elements of Z/2 X Z/2 by
a, 3,y in such a way that X /a and X /B are the double planes ramified along A
and B respectively, whereas X /vy is the double cover of the plane ramified along
A U B (with 16 ordinary rational double points as singularities). The surfaces
X/a and X/ B are rational (Euler number = 10, K? = 2; they are isomorphic to
a plane with 7 points blown up). Each of them contains 56 exceptional curves
coming in pairs which are the lifts of the 28 double tangents of 4 or B
respectively. The surfaces X /a and X /8 are double covers of the plane by their
anticanonical maps (i.e., the lifts of the lines of the plane are exactly the
elements of |%~'|). The branching locus of X over X /a (the lift of B to X /a) is
a fourfold anticanonical divisor of X /«. The lifts of the anticanonical divisor of
X/a to X are the canonical divisors of X. Observe K + 1(—4K)= —K (on
X /a). The map from X to P,(C) (degree 4) is the canonical map. For X we have
Py=3 and K 2=4, It is simply connected and has Euler number 44. The
elements a, B,y operate on H°(X, Q%) by multiplication with —1, — I, 1. Thus
HO%X,Q% can be identified with the space of holomorphic 2-forms on the
nonsingular model X, of X /vy (obtained by blowing up each of the 16 singulari-
ties in a nonsingular rational curve of self-intersection number —2). The natural
map of X, to P,(C) is the canonical map (in fact X, belongs to the family of
surfaces in Example 1; see later remarks).

ExAMPLE 3. Consider a nonsingular quadric Q in P(C). The quadric is isomor-
phic to P,(C) X P,(C) by the two systems of lines on Q. Let X be the double
cover of Q ramified along a nonsingular curve of bidegree (6, 6). We have p,=4
and K2 = 4. The natural map of X onto Q followed by the embedding of Q in

P4(C) is the canonical map . The complete linear system || consists of the
planes in P;(C) intersected with Q and lifted to X. The planes intersected with
Q are exactly the curves of bidegree (1, 1). Observe that a (negative) canonical
divisor on Q is given by —2L, — 2L,, where L, L, are lines on Q in different
systems and

—2L, - 2L, + (6L, +6Ly)=L, + L,.

The surface X is simply connected. The Euler number equals 56.

EXAMPLE 4. Let X be a nonsingular quintic surface in Py(C). We have p, = 4
and K?=5. The embedding of X in P,(C) is the canonical map (. The
complete linear system |¥| consists of the planes in P;(C) intersected with X.
The surface X is simply connected. The Euler number equals 55.

ExaMpLE 5. Consider a nonsingular cubic surface W in P4(C). For such a
surface the complete linear system |¥X~!| consists of all hyperplane sections.
(These hyperplane sections are the nonnegative anticanonical divisors.) A non-
negative divisor on W is anticanonical if and only if it has intersection number 1
with each of the 27 lines on W. The 27 lines are exactly the exceptional curves
on W. Let C be a nonsingular curve on W with C €%, i, C has
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intersection number 4 with each of the 27 lines. If we realize W as P,(C) with
six points p, ..., ps blown up (Griffiths and Harris [12, p. 489]), then C
corresponds to a curve of degree 12 in the plane with p,, . . ., ps as quadruple
points and no other singularities. Let X be the double cover of W ramified along
C; then the complete linear system |¥| of X consists of the nonnegative
anticanonical divisors of W lifted to X. Observe K + 1(—4K)= — K (on W).
Thus || consists of all lifted hyperplane sections of W. The canonical map of X
is the map onto W followed by the embedding of W in the projective space
Py(C). For X we have p, =4 and K 2= 6. It is simply connected and has Euler
number 54.

ExampLE 6. Let X be the double cover of P,(C) ramified along a nonsingular
curve of degree 10. We have p, =6 and K 2= 8. The natural map X —> P,(C)
followed by the Veronese embedding of P,(C) in Py(C) is the canonical map.
The canonical divisors of X are the quadrics in P,(C) (i.e. the hyperplane
sections of the Veronese surface) lifted to X. The surface X is simply connected
and has Euler number 76.

Remark. Examples 2 and 5 can be regarded as special cases of the following
construction. A del Pezzo surface (see Manin [27]) of degree g — 1 in P,_(C)is
obtained as follows (4 < g < 10). In the plane P,(C) we blow up 10-g points.
The dimension of the space of sections of the anticanonical bundle of this
surface is g. The complete linear system |H~'| consists of all cubics of P,(C)
passing through the 10-g points. The image of P,(C) under the anticanonical
map is a del Pezzo surface W in P,_,(C). In W we take a nonsingular curve
representing a fourfold anticanonical divisor and the double cover of W rami-
fied along this curve. This is an algebraic surface X with geometric genus g and
K?= 2g — 2. The canonical map for X is the map of degree 2 to the del Pezzo
surface W followed by the embedding of W in P,_(C). If g =3, the del Pezzo
surface can still be introduced, but its anticanonical map realizes it as double
cover of the plane; therefore the canonical map of X is of degree 4 (Example 2).

