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0. Quadratic formas.

let A be an integral domain. By a lattice over A
(or simply an A-lattice) we shall mean a finitely
generated, free, unitary A-module. The terms base, rank,
etc., will be employed in the usual fashion. Occasionally,
we shall conslider A 1itself as an A-lattice of rank 1
(the module structure being defined by the ring
operations in A). For a given A-lattice, V , the
module HomA(V,A) = V' 1s agailn a lattice of the same
rank. We shall call V' +the dual lattice of V. There

is a pairing (called the Kronedker product) from V' X V
into A defined by <x',x> = x'(x) for x'€ V' and

x € V.

For our purpose, a quadratic form, £ = (f,V), over

A may be defined to be a billnear, symmetric pairing

F: VY xV 4 ,
where V is an A-lattlce and, in this case, we shall
also say that f 1is defined on V . To such a form, f
there corresponds a linear map ﬁ’: V —»V', to be called

the correlatlion assoclated with - f , given by

(0.1) <F(x),y> = £(x,y)
for 3l1 x and y in V ., The form, f, will be termed

non-degenerate 1f its assoclated correlation, ff,» is




injective {1.e. a monomorphism). This property is also
characterized by

(0.2) £{x,y) =0 forall y € V=3x=20.
If a base (ei)iﬁiﬁ? is chosen in V , there is a

dual base (e'i)ljﬁj? in V' characterized by the

property that <e';.,ep = §i3 (the Kronecker deltas).
Put 3191) o= ?iqij e'J, then {iij = f(ei,ej). The matrix

M=M= (d, J) will be called the matrix of f (with
vespect to (e,)), and its rank, which is independent
of the base chosen, will be called the rank of f . We
shall only consider non-degenerate quadratlc forms;
therefore the rank of a form (f,V) is the same as the
rank of the lattice V . By means of a chosen base,
(ei), we may express each element of V Dby a column

matrix, B.g., xt = (xl’o'o, Xr) aﬂd yt

= (yl,---, yl")"
where the super-script, t, denotes the transposition.

Then we have

t
P0u3) = xMy = O dyy % ¥y (3= dy) -

e (ei) 1<i<r 1is another base for V, obtained from

(ei) by applying an invertible { = non-singular) matrix,
P , then the matrix,'ﬁ » of £ relative to the new base
is clearly given by M o= Pt MP . Thus the determinant of
M and M differs only by the square of a unit. For a

glven base in V , we deflne the determinant, det f ,



of £ to be deth.Eherefore det £ 1is, apart from a
factor which 1s the square of a unit, independent of the
choice of the base in V .

Two quadratic forms f = (f,V) and ¢q = (q,W) over
the same integral domain, A, are sald to be equivalent,
in symbol f ~ g , if there exists an lsomorphism,
u:r VW, of V onto W such that f(x,y) = g(u(x), u(y)).
Such an lgsomorphism, u, will be referred to as an
1sometry (more precisely, an (f,g)-isometry). In
particular, if V=W and f =g , we shall ecall u an
automorph (of £). Suppose we are given a quadratic form
g on W and a lattice, V , lisomorphic to W . For each
isomorphism, wu: V --W , there 1s a unique quadratic form,

f = u* g, defined on V , which renders u an isometry.

If bases are chosen in V and W , then f and

g are expressed by matrices Mf and Mg . We have,

plainly, the following lemma.

LEMMA (0.3) The quadratic forms, f and g, are

equlvalent if, and only if, there exists and invertible

matrix, P , such that Mf = PtMgP » 1.e. the matrices

Mf and Mg are congruent.

Por this reason it is often convenlent to use the

matrical language in dealing with quadratic forms; only



in this case one has to be careful to observe what

propertles are invarlant under a change of bases.

Let fi be quadratic forms defined on A-lattices
Vi, (1 = 1,2). A quadratic form, f, defined on the
direct sum, Vi ) Vé s 1s termed the sum of fl and
f, , or in symbol, f =f, + f, , if

£(x) ® %5 5 ¥ DY) = £1(xy5 ¥9) + £5(x, 5 ¥p)
If a base (el, sees €5 €15 eees eS) is given for
Vl @Vz » then the matrices, M, M

1
forms £, fl and f2 respectively are related by

o)

If f ~f, + f, , we shall say that f; (or f,) splits

and Iv'l2 » of the

off from f or f decomposes into fl and f2 (under
the equivalence relation -~v).

A quadratic form, f = (f,V), will be called non-
singular if its assoclated correlation ¥: V =V' is an
isomorphism. This means that the matrix, M, of £ 1is
invertible or, what is the same thing, det £ is a unit
in A . If A is a field, then the properties of being
non-singular or non-degenerate colncide. If the restric-

tion of f on a sub-lattice, Vi s of VvV 1is non-singular,

we shall say that f 1is non-singular on Vi . Notice
that 1if fl’ fa are non-singular, so is fl + f2 .



LEMMA (0.4) Suppose that f 1s a quadratic form
defined on V, 63Vé s which 1s non-singular on V, .
Then the restriction, fl’ of f on Vi splits off from

In fact, with respect to a base
(e15--es € 5 € ys ---» €,) of V; &V, , the matrix,
M, of £ 1is of the form

Lt

M & t

M = M=, N=N,
L N

where Mi 18, by assumption, lnvertible. ILet P be the

Invertible matrix

1wty
P =

0 I .J .

M
t 1 0 A
P°MP = ( -1 .t |

Then

which, in view of {0.3), proves the lemma.

A quadratic form f on V 1is termed unary, binary,

ternary, ..., r-ary, according as the rank of V is
1, 2, 3, ..., T . To assert that a quadratic form decom-
poses into unary forms 1is equivalent to saying that the

matrix of the form 1s congruent to a dlagonalized matrix.

From now on we shall assume that the integral domain,

A, 1is furthermore a local domain in the sense that there
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exiets a unlique maximal ideal, 4, in A. This assumption
enablesa us to conclude the following trivial but useful
properties of A :
(1) The set, A¥ , of all the unit¢s of A coincides
with A&«
(11) If a,p are units and §,>? are non-units in
A, then g8 and qa +% are units and %) and
a3 are non-units.

The followling theorem generalizes the classical dlagonaliza-

tion theorem of symmetric matrices.

THEOREM (0.5) Every non-singular quadratic form,
f, over a local domain, A , decomposes into unary and
binary forms. If, in addition, 2 € A* then f decom-

poses intoc unary forms.

To prove (0.5), we chose an arbltrary base
(ei)lﬁﬁﬁ? for the lattice V on which f is defined,
and write the matrix of £ as M= (aij) . If a diagonal
entry oy 4 is a unit, then the corresponding unary form
splits off in virtue of (0.4). We may thus assume that no
diagonal entry is in A¥* . Since det £ is a unit,

a;; € A implies that o,y € A¥ for some 1 ,1<1<r;
we lose nothing by assuming Q30 € A* . But then the

matrix



a € aus O = q € A¥
L) * 11 el ¥~ 21 y

has determinant a,; app - 3122 € A* and hence invertible.
The first assertion now follows from (0.4) and a trivial
induction. To prove the second assertion we need only to
show that the matrix (0.6) 1s congruent to one whose
diagonal entries are units; for then we may apply (0.4)
to decompose the corresponding binary form. Indeed the
assumption 2 € A*® shows that the matrix,
)
P =
1 1

is Invertible, and

ot (“11 N A F I T~ *

any 0‘22> { * a3 " 2oyp *agy

gives the desired congruence.

Consider now a quadratic form, f, defined on V .
If a € V 1is such that f(a,a) =g € A* , then the linear

map, ug: V -V , gilven by

_ 2f (x,a)
uy (x) —2222l e -x

is an involution, since u u, = ldentity. It is easy

a

to check that u, is an automorph leaving the element

a fixed (1.e. ua(a) = a). This automorph is also known

as a reflection.
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In the rest of this section we shall assume tacitly

that A 1s a local domain with a maximal ideal m c A

and that 2 1is a unit in A .

LEMMA (0.7) Let f = (f,V) be a quadratic form over
A . If the elements x, y € V are such that f(x,x) =
£f(y,y) = a € A¥ , then there is an automorph u of ¢
which interchanges x and y .

Indeed, the relation f{a,a) € A¥ must be satisfied
by elther a=x -~y or a=x+y . In the first case
U= u‘.a is the desired automorph and in the second, u =-u
is the desired automorph.

THEOREM (0.8) Let fi» f5 and h be quadratic forms
over A , where h 1is non-singular. If f; +h ~ £, +h

This may be regarded as the “cancellation law" for

forms. Since h decomposes into unary forms by (0.5),
we lose nothing by assuming h 1itself being unary in the
statement of (0.8). Let the lattices on which £, , f,
and h are defined be denoted by Vi, Vé and W , respec-
tively. Then W has rank 1; let w be its base. By
assumption, there 1s an 1sometry u: Vl eW =V, e Ww.
Then (£, + H(w,w) = h(w,w) =(f; + B(w,w) =

(£, + B(u(w), u(w)), which 1is a unit because h is non-
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singular. We apply (G.7) to obtain an automorph, v, of
f, + h such that v(w) = u(w) and v(u(w)) =w . The
composite map vu : Vl dw «-»Vg AW 1is an isometry which
carries w Iinto w . Therefore the restriction of wu

on Vi gives the reguired isometry to conclude fl’m’fz .

Por notational convenlence, we shall use z{in to
denote the multiplicative cyclic group of order n . Thus
(Gn is actually the group Z’h written multiplicatively.
The multiplicative group , A* , of A has a subgroup
A*H = {XQ‘ x € A¥*} . We shall assume, for a moment, that

the ring A satisfies the additlonal condition

£
Iet the two cosets in A’/"A,,_* be represented by 1 and
5, (1,€ € a%). It follows quickly from (0.5) that

every quadratic form, f , over A 1is equlvalent to one

of the form

2 2 2 2 - 2
xl +x2 +"'+xk + éxk+1+...+ txk»!-m .

et g Dbe another quadratic form over A and

2 2 2 2 2
gfvyl +y2 +...+yr +£yr+1+...+£yr+s .

We may assume that k < r. From (0.8), we see that

£ ~g 1if, and only if

~ 2 ~ P2 ~ 2 ~ 2
(0.11)) E(X) " + eee + X ) ~(F7+ o + T,

In particular, if A = R, the real fleld, then % may be

o



0 ~ 10

taken as ~1. The relation (0.11) holds if, and only if,

m-8 = -k =0 . This gives us Sylvester's law of inertia.

Recall that the determinant, det f, of a form, f, 1s
determined up to the square of a unit. Hence for non-
singular forms over A , det f modulo A¥* i3 well defined.
We shall denote by DET f the coset in */ ., containing
det £ . Now assume that A satisfies yet another

condition.

£ O ‘10
(0.12) the matrices ( o 2) and (O 1 ) are congruent
over A .
Then, with the notations defined above, f~g 1if, and
only 1f, m - 8 = r - k 18 even; in other words, if

DET f = DET g . We have shown

THEOREM (0.13) If A satisfies the additional
assumptions (0.10)and (0.12), then two quadratic forms,
f and g, of the same rank over A are equivalent 1if,

and only 1f DET f = DET g.