In Examples 1-6 certain “degenerations” may be admitted. In Examples 3, 4,
5 we admit that the quadric, quintic, or cubic surface has rational double points
(sometimes called Kleinian singularities; see Brieskorn {3, 5]). These are the
singularities which resolve minimally into a configuration of type A4,, D,, E,,
E,, Eg of nonsingular rational curves of self-intersection number —2. For a
quadric we can have only one singularity 4, (quadric cone). Some examples of
quintics with rational double points occur in van der Geer and Zagier [11]. For
cubics the complete list of possibilities is given by Schifli [29]; see also Griffiths
and Harris [12, p. 640]. A report on singular cubics was given recently by Bruce
and Wall [6]. They list the possible combinations of singularities as 4,, 24,, 4,,
34,, A\A,, Ay, 44|, A2A,, A3A|, 24,, A, D,, A24,, 24,4, A,A,, As, Dy,
34,,AA,, E,.

For the ramification curve on the desingularized quadric (cubic) surface in
Examples 3 and 5 we require that it represent a threefold (fourfold) anticanoni-
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cal divisor. The ramification curve in Examples 1, 3, 5, 6 may have singularities,
but they are restricted to the condition that the double cover acquires only
rational double points. The admissible curve singularities are, with respect to
suitable local coordinates,

X4 yF=0 (a),

x(P2+x¥"H)=0 (d; k>9),
XB+yt=0 (&),
x(x2+y) =0 (e),
X+y’=0 (&)

The double cover has singularities of type 4,, D, E, E;, E; respectively. They
are resolved to give our modified examples of algebraic surfaces and canonical
maps. In Example 2 we admit that 4 has singularities a,, d,, ¢, e, eg, and we
then take on the desingularized model of the double cover branched along 4 a
ramification curve B which represents a fourfold anticanonical divisor. Also B is
required to have only singularities a,, d,, ¢, €;, €;.

By Brieskorn’s theory [3-5], we know that the algebraic surfaces thus ob-
tained still belong to the same family (up to deformation). They are, in
particular, of the same diffeomorphism type.

Minimal algebraic surfaces with p, =3 and K 2=2 are called Moishezon
surfaces. They are all of the type studied in Example 1. The surfaces of
Examples 1, 3, 6 satisfy K? = 2p, — 4, i.e., K* is for given p, as small as possible
(by Noether’s inequality (3)). For K2 =4 such a surface belongs to Example 3
by a result of Horikawa [22], who has classified surfaces with K2 = 2p, — 4. For
K? = 8 our Example 6 is only one of several possibilities. In Example 4 we have
K= 2pg — 3. Surfaces satisfying this relation are studied by Horikawa in [21]
and [23]. In Examples 2 and 5 we have K? = 2p, — 2 with p, =3 or 4 respec-
tively. For these surfaces see [24] and [25]. In [24] Horikawa considers the case
Pg = 4. In Section 2 of [25] we find the case p, = 3.

2. Minimality Criterion

How to decide whether a given algebraic surface is minimal? Essentially the
following criterion was used by Hirzebruch and Van de Ven [18].

Proposition. Let X be a nonsingular algebraic surface with K* > 0, on which there
exists a nonnegative divisor D with

D?*= KD = K~ 1
Then the homology class of D — K is a torsion class. Every exceptional curve of X

is contained in D.

Proof. Since K(D — K)=(D — K)>’=0 and K?> 0, we have by the Hodge
index theorem for divisors (Griffiths and Harris [12, p. 472]) that D — K is
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homologous to zero mod torsion. For an exceptional curve S we have DS = KS
= —1; therefore S is contained in D. [

If a nonnegative divisor D on the surface X satisfies (1), if K2 > 0, and if no
exceptional curve is contained in D, then X is minimal.

If a nonnegative divisor D on a simply connected surface satisfies (1), then D
is a canonical divisor. It is often difficult to give a nonnegative canonical divisor
explicitly, just as it is difficult to prove minimality. One could think that it would
be easiest to get one’s hands on a nonsingular irreducible curve C with
C?= KC = K? which then would have genus K2+ 1. A generic canonical
divisor on a minimal surface of general type is such a curve C. However, one
often does not succeed in finding such a C; rather one gets complicated
configurations D of curves with D2= KD = K2 In a way, D is a degenerate
curve of genus K2 + 1.