We have been working under the general assumptlon
that A 1is a local domain in which 2 1s a unit. Perhaps
a few examples of such domains are now in order. In fact,
any field of characteristic different from 2 1s such a
domain (with 4+ = [0}). As examples we mention

a) @, R, C the flelds of rational, real and
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complex numbers,

b) PF(p) the field of p-adic numbers, where p
is a (rational) prime, and

c) Z@ the (finite) field of rational integers
modulo p , where p 1is an odd prime.
For local domain which are not fields we have

a) R(p) , Q(p) the ring of p-adle integers and
the ring of rational p-adic integers (p odd prime). We
may regard Q(p) as R(p)" € which consists of all the
fractions '%~E Q with b g 0 (mod p). Notice that the
maximal ideal, s# , in R(p) 1s generated by the single
element, p € R(p) . Indeed R(p) iz a prineipal ideal
domain in which each ideal is of the form p° R(p) . Thus
it is meaningful to talk about congruence modulo pr in
R(p) . We shall also make the convention that R(») =
F(w) =R .

As one may expect, particular cholce of A leads to
more specific propertles. We shall sample a few of them
which we shall hwe occasion to use. If A = Zp s the
prime field of integers moduloc p , (p odd) then
A*”ﬂsﬂbﬁl is of even order, and hence A*YA*yaGE . We

define the Legendre symbol (q {p) for gq € &¥ by

(alp) =1 if g € A%

{0.14) '
(a|p) = -1 Af g § A
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Prom (0.13) we have

COROLLARY (0.15) If A = Z% ( p 0odd prime), then
two quadratic forms f , g of the same rank over A are

equivalent if, and only if (det £|p) = (det &]P).

To prove (0.15) we need only check that (0.12) holds
in Z% » Indeed, we shall prove the following lemma
which clearly implies (0.12).

LEMMA (0.16) If o and g are elements of Zg* s

then axa + 3y2 = 1 1s solvable in 2%

L 4

For, if we denote by H the subset {0, 1, 2...,Q§L
of Z% » the maps 1,j : H «azb, glven by
1(x) = ax®  ,  3(s) =1-g5°,
are both Iinjectlive. Therefore thelr image sets have at

least one element in common. This clearly proves (0.16}.

We recall that a sequence {ai} of p-adic numbers
converges to a limit (in P(p)) if (e, -o,)~>0 as
n— «, (see e.g. Van der Waerden: Algebra I, S5Ste Aufl.
p. 255). We may also talk aboubt convergence in lattice
over PF(p) or R(p) Just as we do, say, in real vector

spaces.

LEMMA (0.17) Let f = (f,V) be a quadratic form

over R(p), not necessarily non-singular. If there
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exists an element x € V such that f(x,x) = c¢(mod p*) ,
where ¢ € R(p)¥ and w =1 or 3 according as p 1is
odd or p =2 , then there is % € V such that

£{%,%) = ¢ .

Put f(x,x)-—c=ptu, where t > 1 iIf p is

odd end t > 3 if p =2 . Define
t
}" p u -
xlax*e‘ﬂx,x)){¢
This 1s meaningful because f(x,x) is invertible and, even
in case where p = 2 , the factor —,i'; is admissible

because ¢t > 1 . Then we have

1 .2t 2
f(xl,xl) - ¢ =5p " u f£(x,x)
=0 (mod p"*Y)

in all cases. By this means we may construct a sequence
Xys Kos «es of elements in a sub-lattice of rank 1 in V
such that (x;} converges to an element % € V, and

£(¥,X) = ¢ . This proves the lemma.
Let 4w be the maximal ideal in R(p) . Then R(p)/w
- Zp s the prime field of characteristic p . Thus for

each g € R(p)* , o modulo p is in Zp‘?". We have

COROLLARY (0.18) If p 1s an odd prime, then

RJR(py*e8, and ir p =2, PV Ry e, ., .

In fact, putting f to be the unary form axg in

(0.17) for a € R(p)* , the case where p 1is odd follows
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immediately from the fact that Zp*' »x a6, . For the
case p = 2 , simllar argument applies and the desired
result may be obtained by appealing to the properties of
R{(2) . Using (0.16), we get

COROLLARY (0.19) If o and B are elements in
R(pf* and p 1s odd, then axle + 5x22 =1 has a solution

in R(p) .

It is of interest to study when does axl2 + Bx22 = 1

have a solution in other local rings. PFor fields

F(2), P(3), ..., F(o) =R , this leads to the Hilbert symbol

(a,a%) defined as follows: for a, B € F(p)*, P =2, 3,..a
(finite primes) or p = e,

(/(a,B&) =1 if aX12 + Bx22 =1 has a solution
in F(p),
(a:B)p = -1 otherwise.

We 1ist with B. W. Jones the following properties of the
Hilbert symbols, (see Jones: The Arithmatic Theory of
Quadratic forms, Carus Monographs No. 10, p. 27).

1. (asp), =1 unless o and g are both negative

2. (asp), = (Bsa)

5. (af?, pe¥), = (@p),

4. (a,—a)p = 1

5. If a=p’a; , p=pB with a, B € R(D)* ,

then
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ac (B)y = (-1]2)% (o[ )" (&) | D)%,
if p 1is odd and ¢ =.
b. (ap)y = (2 |og)® (2] 8% (-1) (@1 1) (By-1)/4 -

' If p 1is prime to 2aB , (a,ﬁ)p =1, for p
finite and a,p € R{p) .

6. (a:p), (as¥)y = (asB), -

7f (a,a)p = (a,—l)p .

8. (af, Bf), = (asB), (55 -a), -

9. If B 1s a non-square in F(p) and ¢ =1 or -1,
there 18 for each prime p an integer o such
that (a,ﬁ)p =c .

10. If a, b e Q*,

TT‘(a,b)p =1 .

where the product extends over all primes inecluding
oD

»

Properties 1, 2, 3 are obvious. For property 4,
notice that x; = (1 + a"l)/Q s Ep = (1 - a*l)/E is a
solution. Property 5' can be deduced from (0.19).

For property 5 we remark that, since R(%;?%(p)**ﬁﬁgb

(p cdd), (31} p) =1 if a; 1s a square; ctherwisg

(“1} p) = -1 . If p=2, then (2 Xal) = (~1)(“1 -1)/8
For property 10, we notice that the product is well defilned,
since all but finlte factors are equal to 1 . We shall
omit the proofs of properties 5 through 10, (cf., Jones

op. cit. pp. 28-31).
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Our next goal is to define the Hasse-Minkowskl symbol

for a quadratic form over F(p) through a diagonalization
of its matrix. An invariant definition of this symbol

may be found in an appendix at the end of this section.

Let diag (ayay +++ @,) denote the dlagonalized matrix
whose diagonal entrles are GysQps sses Qo A quadratic
form, £ , is said to be dlagonal 1f its matrix has been

2 2
dlagonalized, 1.e. [ 18 of the form Gy Xy et a X7 .

LEMMA (0.20) Let f and g be two diagonal forms
over a fleld K . Then f may be carried into g through
successive application of binary transformations such that

at each stage the resulting form remains diagonal.

Let the matrices of f and g be, respectively,
M = diag (a1 .oe “r) and N = diag (31 .o Br)‘ First
cbserve that by binary transformations we may permute ai's
among themselves. Our proof 1s by induction on r . The
case r = 2 1is trivial. Using theorem {(0.8) and the in-
duction hypothesis, we see that for r > 2 1t suffices to
show that diag (al eee ar) may be transformed into the
form dlag (51 To = ;b) by binary transformations such
that at each stage the resulting form remains diagonal.
By assumption, there is a non-singular matrix R = (.fij)
such that R'MR = N . Since g, = 3ayd), # O we may, by
rearranging the order of g, 's (hence;jzj's) if necessary,
assume
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2 2 2 2
all distinct from zero. Now, the binary transformation

whose matrix 1s of the form

{ ;
f1 T 12 %

0
g = ¥21 Ti11 o

o) t "y

t 2 7 2
carries M into U'MU = diag ((o; 1, + andh; ) ¥p az---a,)
which may then be carrled by binary transformations into
2 2
diag ((al fll + 02 621 ) a3 s ar’KQ ) . Since al' =
2 2 e
a3 fll + C"ele #0 . Put aé =Qaz 5 311 = 1, the above

construction may be repeated with ai, aé ’;fil in places

of a;, a, and 531' The proof of (0.20) is completed.

Now let f be a non-singular quadratic form over
F(p). We may diagonalize f according to (0.5). Let
the matrix of f be M, = dlag (ozl ces O‘r)' We define

(0.21) ep(f) = ¢ (o) --- o) wﬂ;(ai,aj)p s
which is either 1 or -1 . We shall show that cp(f‘)
depends only on the form, f, but not on the particular
dlagonalization M, . Indeed, if diag ({31 e ;33?) gives
another dlagonallzation of [ then

LEMMA (0.22) Cp(al “aw ar) = cp(ﬁl . 6r) .

Por the case r =1 , we define cp(f) = 1 , and there
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is nothing to prove. It is easlly seen that, for r =2 ,
cp(f) = 1 or -1 according as f(x,x) =1 has or has not as
solution; thils property is obviously independent of the
dilagonalization. For the general case, we observe that,
by properties (2) and (3) of the Hilbert symbols,

cp(al ces ar) = Cp(ala2) cp(a5 ves “r)(alaz’asaé'"Q%)p .
Observe also that cp(a1 ees ar) is unchanged if we permute
the order of a,'s . Therefore cp(al...ar) is invariant
under binary transformations provided that the resulting

form 1s again dlagonal. The lemma now follows from (0.20).

The symbol, c{f), which depends only on the guadratic
form, £, wlll be called the Hasse-Minkowskl symbol.

COROLLARY (0.23) let £, £, and f, be guadratic forms
over F(p) such that f = £y + f, - Then

cp(f) = cp(fl) cp(fe) (det £, det £5) D .

A quadratic form, f, over R(p) can always be regarded
as a form over F(p), since. R(p) < F(p); thus
the symbol cp(f) is also defined. One deduces easily
from property (5') of the Hilbert symbol that

LEMMA (0.24) If f 1s a non-singular quadratic form
over R(p) , p #2 . Then cp(f) =1,

By the same token we may consider cp(f) for
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PpP=2, 3, ¢evo0 If f 1is a qyadratic form over § ,

the fleld of rational numbers. Recall that 1f a, b,

are rational numbers, then (a,b)p > for p ranging over
2, 3, 5 ... », has at most finitely many values # 1
and 12’(a,b)p = 1 . Therefore we have

LEMMA (0.25) If f 1is a non-degenerate quadratilc

form over @ then

77 cp(f) = 1
Y

where p ranges over 2, 3, cee; @ o



Appendlx A.

Let B be a commutative monoid ( = semi-group) in
the sense of Bourbaki (Algebre CH. I), i.e., no unit is
assumed. We use + to denote the monold operation in B .
Consider B as a set of elements and let f{(B) be the
free abellan group generated by the elements of B . The
group operation in éFTB) will be denoted by + . We may
consider B as embedded in [{B). Let ((B) be the sub-
group of £ (B) generated by the elements of the form

(bl-f-ba)—bl-bz (b, 5 b, € B)
and let G(B) s‘j*(§}4§(3) . There is an obvious canonical
map J:B —G(B) which is a monoid-homomorphism. With
respect to the map J , G(B) has the following universal
property: if h: B -G is (monoid-) homomorphism of B
into an abellan group, G, then there exists a group-homo-
morphism g : G(B) — G such that gJ = h ; that is, the

dlagram 1s commutative.

B —3J . a(B)

EXERCISE (A.1) Show that the natural map J : B —G(B)
is inJjective 1f, and only if, the cancellation law holds in
B .

EXAMPLE (A.2) let X be a topological space and let



B be the set of equlivalence classes of real (resp. complex)
vector bundles over X . (We do not assume X to be
connected. The typlcal fibre may vary from (connected-)
component to component.) With respect to Whitney sum, + ,
B 1s a commutative monoid and the group G(B) 1is usually
denoted by KO(X) (Resp. K(X)).