The proposition can be generalized. Let m be a positive integer. Instead of (1)
we assume DK = mK? D?= m?K?. Then the homology class of D — mK is a
torsion class, and every exceptional curve of X is contained in D.

We shall now indicate configurations of curves which lead to a divisor D
satisfying (1).

Assume that we have in Example 1 of Section | a line L in the plane which
passes through three double points of types a, ., a;, a,, of the ramification curve
C of degree 8 and intersects C in two points transversally Then the lift of L in
the Moishezon surface is a rational curve L with KL =2 together with a
configuration of nonsingular rational curves of self-intersection - 2 arising from
the resolution of the singularities of types Ay Agp Ay, The result looks like
Figure 1. All curves are nonsingular and rational. All intersections are transver-
sal. We have LL = —4. There are three chains of (—2)-curves of lengths k|, k,,
k. This is a configuration D satisfying (1) with K? =2 (each component S has
multiplicity mg = 1 in D).

To check (1) in this case and all further cases we look at each component S of
the configuration D = 3 mS and prove

DS = KS,
> mgKS = K2
S
The number KS is known from the adjunction formula if the genus and

self-intersection of S are given, whereas DS can be read off from the configura-
tion.

(22K e

Figure 1. Configuration (I'). D*= KD = 2.
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< > < : L elliptic
\ 7 X 7 -

Figure 2. Configuration (I"). D% = KD = 2.

A second configuration D satisfying (1) with K2 = 2 is the following. Assume
that we have in Example 1 a line L in the plane which passes through two
double points of types a, g, of the ramification curve C of degree 8 and
intersects C in four pomts transversally Then the lift of L in the Moishezon
surface is an elliptic curve L with KL =2 together with two chains of (—2)-
curves. The result looks like Figure 2 (all multiplicities 1). In [18] the configura-
tion (I”) and two other configurations were used.

Consider the configuration D in Figure 3 of nonsingular rational curves (four
(—3)-curves and twelve (—2)-curves). The four (—3)-curves are joined by
(—2)-curves. The divisor D is obtained by taking each curve with multiplicity 1,
except the (—2)-curves drawn in boldface, which have multiplicity 2.

A configuration (II) occurs in Example 2 if each of the quartic curves 4, B
has a double point of type a, and if there is a line L tangent to 4 and B in these
two double points (Figure 4). The divisor D is the lift of L to the fourfold cover

/ AN

-3
N 7

Figure 3. Configuration (II). D2 = KD = 4.
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Figure 4

of the plane. The configuration (II) is a degeneration of the case when the two
quartics have a common double tangent and we take the lift of the double
tangent to the fourfold cover.

Many configurations can be constructed which are motivated by Example 3.
Consider Figure 5. All curves are rational, except one which is elliptic. The

-2
-2 elliptic
-2
\_2
~2
_2 4

Figure 5. Configuration (III'). D? = KD = 4.
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-4

a

Figure 6, Configuration (III"). D?> = KD =4,

divisor D contains all curves with multiplicity 1, except the (—2)-curves drawn
in boldface, which have multiplicity 2. Such a configuration arises if we take in
Example 3 two lines L,, L, on a nonsingular quadric belonging to different
families of lines and assume that L, N L, is a double point of type a5 of the
branching curve C of bidegree (6, 6), and that L, intersects C in 4 other points
transversally, whereas L, passes through two other double points of C (of types
a,, as).

Let us now assume that in Example 3 the quadric is a cone and the
ramification curve C does not pass through the vertex of the cone (Figure 6).
Take a generating line L of the cone, and assume that it passes through two
double points of type a, of C and intersects C transversally in two points. The
lift of 2L leads to the above configuration (III”) of rational curves, one with
self-intersection —4, all others with self-intersection —2. All curves have multi-
plicity 2 except the two curves indicated by a broken line, which have multiplic-
ity 1 and are mapped to the vertex of the cone. In (III') and (II1”) we could use
other double points, i.e. the lengths of the chains of (—2)-curves could be
changed.

Take the configuration shown in Figure 7, consisting of 4 nonsingular
rational curves (each with multiplicity 1). The existence of such a configuration
on a surface proves minimality if X2 =35. It is motivated by Example 4 if a
hyperplane intersects the quintic in a conic and 3 lines. All the transversal

Figure 7. Configuration (IV). D= KD = 5.
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>< is replaced by % M

Figure 8

intersections may be replaced by chains of (—2)-curves, as shown in Figure 8.
The modified configuration still satisfies D? = KD = 5.