EXAMPLE (A.3) Let A be an integral domain and let
gr(ﬁ) (resp. {F;(A)) be the set of equivalence classes of
non-degenerate (resp. non-singular) guadratic forms (of
various ranks) over A . Then Zi(a) (resp. 7 (A)) 1is
a commutative monoid with respect to the operation, + ,
defined in §0 . Notice that the cancellation law holds in

% o(a) (cf. (0.8)) 1f A 1s suitably restricted. Notice
also % _(A) = F(a) if A is a field. The growp G(F(4))
(resp. G(éﬁa(A))) will be denoted by G(A) (resp. G_(A)).

This example will be our main concern in this Appendix.

There is an augmentation vk : G(A)—>Z defined by
assligning to each class of quadratic forms the rank of a
representative. Let f; = (fl,Vi) and f, = (f,, V) be
quadratic forms over A . We define the product, fl ﬁ)fg >
of fl and f2 to be the quadratic form over Vi @h Vé
characterized by



where a4, bi € Vi, i1 =1,2 . This operation, &, induces
a ring structure on the group G{(A) and the map, rk ,
extends to a ring homomorphism, vk : G(A) > % . This ring,
G(A), will be referred to as the Grothendieck-Witt ring

(of quadratic forms over A ).

REMARK . The groups KO(X) and K{(X) are also aug-
mentable. For simpliclty, we assume X be connected. An
augmentation dim : KO{X) -»Z (resp. dim : K(X) - %Z) may
be defined by assigning to each vector bundle the real
(resp. complex) dimension of its typical fibre. The tensor
product of vector bundles induces a ring structure on

KO(X) (resp. K(X)), known as the Grothendieck ring of X .

We shall not discuss this structure here (cf. e.g. Atiyah-
Hirzebruch, Bull. AMS 65(1959) pp. 276-281).

Returning to G(A), we let 1 denote the class of
gquadratic forms represented by the unary form [ = x2.
There is a ring-homomorphism € : Z —>»G(A) defined by
£(1) =1 . Clearly rk.s = identity. Let G(A) denote
the kernel of rk ; then G(A) 1is an ideal in G{(A). The
short exact sequence

0 »8(a) —a(a) Xz -0
“E
of rings and ring-homomorphlisms splits since 1k «s =

identity on Z . Then G(A) = Z G(A).

There 1is another homomorphism, DET : G (&) > fj:‘«g,..,u



given by the "determinant” , DET , of quadratic forms.
Since DET(fl + £,) = DE‘I‘(fl) DET(f,), this is a group-
homomorphism. If A 1s such that (0.8) holds true, then
we may embed A* o 10 GO(A) by identifying each element
a € AZ;* to the class of the unary form a x> . Observe
that A* s GO(A) generates GO(A) additively in view
of (0.5) if 2 € A¥ ., If A =F 1s a field of character-
istic ¥ 2 , then Fexc G(F) = G (F) - The

restriction of DET on G(F) 1s already an epimorphism

M,
onto %** -3

‘ A
(>In fact, for a € F*/Fw W (a) = (a-1) € G(F)
has the property DET{a - 1) = a . Therefore we have the

short exact sequence (of groups)

(A.4) OﬂL(F)ﬁﬁ(F)—@gF%*Mql ,

where L(F) 1s the kernel of DET . The map 7' : FA?,W_
~—>G(F) given above is, in general, not a homomorphism,
hence (A.4) may not split. Notice also that image of

7 in 'é(F) generates a(F) additively.

EXAMPLES (A.5) g(R)y ~Z+Z, CG(€)A~ Z and
6 (B ~X+ Z .

We shall only ahow the first assertion. If P =R,
then PF* — 1, -1} = G2. Every quadratic form may be

written (uniquely) as o' 1 + o  (-1). Therefore



G(R) » Z + Z . The second assertion is trivial. We shall

prove the third assertlon later.

Next we propose to study G(F(p)) . If p 1is an odd
prime, then F%“ ~0Oy + G, (F =F(p)) . Indeed, from
(0.18), R(p)/*ﬁ(p),,,‘,%(iz ; let its elements be represented
by {1, €} . Then I%”_ is represented by {1, €,p,p€,]}
~ @, - G, . Since (e,e) =1, (&,p) = - (-1|p)
and (P:P)p = (-1 \ p), we have

p=1(mod 4)

(&:P)p = -1
(p,p)p = -1

LEMMA (A.6) For a,p € F(p)" (p)* *
(Q,B)p =l a+p=1+qa8 in G(F(p)) .

Indeed, (a,a)p = 1 means that ax12 + ax22 =1 has

a solution. This 1s equlvalent to saying that

a O /1 O \
and (
O B 0 aB /'
are congruent, which clearly proves the lemma. Thus we

have, in G(F(p)) = G(F) ,

p=1 (mod 4) p =3 (mod 4)
PE m 2 € = 2
€E+p¥l+ep €E+p#Fl+ep

ap-ie 2p7‘2
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where 2 =1 +1 (in G(F)) .

In case p =1 (mod 4), we have
¢(F) =z @ 6(F)
= Z @Zg @ 22y & Zy
1 (€-1) (p-1) (e-1)(p-1)
where the element beneath a group shows a generator of that
group. The last summand, 2%, , 1s L(F) . To be precise,
we must show that (€ - 1) #0, (p - 1) #0 and
(¢ = 1)(p - 1) # 0 ; but these follow from DET (€ - 1)
#1 , DET (p-1)#1 and € + p # 1 + € p , respectively.

For the case p = 3 (mod 4) , we have
6(F) =2 & G(F)
=2 ® Z, @ Z
1 (e-1) (p-1) .
This can be seen as follows. Property 6 of the Hilbert
symbol shows that (p,€ p)p = (e,p)p (p,p) =1 . Therefore
p+€p=1+¢€, i1.e. G(P) 1is generated additively by
(¢ -1) and (p - 1) only, and (p - 1) has order 4
in G(F) . The element 2(p - 1) generates L(F); there~
fore L(F) ™%, .

Finally, we arrive at the case where F = F(2) . As
we know R(QZjﬁ(QY**.QﬂGQ + 6, ; let 1t be represented by
(, e, o €f), (€€ =1,5% =1) . Then Pl Ao
6, - 6, « 6, 1is represented by {1, €, ¥ ,2,2¢,28,
2¢ ¥); 1in fact, using integers modulo 8 we have € = 3



f=5 . Then
(1) (e,€)5 = -1
@) (e.9),
(3) (€,2), = -1
(4) £y =1
(8) (fi2), = -1
(6) (2,2), =1

#
)

1

Putting X, = €, Xy = ¥, Xy = 2, we obtain
Xy + Xy = 1+ Xy Xp
2x2 = 2
2){5 = 2
X+ X Xy = 1+ X
Xy Xp + Xy = 1+ Xy Xp Xz o
Using an argument simllar to that used before, we get
GF(2) =2 & % @ % & %
1 (xa-l) (x3~1) (xl-l)
and L(F(2)) 1s generated by 2(x1 -1). We leave the

details to the reader.

We conclude this Appendix by giving an invariant
definition of the Hasse-Minkowskl symbol. PFor each finite
prime, p, let cé : G(F(p))——>L(F(p)) be a map defined by
cI;(f) =f - DET £-1 - rkfs1+ 1 . Identify L(F(p))
with Z,, then %(ﬂfo or 1 . Define

e, () = (-1)%(")

In case p = o (l.e. F(p) =R) , write f = ote1 + a (-1);
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then o is called the index of f . Define
e (£) = (~l)a—(a* - 1)/2
To see that this symbol cp(f) coincides with the Hasse-
Minkowskl symbol defined in $0 we argue as follows.
Trivially, (write DET f.1 as DET f , etec.),
c'p(f-?-g)uf-l-g-DETf. DETg -rk f - vkg + 1 ,

c'p(f) + c’p(g) =f ~-DEPf ~-rk £ +1+¢g - DET g

Therefore,

(A7) e (f +g) - el () - ¢} (g) = DET f + DET g
- DET f DET g - 1 .
From (A.6) we have
(DET £, DET g), = (-1)RES
where RHS = right hand side of (A.7) . Thus

(-1)% (£ + @) - e (£) -y (8) _ (ppr ¢, pEr 8),

or

(A.8) cp(f + g) = cp(f) cp(g) (DET £, DET g)p
since thls newly defined cp (f) coincides with the one
definedin 0 for unary forms, f , and since every form
over P(p) decomposes into unary forms, the desired result
now follows from (A.8) and (0.5) .

COROLLARY (A.9) Let f be a guadratic form over
F(p) , p finite . Then the equivalence class of f in

a(FP(p)) 1is completely determined by the rk £ , DET f
and cp(f) .
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1. Certain Arithmatical Properties of Quadratic Forms.

Let B be an integral domalin which contains A as
a sub-domain. Then B may be consildered as a torsion-
free module over A . If V 1is an A-lattice, V(jh B
is, in the natural way, a B-lattlice whose rank over B 1s
the same as the rank of V over A . A quadratic form ¢
defined on V extends naturally into a quadratic form
B = (f‘B » V®B) on V®B . This notation will be used
throughout these notes.

A quadratic form over A will be termed integral ,

rational or real according a8 A =Z , § or R. Let f

be a real guadratic form whose matrix has been dlagonalized
according to (0.5). Let o (resp. o~ ) denote the number

of positive (resp. negative) dilagonal entries. Then the
integers o' and o are independent of the diagonaliza-
tion in virtue of Sylvester's law of inertia, which we

have shown in $0 . From what we just said, we may regard
c+ and o as being defined for integral and rational
forms also. Since we only consider non-degenerate quadratic
forms, o + o~ = rk(f), the rank of f . Define the
signature, <7{f), of the form [ to be the integer

ot - o~ . Notice that qoF

and a , and hence the sig-
nature, are also defined for forms over Q(p) = Q " R(p) ,

the ring of rational p-adic integers.



A quadratic form, f , over Z or R(2) is said to
be even if f£(x,x) = 0 (mod 2) for every x €.V , where
V 18 the lattice on which f 1s defined; otherwlse ¢

is termed odd . Since

(1.1) f(x +y, x+¥) = £(x,x) + £(y,¥) + 2f(x,¥)>
f 18 even if, and only 1if, the diagonal entries of 1its
matrix are all even, where an element t € R{(2) 1is called

even or odd according as t = 0 (mod 2) or not.

Consider a quadratic form, f = (f,V), over Z or R(2)
with odd determinant (this property clearly independent of
the base chosen in V). There exists an element w € V ,

in general not unique, satisfying the relation

(1.2) f(x,x) = £(x,w) (mod 2)
for each x € V. For if x = in e, and w-—:EWiei s
1 i
where B1seces € constitute a base of V and Wys Xy
are elements in Z or R(2) as the case may be, then
f(x,x) = f(in €y Zxé ei)
g_% fley.eq) x4 (mod 2) .
On the other hand,
fx,w) = f_ f(ei,ej) Xy Wy o
The relation (1.2) 1s equivalent to
f(ei,ei) = Ef(ei,ej) Wy {mod 2) .
Since det £ #£ 0 (mod 2), we may solve for the coefficlents



wJ s J=1, «o. r,. Buch an element, w , wlll be called

a characteristic element of £ . If W 1is another

characteristic element of f , then f(x, W - w) =0
(mod 2) for every x € V . It follows from the assumption
det £ 30 (mod 2) that

(1.3) Womw+ 22

for some 2z € V . Conversely, any element, w , satisfying

(1.3) 1s a characteristic element whenever w 1is one. Now
£(W,W) = f(w,w) + 4f(w,2) + 4£(z,2) .