There are cubic surfaces W for which the intersection of some plane with W
consists of three lines. L,, L,, L, which go through one point (Eckardt point).
The three lines define an anticanonical divisor L, + L, + L, of W whose lift in
the double cover (Example 5 of Section 1) is a configuration (V) (Figure 9) of
three elliptic curves (with multiplicity 1). On a surface with K2 = 6 the existence
of a configuration of type (V) proves minimality.

Figure 9. Configuration (V). D*= KD = 6.

Finally we consider Example 6 (Figure 10). The divisor D is of the form

24
D=2C+ > L,
im1
where C is a nonsingular curve of genus 3 and there are twenty-four (—2)-curves
intersecting C transversally. We have

D?*=2DK = 32.

The existence of a configuration (VI) on a surface with K2 = 8 proves minimal-
ity. The divisor D and a double canonical divisor are homologous mod torsion.
If the ramification curve in Example 6 is of the form A + B where 4 and B are

L, L, - Las genus 3
| ‘
-4 multiplicity 2
=2 -2 -2
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nonsingular curves of degrees 4 and 6 intersecting transversally, then the lift of
A gives a configuration (VI).

3. Hilbert Modular Surfaces

Let K be the real quadratic field of discriminant D over Q, and O its ring of
integers. The Hilbert modular group G = SL,(9)/{=1} operates on H X H,
where H is the upper half plane of C. The orbit space H?/SL,(®) can be
compactified by finitely many cusps. The resulting surface H?2/SL,(0) has
finitely many singularities, namely quotient singularities coming from elliptic
fixed points and the cusps. Minimal desingularization gives the simply con-
nected algebraic surface Y(D). (For an introduction to Hilbert modular surfaces
see [15] and [19].) The surface Y (D) is rational for exactly 10 discriminants [19];
for all other discriminants it has a unique minimal model Y, , (D). On a
nonrational Y(D) certain curves can be blown down successively; they are
described in [19]. The resulting surface Y%D) is conjectured to be equal to
Y min(D). This has been proved in many cases (van der Geer and Van de Ven
[10}, Hirzebruch [16}]). Freitag {7] and van der Geer [9] showed that for congru-
ence subgroups T of G of sufficiently high level (I' operates freely on H?), the

minimal resolution of the cusps of H2/T leads to a minimal algebraic surface.
The vector space of cusp forms of weight 2 for G is naturally isomorphic to

HY%X, Q% if X is any nonsingular model for the algebraic surface H2/G. The
same holds for a congruence subgroup I' of G. (This result is due to Freitag;
compare Hirzebruch {15, Section 3.5, Lemmal). Thus the canonical map of X in
P,_(C) (where g=dimH %X, Q%) is induced by the “map” of H?/G in
P,_,(C) given by g linearly independent cusp forms of weight 2. Therefore the
canonical map is especially interesting from the point of view of modular form
theory as well. A cusp form of weight 2m with m > 1, in general, cannot be
extended to the nonsingular model. The complete linear system of nonnegative
m-fold canonical divisors is a birational invariant, but for m > 1, in general, it is
smaller than the system of divisors of cusp forms of weight 2m (such a divisor
can have components with negative multiplicities on the nonsingular model).

If the Hilbert modular surface Y% D) is of general type, then K2 > 0. (See
Hirzebruch and Zagier [19].) Because it is simply connected (Svaréman [30]), a
divisor D satisfying (1) in the Proposition of Section 2 is a canonical divisor. It is
a nice program to write down such a divisor D in terms of explicitly known
curves, to prove minimality in this way, and to get information on the canonical
map by special properties of D. (Compare van der Geer and Zagier [8, 9, 11] for
very similar studies.) As mentioned before, the surface Y (D) is rational for
exactly 10 discriminants; it is not rational and not of general type for .22
discriminants, the largest one being 165. In these 22 cases Y%(D) is minimal,
namely a K3-surface or an honestly elliptic surface [19]. In all other cases, the
surface is of general type. The calculations of [19] show that among those of
general type there are exactly five discriminants with geometric genus 3 and
seven discriminants with geometric genus 4. In these cases minimality can be
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proved and the nature of the canonical map determined:
Theorem. The Hilbert modular surfaces Y%(D) of general type with p, = 3,4 and
their values of K* are given by the following lists.