We conclude from (1.2) that

(1.4) fw,w) = £(W,w) (mod 8)

It is scarcely necessary to remark that, in R(2), mod 8
means modulo the ideal 2° R(2) . Since the integers, 7%,
form a sub-ring of R(p) for p =2, 3, ves, w3 We may,
in partlcular, consider an integral form as a form over

R(2) .

THEOREM (1.5) Let f be a quadratic form over R(2)
with odd determinant. Then

(1.6) f(w,w) -r -~ det £ 1 =0 (mod 4)
where r =rk f 18 the rank of f .

In view of (1.4), the relation (1.6) 1is meaningful if
det £ modulo 4 is well-defined; but this 1s clear since

det £ 18 determined up to the square of a unit and we are



working in R(2) . One additional remark before we proceed
to prove (1.5): throughout these notes the equality sign,

= , will also stand for the phrase "1ls canonically iso-

morphlc to".

Let £ = (f,V) be the given quadratic form. If r =1,
then V = R(2) and f(x,y) = axy , is odd, where a = det f
(with respect to the canonical base). Thus w =1 1is a
characteristic element of f and (1.6) is clearly satisfied
If r =2 then V = R(2) @ R(2). If furthermore f 1s

an even form, the matrix of f relative to the canonical

base may be written as

(za e\
\ ¢ 2b .}
where ¢ 18 odd because det f 1is odd. Therefore

02 =1 (mod 4). Now, w = O 18 a characteristic element

of £, so we have f(w,w) -r ~det £ +1 =0 - 2 -~ 4ab
+ 02 +1 =0 (mod 4). Thus (1.5) is proved for unary and

binary even forms.

Assume that f = f; + f, 1s a decomposition of f ,
where £y is defined on vy, s 1= 1,2, and VE_Q@'VE =V .
Obviously fi has odd determinant and ry + Py =0 where
r, 1s the rank of f; (1 =1,2). Suppose that, by induc-
tion, the theorem has been proven for quadratic forms of

rank < max(rl,rz). Let Wy be a characteristic element



of f, (1 =1,2) . Then w = Wy ®w, 1s a characteristic

element of f . Since det [ is odd for 1 = 1,2, we

i
have

(det fl - 1)(det f2 - 1) = det fl det f2 - det fl

-det fy +1 =0 (mod ¢) .
On the other hand,
f(w,w) - r -det £ + 1
= flm-f— rg(wl S, Wy @wa) -ry-ry-det £, det £, +1
= £ (wl,wl) + fz(wz,wg) -ry-r5 - det £; det £, +1
= -det f

det f, + det f; + det £, -1 (mod 4),

1
by induction hypotheslis., Therefore

e

f{w,w) - +det £ +1 =0 (mod 4) .

To complete the proof we need only show that every
quadratic form of odd determinant may be wriltten as a
sum of unary and blnary even forms with odd determinants.
A slight modification of the proof of (0.5) will prove the

last statement and hence the theoren.

Now, for an element a € R(2) , the exponent (-1)2
may be defined by stipulating
a {1, if a 1s even
(-1)° =
-1, if a 18 odd .
We then define

o P(w,w)-r-det £ + 1

Recall that for a quadratic form, f, over R{2) the
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Hasse-Minkowskl symbol ce(f) i1s also defined. We have
THEOREM (1.8) 6”2(1‘) = c,(f) .

Indeed, 1f f; and f, (hence f =f; + f,) are
forms over R(2) with odd determinant, then in virtue of
(1.7) and property (S5b} of the Hilbert symbols we have

ey (£) =S, (£y) &,(f,) (det £, det £,), -
Comparing this with (0.23) we see that € and c¢ behave
the same way on sum of forms. It follows that the proof
of {1.8) will be completed if we can prove the statement
for unary and binary even forms. With the notations used
in the proof of (1.5) we see that if £ 1is unary,

R(2) =V, w=1 and det f =a € R(2)" then ¢c,(f)
= 1 = ce(f) . If £ 1s a binary even form,
V = R(2) @ R(2), w = O, then

~1 - 4ab + 02

4

ey (£) = (-1) = (-1)?P

2

because ¢ -1 =0 (mod 8). We consider two cases:

case 1, a =b = 0 . In this case the matrix of £

(o o)

which 1s congruent over F(2) to diag(a,-a)} . Therefore

is

e(f) =1 . Trivially, &,(f) =1; hence c,(f) = Sé(f) .
case 2. At least one of a and b 18 not zero,

let 1t be a . We split 2a off from f to obtaln



2
cg(f) = (2a, 4ab - ¢~

Recall that (2§a) =1 or -1 according as q =1, 7

(mod 8) or a =3, 5 (mod 8). It is now a routine matter
to check that Ez(f) = ¢,(f) (use property (Sb) of the
Hilbert symbols). This proves case 2 and hence the theorem.

Now let f Dbe a quadratic form over Q{2) = R(2)1Q .
Then the signature, 7T=T(f), 1is defined. We have

THEOREM (1.9) For non-singular quadratic forms, f ,
over Q(2),

f(w,w)-7T- det £ + sgn det T
cp(f)e,, (£) = (-1) z

Let o and o  be defined as at the beginning of
this section. Then T=g -o , r=aqa + . and,
obviously, sgn det f = (—-1)‘:‘_ . In view of Theorem (1.8) ,
we consider

f(w,w) - T - det £ + sgn det Wf(w,w)-r ~ det £ + 1
4 4

-7 4+ r + sgn det £ -1
&

- 2a ~4+ (—1)(} -1 - Q:.(%:_:_ll (mod 2) .

It 1s easy to compute c, (f) directly from the definition
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and property (1) of the Hilbert symbols; indeed

o () = (-5

This completes the proof of the theorem.

Since the only units in Z are 1 and -1, the deter-
minant det £ of an integral form f , 18 well-defined.
An integral form is called unimodular (= non-singular
over Z) 1f its determinant is + 1 ; in this case
det f - agn £ = 0 . PFurthermore, for such forms f ,
cp(f) =1 1f p 18 an odd prime, in virtue of property
(5') of the Hilbert symbols. From ILemma (0.25) we deduce

that c,(f) ¢ (f) =1 . This together with (1.9) proves
the following

COROLLARY (1.10) If f is an integral unimodular

quadratic form then

f(w,w) - T =0 (mogd 8) .

In particular, if f 1s, in addition, an even form,

then w = 0 1s a characteristic element. Thus we have

COROLLARY (1.11) If f 1is an integral, unimodular,

eren quadratic form then

T(f) =0 (mod 8) .

We remark that thls last result 1s the best possible
in the sense that there actually exists a quadratic form

satisfying the hypothesis with 7 =8 . Indeed, let Eg
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denote the following graph (= l-dimensional simplicial
complex, ef. $4)

*> s " - »- v >

vy vy Ve vy {VS Ve vy

M
Construct a matrix M = (’“13) with integral entries
according to the following formulae
’Aii =2 , for 1=1,2,...,8,
A4 5 =1 , 1f the vertlces \ and vj are joined by
an edge (= 1-simplex) in Eg »

’“13 = 0 , oftherwlse.
Thus
[’21 ~
}121 o
M==} 121

| 121 [
é 12101 |
| 1210
0 0120 |
_ 1002/} ,

The corresponding even quadratlc form is easlly seen to

be unimodular with signature 7= 8 .

We call attentlon to this method of constructing
integral forms from a graph. Similar constructions will be
used later. Before a more general definitlon is given we
shall refer to the quadratic form mentioned above as "the"

gquadratic form assoclated to Eg -



2. The Quadratic form of a 4k-dimensional Manifold.

Unless otherwlse speclfled, by a manifold we mean
a connected, compact, orientable, differentlable
manifold with or without boundary, together with a
given orlentation. Thus all manifolds under consider-
atlion are oriented. An n-dimensional manifold 1s aiso
called an n-manifold.

Let M be a 4k-manifold. The homology group
Hgk(M;XQ i8 finitely generated. Therefore

V= Hék(m;x)/(Torsion) is a lattice over Z . There
is a pailring,
S:VxV—-Z,

defined by the intersection number of cycles. Precisely,
if a, b are elements in HQK(M;ZQ, represented
respectively by cycles z,, z, in Zak(M;ZQ s we define
§(a,b) =2y 25 , the intersectlion number of zq and

Zy . This palring is clearly well-defined, bilinear

and, since 2k 1s an even number, symmetric. Observe
that S(a,b) vanishes if a or b 18 a torsion
element and hence it induces a quadratic form S = (S,V),
on V into the integers. Henceforth, this quadratic
form will be written as Sy, and will be called the

quadratic form of M. We shall also write z(M) for

t(SM), the signature of S, .
The Poincaré duality for an n-manifold, M , may be

expressed by an isomorphism
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Hi(M;Z) P Hn'i(M, IM; &)
for each 1 (0 £ 1 ¢ n) . In particular, for n = 4k ,
1 = 2k, we have

Hy, (M5Z) = E25(M, 2M,%) .
Denote the elements in sz(m, 3 M;Z) whieh correspond
to a, b, ..., in HEK(M;Z) under this i3omorphism,
by a, B, ..., respectively. Since

ayup e H4K(M, M;Z) = Z,
{where the equality sign, as remarked before, means
"is canonically isomorphic to"), we may consider o v 3
as an integer, which 1s precisely the intersection number
of a and b (see e.g. [H-W], p. 156):. 1In this
sense we may regard SM as a pairing defined on

B k(m, oM;Z) /(Torsion) into X by the cup-product.

Exercise (2.1) Show that if M 1s a 4k-dimensional
unbounded manifold (l.e. 2M = {) then Sy 1s
unimodular (see e.g. Milnor [1]).

Our main concern, at least for a while, will be
4-manifolds. Many results stated below have higher
dimensional analogues; but this does not concern us at
this moment.

Let M be an unbounded 4-manifold, and let
H*(M;Z,) be its cohomology ring with coefflcients in
%, . The quadratic form of M over Z, is again

given by the cup-product : S(x,y) =x vy . In this



case there exlists a unique characteristic element

Wy = ﬁe(lﬁ) in HE(M;ZQ satisfying Xux = X UW, ,
for sach x € H?(M;Z%Q. We remark that w,
actually the middle Stiefel-Whitney class of M

1is

8ince M 18 oriented.

The following theorems are known. (Rohlin [2],
Borel-Hirzebruch [3], see also Kervaire-Milnor [1]
and [2] ).

THEOREM (2.2) If M 1is an unbounded 4-manifold
with w, = o , then (M) = 0 (mod 16). (Rohlin)

We femind the reader that all manifolds under
conslderation are supposed to be differentiable. We
do not know whether (2.2) holds in general for oriented
topological 4-manifolds. (Notice that the statement of
(2.2) still makes sense in this case.)

Let 7 : HE(M;ZZ) ->H2(M;Z2) be the reduction
modulo 2, l.e. the homorphism induced by the coefficient
epimorphism Z azg .« We have

THEOREM (2.3) If d € HO(M;Z) 1is such that
md = w, , then SM(d,d) =2 (M) (mod 8), where Sy
is the integral quadratic form of M . (Borel-Hirzebruch)

The assumption of (2.3) implies that d 1s a
characteristic element of SM ,» (because the cup-product
commutes with the homomorphism = ). Hence (2.3)

follows immediately from (1.1 and (2.1). A weakened



version of (2.2), 1.e., (M) = O (mod 8), can then be
deduced from (2.3).