pg=3:
D 89 97 124 141 168

K*l2 2 2 2 4

pg=4:
D |10l 104 109 113 133 156 161
K2l 4 4 4 6 4 4 4

In these cases YD) is minimal. The canonical map is everywhere defined. For
P, =3 and D # 168 it is a map of degree 2 on the projective plane ramified along a
curve of degree 8 having as singularities only double points of type a, (Moishezon
surface, Example 1 of Section 1). For D = 168 the canonical map is of degree 4
(Example 2 in Section 1: the quartic A is reducible and consists of two conics; the
quartic B is irreducible). For p, = 4 and D # 113 the canonical map is of degree 2
onto a quadric surface in Py(C) which is nonsingular for D # 104 and is a cone for
D = 104 (Example 3 in Section 1). For D = 113 the surface Y°(D) is mapped with
degree 2 onto a cubic surface (Example S in Section 1) which has one singularity
(of type A5). On this cubic surface there are three lines passing through one point
(Eckardt point). The cubic surface is uniquely determined by these two properties:
One singularity (of type A,), one Eckardt point.

We cannot give complete proofs here. Every case has to be studied individu-
ally. The following remarks will make it possible for the reader to check the
results.

The Hilbert modular group G admits the Hurwitz—Maass extension G,, (see
[19]). We take the matrices (¢ 5) with entries in K such that w = ad — bc is totally
positive and a/yw , b/yw , ¢/Yw ,d/w are algebraic integers not necessarily in
0. The group G,, is the group of all these matrices divided by its center

((5 Srace)

The group G,,/ G is abelian of type (2, . . ., 2) with r — | factors Z /2, where t is
the number of primes dividing the discriminant D. The group G, /G acts on
Y°(D). It can be extended by the involution induced by the involution 7 : (z,, z,)
—->(z,,2,) of H X H. This gives an abelian group M of type (2, . . ., 2) of order
2‘ acting on Y% D). Using results of Koll [26] and Hausmann (13] it is possible
to determine the representation of M on H(Y%(D), %), i.e. on the space of cusp
forms of weight 2. Let M° be the subgroup of M consisting of the elements
which operate on the cusps forms by *identity. Then the canonical map factors
through Y%(D)/M?°. For the discriminants in the theorem M° has order 2
except for D = 168, where it has order 4. The nontrivial element of M°
(D # 168) is 7 except for D = 156, where it is 7. (Here a is the element of
G,,/G represented by a matrix of determinant 13.) For D = 168 we have
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M°= (1, B, 7, Br), where B is the element of G,,/ G representable by a matrix
of determinant 84.

The *“explicitly known” curves which we use to construct canonical divisors
are the curves coming from the resolution of the quotient singularities and the
singularities at the cusps together with the modular curves F,, also called
skew-Hermitian curves. By a skew-Hermitian matrix we mean a matrix of the
form

al\/E A

_ where A €0 and a},a, € Z.
~X  ayD

The matrix is called primitive if there is no natural number >1 dividing
a,,a,,\. For given N = a,a,D + A\’ the curve F, in H%/G is defined to be the
set of all points of H2/G which have representatives (z,,2,) € H? for which
there exists a primitive skew-Hermitian matrix of determinant N such that

ayD z,z,— Nz, + Az, + ayD = 0.

It can be shown that F,, defines a curve in H?/G and also in Y(D) and Y% D).
The curve F, is nonempty if and only if none of the character values (Dq/ N)
equal — 1 where D is the product of the ¢ prime discriminants D,.

The group M leaves F, invariant and permutes the connectedness compo-
nents of Fy. The surface Y% D) is obtained by blowing down all components of
F,, F,, Fy, F,, and F, (if 3| D), provided these curves are not empty, together
with the curves into which the quotient singularities lying on F, and F, were
resolved. The intersection hehavior of the curves F, is completely known (see
Hirzebruch and Zagier [20] for D a prime, Hausmann [13] in general). It is also
known how the F,, pass through the curves of the resolution of the cusps. The
number of connectedness components of F,, was determined in [13]. Also the
genus g(C) and the value KC can be calculated for each connectedness
component C of F, (Hirzebruch and Zagier [15, 19]), at least if N satisfies
certain number-theoretical conditions which are always fulfilled in the cases we
need. Therefore all the information needed to construct canonical divisors is
available.

If an element « of G,, /G can be represented by a primitive matrix

A - azy/lT
a VD A

with determinant N dividing D, then the curve F, is pointwise fixed under ar.
Using this remark, one can determine the ramification curve C in the above
cases. For D =1 mod 4 the curve C equals Fj,. For D =0 mod 4 (D # 156,
D # 168) the curve C is the union of Fj, and F, . For D = 156 the ramification
curve is F; U F,,. For D = 168 the curve F i, U F,, is pointwise fixed under 7,
and Fg, pointwise fixed under Sr.