The short exact sequence 0 * Z g}% ~—r‘22.a-+ 0 of
coefficlents induces an exact sequence
(2.4) oo S HM2) S E2) 5 BE(GZ) » ...
in homology, where the number 2 above an arrow
means multiplication by 2. If M has no 2-torsion
(i.e., the 2-component of the torsion subgroup of
H" (M;Z) 1is zero), then (2.4) gives rise to a short
exact sequence

0 2 H (02 5 W (0:2) » H(WE,) -0 .
Therefore,

B (M52, ~ B (M;2)/2. 5 (M3 )

A HE(M;Z) / 2.H2(M;%) .
Torzlon Torslon

Thus Wo corresponds, under the above isomorphism, to

the residue class contalning the characteristic elements
of SM .
Wy = 0 if, and only 1if, the qguadratic form SM is

We conclude that, assuming M has no 2-torslon,

even. We may thus state
THEOREM (2.2a) If M 1s a 4-manifold without
2-torsion and S, 1s even, then 7(M) =0 (mod 16) .
Hence the guadratic form assoclated to E8
mentioned in 41 cannot occur as the quadratic form

of a 4-manifold without 2-torsion. The following



theorem, due to Kervaire and Milnor [2], sharpens the
results of (2.2) and (2.3).

THEOREM (2.5) 1In the statement of (2.3) 1f the
dual class of d 1s represented by a differentiably
imbedded 2-sphere in M , then S(d,d) = T(M) (Mod 16).

We hope to include later a proof of this theorem

and some examples.

3. An application of Rohlin's theorem, «-invariants.

Let G be an abelian group. By a G-homology
k-sphere , X , we mean an unbounded manifold whose
homology groups over G are isomorphic to those of
a k-sphere; that is, Hi(X;G) ~# G, for 1 =0, k, and
Hi(X;G) = O , otherwise. Note that 1f G % O , this
implies that X 1is k-dimenslonal.

We are interested in a particular class, 3“3 »
of Z%—homology 3~gpheres. A Z%;homology 3~-gphere,
X, 18 an element of ag if, and only 1f, X bounds a
4-manifold Y(i.é.>Y = X) satisfying the conditions
(3.1) a) Hl(Y;zn has no 2-torsion, and

b) 8y 1is an even quadratic form.
We remark that from cobordism theory, every 3-manifold
bounds. Here we merely impose an additional condition,
(3.1), to the manifolds they bound. For each X € X%

3
a(x) = gl e Oy

we define
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(the number - 7(Y)/16 reduced modulo 1). It is under-
stood that Y satisfies (3.1).

THEOREM (3.2) PFor X € 3%, x(X) is invariant

under orlentation-preserving diffeomorphisms.

For this reason we shall call «(X) the
A~1nvariant of X. This 1s a special case of the
A-invariants studled by Eells and Kuiper {1]. Clearly,
to prove (3.2) it suffices to show that «(X) is
independent of the cholces of Y (provided that Y
satisfies (3.1) and 2Y = X, of course). Let ¥, and
¥, be two such 4-manifolds with aYl = 3Y2 =X . With-
out loss of generality, we may assume that le X and

Yé*~x have no common polnts. ILet -Y denote the

2
manifold obtained from Y2 by reversing its orlentation.
Then M=Y v (4Y2) is a topological manifold,
oriented in accordance with Yl and with ~Y2 . In other
terms, M is constructed from ¥, and —Yé by "pasting"
thelir boundarles together according to the identity map
on X. Notice that M has, after smoothing 1f necessary,
a differentliable structure compatible with those on Yl
and on -Y¥,. Thus M 1s a manifold In our sense. Ve
refer the reader to Milnor [2], [3] for details about

pasting and smoothing.

LEMMA (3.3) The manifold, M, obtained above has the
following properties:



1} M has no 2-torsion,

2) 8y 1s even, and
Q Q Q.
3) SY]_ + (-SYE) = SM 3

where S® 1s defined as in 41 .

Before we proceed to prove (3.3), observe that
the lemma is sufficient to conclude (3.2). For
property 3) implies T(M) = ~*(¥;) - 7(¥,) , and
properties 1) and 2) together with Rohlin's theorem
(2.2a), imply that (M) = 0 (mod 16); Theorem (3.2)
then follows. To prove (3.3) we need

LEMMA (3.4) If X 1is a Zhomology k-sphere then

a) Hi(x;z) is a torsion group of odd order

for 1 # 0, k,

b) X ‘is a @-homoclogy sphere, and

¢) X 1is an R(2)-homology sphere.

Consider the exact sequence of homology groups
(3.5) ver —Hy o (X52) —H (2 B0 (2 » ...
induced by the coefficient exact sequence
0% 3Z~>Z—»0. If 140, k, then
HI(X;Z) f»Hi(x;z) is an epimorphism. As the groups
involved are finitely generated, we conclude that
Hi(x;z; is a torsion group of odd order. Since b)
is an obvious consequence of a), it remains to prove ¢).
Using the exact sequence 0 —R(2) 3»3(2) —Zy ~0 ,
we may replace Z by R(2) in (3.5) to obtain
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2
ove —H, o (X2 - H, (X;R(2)) S H, (X:R(2))
— Hy (X;Z,) ~» ... . Recall that R(2) 1s a
PID (= principal ideal domain) and Hi(X;R(E)) is
finitely generated. Hence

(3.6) H, (X;R(2)) %ekﬁl R(2Y /gy >

where (L, 's are ideals of R(2) such that

Ay C Ulp < ==+ < Ay #R(2)  (ef. [B-a], Ch. T,

¥ 4, Theorem 2). The only ideals in R(2) are

the zero ldeal and those generated by 2J ;3 therefore

each summand in (3.6) is of the form R(2) or

R(2)/2).R(2) ~ Z,J . It follows that if

Hi(X;R(e))ugaﬁi(X;R(E)) is an epimorphism, then

Hi(X;R(E)) = 0., 'This proves c¢)} and hence (3.4).

Returning to (3.3), we consider X, Y, 5, Y,

and M as defined there and apply the Mayer~Vietoris

sequence to obtailn

(3.7) «ev =»H (X) > H (Y;) & H(Y5) —H, (M)
-?Hi_l(X)—o-..- s

where the coefficlent group is not specified. From

(3.4) vwie know that X 1is a @-homology 3-sphere.

‘'Therefore HQ(M;Q) has an injective representation.

(3.8) 0 —H,y(¥,;@) @ Hy(Yy5Q) —H,y(M;@) —~0 .



Taking orientations into account, it is not hard to
see that Sgi ¥ (—Sgé) = S% . This proves 3) of
(3.3).

Next, we take integral coefficilents in (3.7)
to obtain
oo —H (52 —H, (YD) @ H, (¥,57) —H (4;2)

- H (X;2)
where ﬁé(x;zﬂ = 0 1is the reduced homology group.
Since Yl and ¥, have no 2-torsion and since
Hl(M;ZQ is a torsion group (by (3.4a)), it follows
that Hl(M;ZQ has no 2-component. Property 1) of
(3.3) now follows from Poincaré duality (of homology
groups, see e.g. [S-T] p. 245, Satz II).

Pinally, we take R(2) as coefficient group in
(3.7) and apply (3.4) to obtain an injective representa-
tion

0 — Hy(¥;3R(2)) ® Hy(¥p3R(2)) —>Hy(M;R(2)) — 0
Jjust as in (3.8). S8ince Tor(odd torsion, R(2)) = O,
then by the universal coefficient theorem,
Hy(Y4;R(2)) = Hy(¥,;7) © R(2), 1 =1, 2, and
Hy(M;R(2)) = Hy(M;Z) @ R(2) . Recall that sf}(*"-’)

i
is defined on H,(Y,;Z) Hy(Y,;7Z) @ R(2)
Torslon — © R(2)= Torsion s 1=

1,2. Thus
R

SICREICRYE £0))
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The last two terms are even by assumption; hence
Sﬁ(z) is also even. The last statement implies that

Sy 1itself is even, which completes the proof of (3.3).
As an example we shall apply the invariant x(X)

to lens spaces. Let the standard 3-sphere, S5 s be

represented in the complex 2-space, 02 s by

3 - - 3
8" = {(zl,za) | 2927 + 252, = 1} . Then S, as
submanifold of 02 » Inherits a canonical orlentation.
Let n and q be integers, 0 < q < n , such that
(n,q) =1, (i.e., n and q are co-prime). Define

an operatlion of the group Z%} on S3 by the formula

~2?F1z ‘2“'133"
(3.9) If'(zlszz) = (e n 'Zl.v e T '22)

for each ¥ € z, - Then Zn acts freely and
differentiably on s° . The quotient space (space of
orbits) SS/Zglz L{(n,q) 1is, by definition, the lens
space of type (n,q), which inherits an orilentation and
a differentiable structure from S° . Therefore L{n,q)
is a manifold in our sense. Since L(n,q) has 83
as its universal covering space,

7, (L(n,q)) = 2 = H,(L(n,q);%).
Thus the Bettl numbers of L(n,q) are 1,0,0,1 and
there is8 a torsion coefficient, n, at dimension 1.

If n is odd, L(n,q) is a Z, - homology sphere.
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THEOREM (3.10) For each odd integer n > 0 ,
L(n, g€ 85 - '55 iwi@ 051
A proof of this theorem can be found in § .
Granting thls, we proceed to study the 4-invariant of
such lens sgpaces.
LEMMA (3.11) With respect to the canonlcal
orientations, L(n,q) = -L(n,n-g).
In fact, the orientatlon reversing differentliable
involution, & (zl,ze) wa(zl,ié), on §° carries

L(n,n~-q) .onto =-L(n,q). Explicity, for re %, »

.2"%& Qﬂigf Qﬂi?

(e . 2y, @ - 25) = (e 7 .24,
—2ﬁigx‘ 2rly Qﬁign—gir

e P .z,)=ale Tz, e n . 25) .

Thus, to study the 4-invariants of L(n,q) € s s
we may restrict our attentlion to the case where ¢
takes even values. Recall that a fraction n/q can

be expanded into (finite) continued fractions

n 1
T TP I
.
b_
37,
o. 1
s

= {bl,bz,bs,...,bsl (notation) ,
where b1 is an integer with ]bif 22,1 =1, 2, se0, 8.
In case where n 1s odd and ¢q 1s even, there 18 a

unique expansion n/q = [bl’bg""’bs] such that

nnaltive
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each b, 1s even (the proof is elementary). Denote
by p* = pt(n.q) (resp. p” = p (n,q)) the number of
positive (resp. negative) b, 's in this unique
expansion of n/q. We have

RECIPE (&8.12) a(L{n,q)) = EfI%;E: € Q/Z.

& proof of this fact will be gilven later. As

examples we have

7/6 = [2,2,2,2,2,2] pF =6,p =0,
7/2 = [4.2] p¥ =2,p =0.
Therefore,

#(1(7,6)) = 3/8 ,

#(L(7,2)) = 1/8 ,

AL(T,1)) = - LL(7,6)) = -3/8 =5/8 (mod 1) .
We recall that (J. H. C. Whitehead [1]),

THEOREM (3.13) Two lens spaces, L(n,q) and
L{n,q'), have the same homotopy type if, and only if,
qq' or -qq' 1s a quadratlc residue modulo n .

Thus L(7,1) and L(7,2) have the same homotopy
type; but they are not diffeomorphic because A(L(7,1))
differs from M{L(7,2)) and from - »{L(7,2)).