We now give some examples. All canonical divisors constructed will be
invariant under M with one exception, and all of them arise in the way indicated
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in Section 2. They not only help to prove minimality, but are also important to
determine the nature of the canonical map.

D=124

We construct a configuration of type (I') involving F, (as curve I:), Fg, Fy, Fig,
and curves coming from the singularities of H?/G. We have k, = k, = 5 and
ky=1.

D =141

We construct a configuration of type (1”) involving F,, as curve L, using F; and
curves coming from the singularity at the unique cusp. We have k, = k, = 3.

D =168

We get a configuration of type (II) involving F, and F,;. The two conics are the
images of F,, and F; the quartic B is the image of of Fg,. The two conics
touch each other (double point a; of A); the quartic B touches each conic
(double point a; of 4 U B) and has itself a double point a;.

D =133

We obtain a configuration of type (IIl') involving F,, F,, F,, where one compo-
nent of F), is the elliptic curve. This divisor is not invariant under the nontrivial
element of G,/ G.

D =104

The configuration is of type (II"). The curve with self-intersection —4 is F,.
The chains of (—2)-curves come from the two cusp singularities. The two
(—2)-curves which map to the vertex of the cone are the resolutions of the two
quotient singularities of order 2 lying on F,.

D=113

The curves Fig, Fq, F3 are the three elliptic curves of configuration (V). The
two intersection points are special points (Hirzebruch and Zagier [20]) with the
quadratic form 15u? + 16uv + 13v? of discriminant —7 X 113, which represents
15, 16, and 18. The A;-singularity of the cubic comes from 2 chains of
(—2)-curves of length 3 interchanged under the involution 7, which occur in the
resolution of the unique cusp of H2/G. As Wall pointed out to me, there is a
one-parameter family of cubics with exactly one singular point (of type 4,), and
in this family there is a unique cubic with an Eckardt point. In fact this cubic
can be written down with respect to suitable homogeneous coordinates as

xyw + x> — xz? — yz22 + y3 = 0.

The cubic has 10 lines, They are the images of F,,, F5, F\,, Fys, Fig, F\g, Fys, Of
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two pairs of (—3)-curves of the cusp resolution, and of the pair of (—3)-curves
which arise from the two quotient singularities of order 3 lying on F,.

The singular point of the cubic surface is (x, y,z,w) = (0,0,0, I). The plane
w = 3(x + y) intersects the cubic surface in the three lines given by x + y =0,
z=Xx+y,z= —(x+y), which pass through the Eckardt point (1, — 1,0, 0).

The ramification curve C (corresponding to F, ;) has on the cubic surface 5
singularities of type a,, 3 of type a,, 2 of type a5, 1 of type a;. The genus of C
equals 3.

4. More Examples

It is interesting to study the canonical map for all Hilbert modular surfaces
Y°(D) which fall into the range of Horikawa’s classification @2p, ~4< K?
< 2p, — 2). These are only finitely many. For large D we have X 2~8pg. Since
K? is even for YD), we should investigate the discriminants with K2 = 2p, — 4
or K?=2p —2. It turns out that K*=2p — 4 happens only if p, =3 or 4,
These discriminants were treated in Section 3. We have K?= 2p, —2 for
D =168 (p,=3)and D = 113 ( Pg = 4). Also these cases were studied in Section
3. Otherwise K% = 2p, — 2 if and only if D =129, 136, 184 (p, =5), D = 145,
149 (p, = 6), D = 204 (p, = 7).

We only consider the prime discriminant D = 149. It turns out that Y°(149) is
minimal. It is the double cover of a del Pezzo surface W of degree 5 in P(C)
ramified along a 4-fold anticanonical curve C of W corresponding to F,. The
curve C on W has 9 singularities of type a,, 8 singularities of type a,, 3 of type
a;, and 1 of type a,,. It has genus 3.

The surface W contains 10 lines (exceptional curves). They are the images of
F\g, Fyy, Fyy, Fyy, Fag, Fyg, of two pairs of (—3)-curves coming from the resolu-
tion of the cusp, and of the two pairs of (— 3)-curves coming from resolving the
four quotient singularities of order 3 lying on Fg and F 4.

The surface Y°(149) has exactly 44 nonsingular rational curves of self-
intersection —2 which, together with the above-mentioned 14 irreducible curves
(mapped to the 10 lines of the del Pezzo surface), generate a vector space of
algebraic cycles of dimension 53. This vector space coincides with the space of
algebraic cycles generated by the curves F on Y%149) and the curves coming
from resolving the singularities of H2/G. In fact, the Picard number of Y°(149)
is greater than or equal to 54. We have h"' = 60.