Now let Xy and X5 be unbounded n-manifolds.
We say that X; and X, are h-cobordant (J-equivalent)

if, and only if, there exlsts an (n+l)-manifold,
W, such that
1) W= X,V X, (disjoint union) and,
2) both X, and X, are deformation retracts of W .
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THEOREM (3.14) Let X, and X, be 3-manifolds
in 5% . If X, and X, are h-cobordant then
ARy) = ae(Xp)

This follows quickly from the "pasting and
smoothing" technique. Indeed, let X = ayl and
X, = 3¥,, where Y, satisfies (3.1), 1 = 1,2, and
let X, and X, co-bound W (Ll.e., oW =X, U -X;),
which gives the cobordant relation. We paste W and
Y2 to obtain a manifold, N. Notlce that we already

have the right orientations on the two copiles of XQ .
1 . 2 *@*
/ wwm"””vh“m
\ / \ f ‘?\\\ f/
§ ; H §
‘. ral ) Y ey { ,} N

Since X2 18 a deformatlion retract of W , the

&.-‘"

N
g
T
- -~ )
nH
{
rd
Rt
-
”~
\_

manifold N 1is homotopically equivalent to Yé and
hence SN = SY . On the other hand, N satisfles
2
(3.1) with 3N = X; . It follows that 7T(Y,) = T(N)
= T(Yl) (mod 16), (ef. (3.3)). This proves (3.14).
It follows that L(7,1) and L(7,2) are not

even h-cobordant.
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We conclude this section by proving the following
lemma, which shows that certailn Z% - homology spheres
arise naturally. The higher dimensional analogues are

immedlate.

LEMMA (3.15) Let Y be a simply-connected, torsion-
free 4-manifold with boundary, 3Y =X . If det SY is
odd, X 1s a Zb - homology sphere.

Consider the sequence
Hy(¥) I%H,(Y,X) —2-H, (X) —0
which, as a portlion of the homology sequence of the pailr
(Y,X), is exact (integral homology being understood here).
Since M has no torsion, H?(Y) = Hom(H,(Y),Z) . Ve
ioply the Poincaré-Lefschetz duality,
H (7,X) = K NY) ,
to obtain a commutative dlagram
Hy(Y) ~>H2(3f,X) —H (X)H0
3”‘\ i ) / ¥
Hom(Hy (¥),Z)
The homomorphism f may be interpreted as follows : for
each a 1n the lattice H,(Y) there is an element
h, € Hom(H,(¥),Z ) given by h,(x) = Sy(a,x), then
J(a) =h, . Obviously ¥ induces an isomorphism ¥
from coker ¥ (= cokernel of f ) onto Hl(X). Since
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B.;_,(Y) and Hom(Ha(Y),Zz) are lattices of the same rank,
we have

(3.16) Hl(x) is finiteg=pdet Sy # O .
Now, coker Y 1s determined, up to an lsomorphism,

by the elementary divisors of ¥ , we conclude that

(3.17) det Sy # 0 = order of Hy (X) = |det Sy -
This, in particular, implies (3.15) .
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1) We introduced the class ¥z (see p. 3-1) merely

for avoiding certain detalled arguments. In fact,

K% is precisely the class of all zé-homology S~spheres.
To see thlis we first recall a well-known fact that every
3-dimensional (orientable, differentiable) manifold is
parallelizable. Therefore, according to Milnor [2]

(see also M.W. Hirsch (1]), every unbounded 3-manifold
bounds a (compact) simply connected #emanifold. Now
let X Dbe any 2é~homology 3-sphere. . We shall show
that X € 53 . Let Y Dbe a simply connected Tr-manifold
such that 2Y = X . Then the condition (3.la) is
trivially fulfilled. Let M be the double of Y

(l.e. M= Y U-Y , obtained by pasting Y and ¥
together along their boundaries). It is clear that

Sy 18 unimodular and w,y(M) = 0 (since w,(Y) =0

and 9Y = X i8 a Z,-homology sphere); therefore the

quadratic form SM is even. On the other hand, we have
R(2) _ .R(2) + ; oR(2)
Sy ) = 8yt (=8,')

(see p. 3-5). We conclude that Sy 1s even and hence
X € 33 « The folloﬁing theorem follow: c¢asily from our

discussion:

THEOREM (3.18) Let X be a Z,-homology 3-sphere.
if X 1s embeddable in R* then u(X) = O .
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The spherical dodecahedral space 1s a classilcal
example of the Poincaré manifolds (see e.g. [S -T] p.218).
The uy-invariant of this space, as we shall show later,
is 1/2 ¥ O and hence it is not embeddable in Euclidean

4-8pace.

2) The totality of Zy-homology 3-shperes, ¥3 , 1s
apparently closed under the coﬁnected sum operation;
il.e., 1f Xy and XQ are elements in 5% » then the
connected sum, X; # X, , 1s again in ¥ . In fact,
Wg endowed with the operafion, #, 1is a commutative
monold with identity. The invariant, u , may be
thought of as a map

Vadki '25V3 ""’Q/E .

One proves easlly the following

THEOREM (3.19) The map, u: 3§‘—¢Qﬂz » 1s a momoid-
homomorphism (with respect the operation # in Z%
and the additive operation in @/Z ) which maps the
'1dent1ty.into the identity.

The operation, # , 1s compatible with the h-cobordant
relation in 53 (see Milnor [2], Lemma 2.3) . Therefore
A 1is a homomorphism of the monoid of h-cobordant
classes in ¥y 1into /% .



4. Plumbing.
A fibre bundle, n , having total space, E,

projection, p , and base space, B , will be denoted

by n = (E,p,B) . We shall consider mainly bundles with

base space B = s° . The principal S0(2)-bundles over

32 are classified by 4:1*1(80(2)) A2 , wWith the Hopf
fibration corresponding to a generator in %Z , (see
e.g. [S] p. 99 and p. 105; here and in the sequel we

shall identify SO(2) with S* ) . Therefore, if fixed

2

orientations of 30(2) and S8 are chosen, every

2

principal S0(2)-bundle over S corresponds to a

unique integer, known as its ¢haracteristic number.

We recall briefly these notions. lLet R = (E,p,sz) be

a given principal S0(2)-bundle, where 32 and 380(2)

are oriented. Choose a base point Xq € 62

and a
neighborhood U of Xqs homeomorphic to an open 2~-disk.
Then the frontier, U, of U 1is an l-sphere. The

restricted bundles E ](82 “U) and E]TU are both trivi:z

(IS, p.53). Let t : E|U —30(2) be a trivializa-
tion and let o : (SE\U) ~3>E be a (partial) cross-
section. The homotopy class of t o) U:0 -»30(2)
defines an element in 47“1(30(2)) = % (given by the degree
of themap ¢t T ’fl ) which depends only on the bundle
n and the orientations chosen. This integer is then
called the characteristic number of the bundle.



We now make the orlentation convention so that the
Hopf fibration has characteristic number -1 , and we
shall denote this bundle by ¥ _, = (X_;, p_;s S°) .

The Hopf (fibre-) map, p = p_, » may be described as
follows, ([S] , p. 105). Write S° - {le,za)

€ ¢2 §zlzl + ZyZ, = 1} and represent ° by the complex
projective line in which each point is given by an
equivalence class {zl,zal, Zy . 2p # 0 ; (the equiv-
alence relation being (2z;,2z;) a-k(zl,zz), A rO0) .

We then define p : Ss —982

by p(zy,2)= [2, 2] .
For any [zl,zzl € 82 » we may find a (zi,zé) e g° {(vy
normalization) such that [zi,zé] = [21,22] . 'The fibre
p'l[zl,zel 1s clearly the circle eie(zi,zé), 04027~ .
It follows that the actlion of %, on S° defined in
(3.9), is compatible with the fibration, p , 1if

q =1 . We recall that in this case (i.e. q = 1), the
action is given by

2y 21Ty
r(zl,zz) = (e n., Zys € n ‘22) , YeZ .

Passing to the quotient structure, we obtain a bundle
Eon = (K poPppS%), where X, = 8°/Z, =L(n,1) .
Diagrammatically,

P L 1(n1)

N

52

S



where f 18 an n-fold covering map. We also know that
73 (L(n,1)) = ®, . Comparing f with the classification
theorem of S80(2)-bundles cited above, we see that f
induces a homomorphism 3 (S0(2)) -flavl(so(e)) s which
carries the characterisitic number of ¥ _, to that of
g-—n » This shows that the characteristic number of

’§~n is indeed -n , and in this way ém may be con-
structed for each m € Z .

Let D> denote the standard 2-disk and let S0(2)

operate on D2 in the obvious fashion. We may consider

the 2-disk bundle 1 = (Yn,pn,sg) associated with
£n (where p, : Y, -——aSQ is the obvious extension of
Pp Xy -—«)SE) . Then Y,  is a 4-manifold having X =
-L(n,1) as boundary. The guadratic form of Y~ can be
determined as follows. First observe that Hy(Y,) =
Hz(se) = %Z , where the zero cross-section, V: 82 Y,
represents the "positive" generator g € Hz(Yn) . To
determine S, it suffices to find Sy(eg.g) =g-g ,
the self-~intersection number of the class g . Take
another cross-section ¢ : 82-9Yn » also representing
g - Since ] (Sa\xo) is a trivial bundle, we may
assume that o(x) # v(x) , if x # Xy 1in s® . Now
let U be a neighborhood of X, as before and let

2

u: Y, T —D° be a trivialization. The degree of the



map uo- | (U ~x5) : U~x, D2~ 0 is, by definition,
the intersection number of o |T and |0 and, since
0= and 'V do not intersect elsewhere, thls is also
the intersection number of 4 and / (which is g-sg) .
Identifying 73(U) with 25 (U~x,) and 73(S0(2)) with
ﬂi(D?'xO) » we see that gog = SY(g,g) ig exactly
the characteristic number, n , of the bundle gn .

The manifolds Xn and Yh » N € Z, are the basic

objects for "plumbing" which we shall soon define.

REMARK (4.1) Consider the bundle § = (X ,p ,S%) .

2

et W be a submanifold of S such that the restricted

bundle §, /W = (X,,p»S°) is trivial, where X =
pm"l(w) and W 1is orlented in accordance with S° .

Let (x) and (y) be given coordinates in W and st
(the typical fibre) respectively, compatible with the
orientations. Then (x,y) may be chosen as

coordinates in xw so that the product structure and
orientation of xw are preserved. Such coordinates in
xw will be called admissible.

A point in D2 may be expressed, in polar coordinates
by a pair (r,x), where 0 <r <1l and x € R/Z= Ry »
the real numbers modulo 1. If r» =1 , we write
(1,x) = x ; thus a point in S1 is given by x € R; .

Let U be a 2-disk in S° and let V = c1(sex'n) s
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which 1s also a 2-disk. Then both £ lu and
- |V are trivial. Let (J,%,77) and (r,x,y) be
admissible coordinates in X; and X, , (x,y,8,n ¢ Rl) .
The boundaries BXU and BXV (both homeomorphic to
st x gt ) have admissible coordinates (§’Q) and
(x,¥) respectively. The fact that the characteristic
number of §  1s m shows that 1f f : JX - dX,
is a map defined by f£(x,y) = (5,1) = (-x,y-mx), then the
adjunction space X, L?f Xy 1s precisely X . The
map, [ , may also be expressed by the matrix

-1 0Y)
(4.2) ( f

-m 1l; .

By a graph we shall mean a finite one-dimensional

simplicial complex. A contractible graph will be termed
a tree. Thus trees are connected. If two vertices
vy and VJ of a tree are Joined by an edge ( = l-simplex
we shall denote this (unique) edge by 54 » Let
Uil be a set. A tree, T, 1is said to be welghted by

the elements of i if to each vertex, vy s of T

an element, m, (to be called the weight of Vi) s of
¥l 1is attached. If, in particular, ®¥t= Z , we shall
simply say that T is weighted (by integers). A
welghted tree will be denoted by T = (T’mi)lﬁiﬁﬁ :
1ts welghted vertices, by (vy.my),..., (vg,mg) . The



adjective "weighted"” will often be dropped if no

confusion l1s likely to arise.

A plumbing operator, P = sz » assigns to each
tree T = (T,mi) , welghted by the elements of
ﬂén_l(so(an)) , a 4k-dimensional manifold F(T) . Here
we restrict ourselves to the case k =1 and we identify
'ﬂi(SO(E)) with ZZ. We hope to expound the more general
cases later.
1) If the given tree, T , contalns a single weighted
vertex (v,m) , we define [F(T) to be ¥ . the total
space of the bundle X defined above.
2) Let T Dbe a tree consisting of two vertices,
(viomy) (ve,mg) and an edge e, . For each
(vi,mi) we take a copy of ﬁmi = (Ymi’pmi’sz)’ i=1, 2.

Choose a 2-disk, DiJ s In the base space of Qm and
i

-1
let D =Y « Since D is trivial,
P, (Dy4) = ¥y my | D1y

there is a homeomorphism uiJ : D2 X Dg-ﬁiYij whose
first component glves base coordlnates and the second,
the fibre coordinates. Let t© : D° x D°~3D° x D° be
the reflection defined by t(x,y) = (y,x) . Then there
is a homeomorphism fji : Ygi‘”*Yij given by fJi =

uy 4 tu}i - In our case, we have fyq : Y5y ¥, -

Notice that Y,.,c ¥  (i,j = 1,2) we may paste
1] my



figure 1

me and Yﬁl together along Yél and YiE by means

of f,; to obtain a topological 4-manifold gi(T) .
Observe that fji fails to be a diffeomorphism only
along the “"corner" uJi(bD?.x BD?) ; which is a submani-
fold. According to Milnor [2], we may smooth iS(T) by
straightening the corner to obtain a (differentiable)
manifold, P(T) , and the smoothing is essentially
unique. However, the definition of ?5(T) already
involves arbitrary choices. It is fairly clear that
PB(T) 18 independent (up to a diffeomorphism) of the



cholce of Usg s provided 1t is admlssible. A theorem
of R. Thom {(Milnor [5]) assures, in particular, that
P(T) 4s independent of the choices of Dyy -
3) The general pattern of plumbing is now clear. Let
T = (T,mi)1$;£§ be a tree. For each (Vi’mi) we take
8 copy of "mi « Suppose that vy is connected to
vJ,v 2++» by edges eij’ @qpreee In T . We take, in
the base space of nmi s 2-disks Dij’ Dik"" which
are pairwlse disjoint and construct homeomorphlsms
fji’ fyqs-++ as in 2). We then paste Ymi and Y ,
etc., together according to fJi’ etc., and finally we
smooth the resulting topological manifold to obtaln
HT) .

wWhile the smoothing process has been described loosely
we feel that 1t may be helpful to give an intultive
plcture about stralghtening the corners (see Milnor [2]}).
Let R+ denote the positive half-line of R . A point,
x , at the corner, l.e., Xx € u31(3D2>eaD2) -
uijcaDa,x BDQ) » has a neighbourhood which loocks like
(aD? X BDE) X (R+ x RUR X R.) . The second factor
may be "straightened" by the transformation

(rcos ® , rsin 9)~£9 (r cos g%fﬂ; rsin-g%ijt-)

which 18 defferentiable except at r = 0 .



Since Ym has the homotopy type of a 2-sphere, it

follows that, for each tree 7T = (';{‘,mi)1 s , the
4-manifold P(T) has the same homotopy type as the

one point union of 2-spheres. Thus {(T) 1is simply
connected and H,(R(T);Z ) 1is a lattice of rank s .
To a weighted tree T = (T’mi)l_gi_g_s we may assoclate a
quadratic form of rank s whose matrix M = (ﬂi J) is
given in the same fashlon as that described in p. 1-9
except /411 = m, 1instead of Mig = 2 . Thus the
quadratic form given in p. 1-9 1s the form assoclated
with (Ea,mi) where my =2 for 1 =1,..., 8 . It
1s then clear that the quadratic form of H(T) is the
same as the quadratlic form assoclated with T . Observe
that the plumbing operator, H s 1is defined on all
(finite) graphs; but in case the graph is not a tree,
the resulting manifold will not be simply connected.
Plumbing operation may be generalized by allowing other
bundles to play the role of /] n °
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As examples we mention the following trees which
arise in the classification theory of simple Lie
algebras (see e.g. Séminaire Sophus Lie, 1% annge,
exp. 13). These are the only trees, when welghted by

2, whose quadratic forms are positive definite.

FESESINE e SR S
AB Vi v2 v5 Vs
Vl - g—
Dg :>v5 Vg (s > &)
V2
E6 ¢ ’ . 2
g |

In the following table, each vertex of the tree,
T, is weilghted by 2 :

T M(2P(T)) 473(6'53('1‘)) = Fn Hl(BP(T);?Z )
s 8/16 (s odd) C'gi1 Z .1

. % + B 8 ever
% Ps-2 %, , s odd .
Eg 6/16 T Z;
B L Z,

Eg 8/16 P! 0
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The groups, FT s are the only finite subgroups
of 8° (= unit quaterions). This can be seen as
follows. The finite subgroups of S0(3) are known
tobe C,, D), T, W and P (the cyclic, the dihedral,
the tetrahedral, the octahedral and pentagondodecahedral
grourd). Regarding 35 as a 2-fold covering group of
S0(3) , one deduces easily that the only finite

3

subgroups of 8 are the cyclic groups, Cé s

binary groups D; s T', W' and P' , obtained by

1lifting the groups D) , T, W and P of 50(3) .

and the

The fundamental groups 773 (3H(T)) and the homology
groups H, (3f(T)) can be computed directly by finding
out explicitly the generators and relations; however
these groups may be obtained much easler from a more
general result due to von Randow (v. Randow : Thesis,
Bonn, in preparation) which we shall describe briefly.
A 3-manifold will be termed a Seifert manifold if it

can be filbered, with exceptional fibres, in Sl over

g2 (Seifert [1]). To such a manifold, X , Seifert
assoclated a system of integers

(b; (Gllsl)l""!(arﬂﬂr)) 2
known as Seifert invariants, where r = number of
exceptional fibres and the integers ay +By satisfying
the relations 0 < B, < a; and (Bi,ai) =1,
(1 - 1,..0,!’) .



4 - 12

Expand  ay /lay - B:) into continued fraction :
1 i

s
@4 -By

=i q . Im{P)ae,

and let T be the star-shaped tree (weighted by
(1) gy .
n 3 s) :

b+r

qil) \\ q{r)
N
. / ) \I:

Then X = JH(T) /, (Von Randow's proof of this fact is
hased on a speclal construction of lens spaces via
plunbing, which we shall'atudy later In this section.
Notice that lens spaces are special Seifert manifolds.)
It i1s known that for any finite subgroup, ¥ , of .’:‘.?J
the coset space, 83/F » 1s a Selfert manifold. Indeed,
each manifold, QJf3(T), 1isted in our table is diffeo-
morphic to SS/FT . For instance, the spherical dode-
cahedral space, Ss/F' , has Seifert invariants

(-1; (5,1), (3,1), (2,1)) . Here r =3 and

b+1r=™2

5@—1) - 5/4: = [2,2,2,2] ,
3/(3-1) - 5/2 = [2:2} 3

2/(e-1) =2/ =2 .
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From what we discussed above, we get a star-shaped tree
b+ r
2 2 2 2 - 2 2 2

* ¥ "

o]

but this 1s ES with each vertex welighted by 2 . In
other words OSF(Eg) is the sperical dodecahedral space
if Eg 1is weighted by 2 ; therefore ’?Tl(ép(EB)) = P7
and Hl(a}?}(Es)) = 0 . The other lines in the table
may be Justified in a similar fashion.

Notice that when T = A (s odd), T = Eg or
T = BEg , the manifold 3P(T) is a Z,-homology sphere
and consequently the u-invariant is defined (p. 3-13).
The values of {F(T)) are obvious, since the quadratic
form assoclated with each tree T 1listed above 1is
positive definite and the quadratic form of F(T) is the
same as that of T . 1In particular the A-invariant of
the spherical dodecahedral space is 8/16 = 1/2 as
we claimed toward the end of $3 .

Az we have geen that in many cases we are interested
in the manifold QJ3[(T) rather than H{T) itself. The
assignment, 2P : T - 3HT) , will also be called
plumbing; 1t may be defined directly without the help
of the operator H. We describe this in three steps:



4 - 14

1') If T = (v,m), we define 2F(T) = gm .

2') Let T be a tree conslsting of (Vl’ml) R
(va,me) and e,, . Take D;, and D,, in the
base spaces as we did in 2) , Let Xij =

1

-1 o2
pm:l (Dij) and let Uy gt X 85— X4 5 be an

admissible coordinate function (1,3 = 1,2) .

Then 33‘13 is equivalent to SlX Sl + Define

£y 19Xy = 9X;, by putting f = ultuél s
where t 18 defined as in 2) . Let Xig =
-1 2
pmi (8 ~ Int DiJ) . Then axiJ mhxij (1, =
1,2) . Pinally we put

ORU(T) = X3y Vg X2 -
and then smooth it to obtain 3P(T) .

31') fThe general procedure is now clear.

REMARK (4.3) The map, £y, » may be expressed in
terms of the Uy J—coordinatea by a matrix

o 1
(4.4) ( ] .
1 0

In view of remark (4.1), OF(T) of 2') may be obtainec

2

from Xi2 by attaching a copy of D~ to its boundary,

ina » according to a map f,, given by the matrix

o 1 1 O “m 1)
i o0 -m 1 -1 0
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Consider the weighted tree (As’mi)l <i<s :

e U P51 g

- W e v an  eredtmpna mr————— F)

where mi's are integers. We propose to study
oH(ag) « Teke a copy of émi for each (v,,m;) 1in

Ag and let the base space of §m be denoted by
1
S? (L =1,...,8) . In each S?_ (represented by
extended complex numbers) take Di,i 1 1,11
centered at 0 and = respectively. Let j‘\”i =
2 2
Si ~ Di;i"‘l ~ Digi"l (i = 2,.-., S"“l), &1 = Sl ™ D12
2
and Ag = 85> Dga,s
obtained from the space A'l = D2 ~ D12 by collapsing
BDZ to a point = . Let
1 1l 1

and D

. We may consider Al as

1
ves UfSAS?fS

. 1 1 .

st — st)

1 41

Parametrize 'abi 3 X :131 = § % 8 by a palr of numbers

(x,¥) in R/Z . From remarks (4.1) and (4.3) it 1is
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easily seen that L 1s homeomorphic to aF‘(AB) if

the maps, fi s are given by the matrices:

~m3 1
fJ : (3 = 2,».0,8)
-1 0
e ~my 1
l - E
0 4]
Purthermore, in this case, 1 (after smoothing) is
diffeomorphic to pP(Ag) . It 1s also easy to see that
2 1 1

L&Sl UfD % Sl s where ¥ :bDQxS -8 is
deseribed by a matrix

n gy f(-m 1l f:-m 1 “~m 1
(4 IG) { = 1 2 LR R 2 J O‘ S .
o 0 0 0 -1 0 Cl 0

Observe that

- p
wor (0 00 )l )
~

where the integers n and ¢q are the same as those
in (4.6). Notice also that each factor in the left-
hand side has determinant = +1 , hence the determinant
of the matrice (__g, g) in the right-hand side i1s +1 .
This shows
(4.7) np +qq' =1,
and it follows that n and ¢q are co-primes.