We now consider two examples of congruence subgroups.

- Let G be the Hilbert modular group for D = 13 and T the principal congru-
ence subgroup for the ideal (2) of K = Q(v13 ). Let Y be the surface obtained by
resolving the 5 cusps of #?/T. For Y we have p, =4 and K?= —5. However,
on Y the curve F, has 10 components, all of which are exceptional curves.
Blowing down these ten curves, we obtain a new surface with K% = 5. For each
of the five cusps van der Geer and Zagier construct in [11] a configuration (IV)
(with the three transversal intersections of the three lines in (IV) replaced by a
chain of two (—2)-curves in each case). The 3 lines and the (—2)-curves
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correspond to the resolution of the cusp; the conic is one of the five components
of F,. In this way the authors of [11] obtain 5 cusp forms sq, s, . . . , 5, of weight
2 satisfying s, + s, + - - - + 5, =0 and prove that the canonical map ¢ is a
holomorphic mapping of degree 1 of Y onto the quintic surface in P,(C) defined
by the equations o, = 0, 20, — 6,0, = 0, where the 15 singularities of the quintic
are of type A4,. They are images of the 15 chains of (—2)-curves of length 2
mentioned before. Otherwise ¢, is biholomorphic. (o; is the ith elementary
symmetric function in the s;.)

Let G be the Hilbert modular group for D =8. The prime 7 splits in
K= 0Q0(H2). We have (7) = gg’. Consider the principal congruence subgroup I
of G for the ideal g = (3 +7 ). The group G/T is isomorphic to PSL(F;), the
famous simple group G,q of order 168. The group I acts freely on HZ2 The
surface H2/T has to be compactified by eight cusps corresponding to the points
of P,(F,). The resolution of each of the eight cusps of H2/T consists of a cycle
of six rational nonsingular curves with self-intersection number —4, —2, —4,
—2, —4, —2. We denote the algebraic surface obtained by resolving the 5 cusps
by Y. The normalized Euler volume of H?/G equals 2¢{x(—1) = 1. Therefore
the Euler number of H2/T is 168/6 = 28. For the Euler number of Y we get

e(Y)=28+8x6=76.

Since Q(y2 ) has a unit of negative norm, the arithmetic genus of Y equals
1 e(H?/T) = 1. (See Hirzebruch [15, Section 3.6].)

The curve F, of Y is irreducible, nonsingular, and isomorphic to H/I'(7)
where T'(7) is the principal congruence subgroup of SL(Z)/{ =1} of level 7. It
has 24 cusps. The Euler number is given by the formula

e(F)=—1-168+24= -4,

Here — } is the normalized Euler volume of H/SL,(Z). Hence F, has genus 3.
We also consider the curve F, of Y. It is irreducible and nonsingular. The

quotient of F, by G,¢ = G/T is the curve F, in H?/ G whose nonsingular model
is H/T§(2); see [15, Section 4.1]. Therefore

e(F))=—1-2.168+24= —18.

Thus F, has genus 10. It can be shown that F, and F, pass through each of the
eight resolved cusps of Y as shown in Figure 11. The intersection of a canonical
divisor K of Y with F, or F, can be calculated [I5, Section 4.3, (19)]. This
intersection number equals the normalized Euler volume of the curve multiplied
by —2 decreased by the sum of the intersection numbers with the curves in the
resolutions of the cusps.

We have

KFy = +1-168—48=38,
KFy= +1-168-72=12,
F\F,= -4 and F,F,=6.

The curve F, (multiplicity 2) and the twenty-four (— 2)-curves of the eight cusps
of Y constitute a configuration (VI) of Section 2.
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Figure 11

We have proved that Y is a minimal algebraic surface with x =7 and Euler
number 76. By Noether’s formula K2 = 8. We know that Y is simply connected.
Hence p, = 6. According to Horikawa’s result [22] on minimal algebraic surfaces
with K 2 2p — 4, the canonical map is of degree 2 onto a surface of degree 4 in
Py(C). This 1s either the Veronese surface (projective plane) or a ruled surface.
Since G,¢ acts on Y, it also acts on the image surface in P5(C). But a ruled
surface does not admit such an action. Therefore Y is a double cover of the
projective plane branched along a curve of degree 10 (Example 6 in Section 1).

We have seen that

24
D, =2F,+ 3L,
i=1
is a twofold canonical divisor of Y (where the L, are the twenty-four (—2)-
curves occuring in the cusps). We can show in the same way that
24
Dz =) F. 2 + E L‘
i=1
is a threefold canonical divisor. Under the canonical map ¢, : Y- P¢(C), where
x(Y)= P(C), the image of D, U D, must be contained in the curve of
ramification, because D,, D, are not divisible by 2, but have F, and F, as
components of multiplicity 2.
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The group G, acts on Y and also on ¢ (Y) = P,(C). This is the well-known
action of G4 on P,(C), because this action, which is described by Weber [31,
15. Abschnitt] is essentially unique.

The action of G,¢; on the projective plane has a unique invariant curve 4 of
degree 4 and a unique invariant curve B of degree 6. These must be the images
of F, and F,. The curve 4 is the famous curve of genus 3 studied by Felix Klein,
which has G,¢; as automorphism group. The curves 4 and B are nonsingular.
They intersect transversally in 24 points which are the flexes of 4. The 24
tangents of inflexion of 4 are arranged in 8 “triangles”: The tangent 7, of 4 in a
flex p; of A intersects 4 in a flex p, transversally; the tangent T, of 4 in p,
intersects A in a flex p;; the tangent T, of 4 in p, intersects A in p,. The line 7,
is tangent to B in p, with intersection multiplicity 5; the same holds for T, in p,
and for T; in p,.

Under the canonical map the (—4)-curves of a resolution cycle of a cusp go
to such a triangle T, T,, T5. The (—2)-curves are mapped to the flexes p,, p,,
P
The canonical involution o on Y carries a (—4)-curve to another (—4)-curve
which does not belong to any cuspidal resolution. This shows that ¢ is not
modular, ie., it is not induced by an automorphism of H2. Because G, is a
maximal finite automorphism group of P,(C), the automorphism group of Y is
the direct product G, X Z/2, where o is the nontrivial element of Z/2. We
collect the above information in the following theorem.

Theorem. The (desingularized) Hilbert modular surface Y for the field Q(\2 ) and
the principal congruence subgroup of the Hilbert modular group with respect to an
ideal of norm 7 is a minimal algebraic surface with p, = 6 and K* = 8. Under the
canonical map it can be realized as the desingularized double cover of the Veronese
surface (identified with P,(C)) ramified along the curve A U B of degree 10, where
A and B are the unique invariant curves of degree 4 and 6 respectively for the action
of Ggg on Py(C). The full automorphism group of Y is G X Z/2, where the
canonical involution of Y is the nontrivial element of Z /2. This involution is not
modular.

5. Remarks on the Symmetric Hilbert Modular Group and on
“Modular” Modular Forms

As mentioned in Section 3, the surface Y °(D) admits an action of the group M
of order 2. If D is a prime p (p =1 mod 4), then M consists only of the
involution 7 induced by (z,,2z,) > (z,,z;). It would be interesting to study the
canonical map for the surfaces Y°(D)/ M. If, for example, the minimal model of
such a surface is a Moishezon surface, then the involution on it is nonmodular.
However, only some results on Y p)/r (p prime) are known (Hirzebruch and
Van de Ven [18]). The surface Y°(p)/ is rational for exactly 24 primes. If it is
not rational, then the surface Y(p) is defined by blowing down on Y°( P/
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certain curves F, and curves coming from the resolution of cusp and quotient
singularities (Hirzebruch [16]).

It is conjectured that Y,%(p) is minimal.

The geometric genus of Y,°(p) equals 3 if and only if p = 313, 653, 677, 773.
In these cases K2 =2, the surface is minimal and is a Moishezon surface [18].

The geometric genus of Y, p) equals 4 if and only if p = 337, 401, 541, 797.
In these cases K2 =5, 6, 6, 5. Are these surfaces minimal? If yes, is the canonical
map holomorphic of degree 1 onto a quintic surface for p =337, 797 and a
double cover of a cubic surface for p = 401, 541?

The construction of a canonical divisor on Y% D) by curves Fy and curves
coming from the singularities gives a cusp form f of weight 2 for the Hilbert
modular group G of Q(YD ) whose zero divisor ( fHon H?/G consists only of
modular curves F,. Such a cusp form could be called “modular”. The same
remark applies to Y°(p), where such canonical divisors give “modular” cusps
forms of weight 2 satisfying f(z,,z,) = — f(z;, z,). (See [18, p. 147, Remark 2].) If
one had a general theorem which guarantees the existence of a “modular” cusp
form f of weight 2 (which is supposed to be skew-symmetric if one considers
Y% p)), then the problem of minimality would be solved, because then all
exceptional curves of a desingularization Y of H?/G or (H?/G)/r must be

contained in the canonical divisor defined by f on Y, and this canonical divisor
consists only of curves F, and curves coming from singularities.
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