Recall that a well-known description of the lens
space L(n,q) 1is given by
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1 1

L{n,q) = S Ug D°¥ 8 s
where g :Q)D2>(Sl - Slx Sl——-~>s1 maps a point (x,y)
into nx + qy (x,y € R/Z) . 1In other words, the matrix

o 0

THEOREM (4.8) ILet Ay = (A

We have

g2 )y <i1¢s” Then
QP(AS) = L{n,q) , where n and q are defined as in
(4.6) .

If we reverse the order of the tree (As’mi) and
plumb according to the reversed tree we get L{n,q') ,
where q' 1is given in (A.6a). From (4.7) 1t follows
that qq' = 1 (mod n) . Our result is therefore
compatible with the classical theorem concerning the
lens spaces (see e.g. [S-T] p. 215 8atz II).

For given co-primes n and q , 0<q<n, we

can find a tree (A ,m such that 2P(a;) =

1h <1¢s
L(n,q) . To see this we let >‘O = n, }Ll =q , and
use Euclldean algorithm to get

PR EES

}\s-l = aglg ")'34-1 ’ )\5.;.1 = 0, ks =1,a,>1.
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This is equivalent to saying that n/qg can be

expanded into a continued fraction {al,ag,...,as], l.e.

n/q = a, -
1 as e, 1

It is clear from (4.9) that

<}~B )\3.*.1 (as 1 as...l 1 81 1} {n q)
TEE2] -
o 1 -1 0/ \-1 0 -1 0] Wx o+ -

/ /
7 i 0
Since (\3 )S'*"})a ) is the ldentity matrix, we
0 1 o 1,
deduce that

<a8 1) ag_1 1) '<a1 1> i <n q)

0 0 -1 0 -1 0 0 0
Comparing this with (4.6) we conclude that if
Ay = (As’m1)1<1<s is a tree with weights m, =
cag_;,; (1<1<8) , then 3F(A) = L(n,q) -

The lens space, L(n,q) obtained in the preceding
construction bounds a 4-manifold, P(A;), whose
quadratic form is the same as that of (As’mi) with
my = -8, 4 +1 ° As the integers a; may not be even,
this quadratic form does not lend ltself to the
computation of u#(L(n,q)) 1in case the latter is
defined (ef. p. 3-1). This situation can be remedied.
According to $3 , the u-invariant, m(L(n,q)), 1is

only defined for odd n and in thlis case we may,
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wlithout loss of generality, assume that gq 1is even.
For such n and q , (4.9) may be modified to yleld:
o =N, N =q

Ao =i - hp s Inpliygl Idyl>o0,
(4.92) §

P
LR Y

Ag-1 = iazaz)‘at " Aes1 2 Ag = O 1A47 o ogl> 0
where each bi 1s even. This, by the way, proves
an assertion announced in p. 3-7 . Let now As =
(As’ni)l_gig_s have weights n, = -b,_, ., . It is easy
to show that JP(A;) = L(n,q) in spite of the fact
that )\8 may take the value -1 . In this construction,
L(n,q) bounds a 4-manifold, Y = H(4;), whose
quadratic form, S, , 1s even. This proves (3.10).
With respect to an obvious base (31)1 <igs in
Hy(Y52Z ) , Sy 18 represented by the matrix

-
[ b \
[ 1. v,

b, 1.
1 !\‘ O
(4.20) ma=|1. P2, -
‘\‘ ".,‘ .1
O » \\‘. .
1 b/
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Then, relative to the base ((~1)"“+’l in

e1)aicics
HE(Y;Z}, Sy 1s given by -M . To prove the recipe
(3.12) , 1t remains to show that (M) =p' - p~ ,
where p' (resp. p~) 1s the number of positive

(resp. negative) diagonal entries of M . In fact, we

shall prove the following lemma.

LEMMA (4.11) Let M be a matrix of the form

described in (4.10) with by} > 1 « Then T(M) =
o' -p .

It can be shown by an easy Induction that M 1is
congruent over R to a diagonal matrix diag (cl,...,cs) s

where
1

(4012) ci = bi - b1+1 _ . == [bi"‘l’.",bs] -

B

If \bil > 1, then sgn ci = Sgn bi « This obviously
proves (4.11), and hence (3.12).

We end this section by a digression., ILet n be
an odd integer and let q be an integer prime to n .
Suppose that n = p151 pQ62 rae ptBt is the canonical
decomposition of n (into prime factors) . The
Jacobi symbol, (qi|n) , may be defined through the
Legendre symbol , (q}pi) ,» by the formula

(a)n) = (a)py)P ... (a]p,)PE .
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It 18 clear that, if g and q' are integers such
that qg' 1is a quadratic residue modulo n (i.e.
Qq' = x2 has a solution in Z } 5 then
(4.23) (a|m) = (a'[n) .
From Theorem (3.13), we see that (q!n) is an
orientation-preserving homotopy type invariant on the
category of lens spaces L(n,q) with odd n . Notice
that the h-cobordant invariant uL(n,q) 1s also defined
for such spaces. We have
(¢.24)  (q)n) = (-1)4AL(n.a) + (n-1)/a |
that is the Jacobi symbol, (q|n) , for a fixed n
is completely determined by /4L(n,q) .

To prove (4.14) we first observe that, by using
the lidentities
(4.15) (-1|n) = (-1)(r-1)/2
and 4L(n,q) = - uL(n,n-q) , we can restrict ourselves
to the case where gq 1is even. Expand n/q into
continued fraction : n = [bl’be”"’bs] according to
(4.9a), i.e., }bﬂ >1 and b; even for 1 =
1, 2, <.+, 8 .+ We have shown that L(n,q) bounds a
4-manifold FY(A) =Y whose quadratic form, S, , may
be described as follows. Let S Q“SY ; then the

matrix of S8 4is given by {(4.10) . In other words,
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2
4.16 S= > b, x,“ +2 X, X
( ) iS5 171 E%% 1 ¥4
g
2
~ S ey

where the rational numbers, c¢; , are given by (4.12).
Therefore uL(n,q) = - T(8y)/16 = T(3)/16 = (ot - p7) /16
(this number being understood to be reduced modulo 1) .
We now compute the Hasse-Minkowski symbol cp(s) for
all odd primes p .

Case I . p4fn .

From (3.17) we see that det S=+n . Our
assumption then implies that p’{’ det S and hence
cp(s) =1 , by (0.24) .

Case II . p|n .

In this case p 1is a prime factor of n , say
p=p; and n = plﬁl... p,cﬁt « Since {(qg,n) =1,
we get pfq . Write (4.16) in the form

n 2 ;<2 2 :
S =Yy +1§2ciyi =8 + 85, ,

n 2

2

o s

= ¢, ¥y, and Szai%aci ¥y .
It follows that det S, =+ 4q and, since p,f’q R
Cp(Se) -],

Now 8, 1is an unary form °p(sl) = 1 . ‘Therefore

cp(s) - cp(Sl) e (32)(det Sl’detse)p &

(%, q ~sgn det S.'»Q)p .
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Since p = p, and (n,q) =1 , we may write

p
n/q = p 1 o, and apply the Property 5) of Hilbert
symbol (see p. 0-14) to obtain

n By
q . q-sgn det S,) = (g sgn det 52{ p)

8 B
p) * (sen det S,[p) -

= (q]

This, together with the conclusion from Case I , shows

that

-

T c (S) = ﬁ%r { )51 (sgn det 8 )ai
odd prime P Yul 9Py . 2|Ps

= (q|n)(sgn det Seén) .

We may assume that n/q > O ; therefore sgn det 8, =
sgn det S . Applying Lemma (0.25) we get
(4.17) e5(8)e,(S) = (aln)(sgn det Sin) .
Since S 1is even, Theorem (1.9) gives £
(4.18) cp(8) ey (S) = (_1)(QV+ det S - sgn det S)/4 .
combining (4.15), (4.17) and (4.18) we obtain (4.14) .

The lecturer is indeﬁtéd to T.W.S. Cassels for
a very helpful letter containing essentlally the
preceding proof. See alsc a forthecomlng paper of

Cassels in the Comm. Math. Helv..



5. "Riemann Surfaces" of Complex Dimension 2.

Iet M= M(n) be a complex manifold of complex
dimension n , not necessarily compact. (Complex
dimensionality will be expressed by a super-script in
parentheses.}) A complex analytic subset of M 1s said

to be of maximal dimension if 1t has complex co-dimension

1. We recall that such a subset, N , 1is given locally
by the set of zeros of a holomorphic function. More
precilsely, if p 4is a point in N then there is an
open neighborhocod, U, of p in M and a holomorphic
function, f , defined on U (not identically zero on any
connected-component of U) such that a point q of U
belongs to N nU if, and only if, f(q) = O . The
point p € N 1is termed regular if the above mentioned
functlion, f , may be chosen as a coordinate function
about p ; otherwise p 1s gsingular.

Let {fi}iel be an indexed family of meromorphic
function in which each function, fi s 1s defined on an
open subset, U, , of M, (1¢ I) such that

a) {Ui}iel forms an open covering of M,

b) f; 1s not identically zero on any connected-

component of Ui s and

c) fi/fj is holomorphic and # 0 in Ty N U, .



As we know, such a family, {fi} , of functions defines

a divisor, D, of M . We shall express this situation
in symbol by D ”’tfi}iel . In virtue of the condition
¢), the locus of zeros and poles of a divisor is well-
defined. This locus, together with multiplicities of

its irreducible components, will often be identified

with the divisor itself. If, in particular, each function
in the family, {fi} » 1is holomorphic, the corresponding

divisor, D ﬂ){fi} s 18 termed non-negative. A non-

negatlve divisor, D , 1s called positive 1f 1ts locus
of zeros, ND » is non-empty; 1in such case, Nb is
a complex analytic subset of maximal dimension. Perhaps
the simplest non-negative divisor 1s one given by a single,
globally defined holomorphic function, i.e., D ~ {f]} .
For such a divisor, we shall simply write D = (f) and
Ny = }f =0] .

To each divisor, D N{fi}ieI , there is an
assoclated holomorphic complex line bundle, ([D] , of M
glven by the transition functions

£
fij = i/fJ in U1t¥ UJ .



The characteristic class, cl(D) s of D is then defined

to be the Chern class, cl([D}) , of the bundle ([D] .
If D= (f) , then [D] is trivial and hence ¢;(D) = O .

et D bDe a poslitive divisor of M and let ND
be its locus of zeros. Each irreducible component of
ND has a fundamental homology class in the sense of
Borel-Haefliger [1] . Therefore D , considered as
RD together with its multiplicities, represents a homology
class, h(D) , in HEn-z (M;Z ) , where the script H
denotes homology with closed supports. We shall reserve
H to denote the ordinary homology. Borel and Haefliger
proved that

LEMMA (5.1) If D is a positive divisor then the
homology class h(D) in y{én_a(M;m is dual to the
characteristic class cl(D) in H2(M;EZ) .

Let V and W be Zmodules, A bilinear form

g: VxW—%Z

may be deflned by means of a correlation Y:vou*
(cf. p. 0-1), where W™ is the Z~-dual of W . Let us
denote by 71 , Hy and T the appropriate homology
and cohomology groups modulo torsion, e.g. ?1(}4;%)
- )li(m;z)/(toraion). For a compact manifold, M = M" ,
the 27 -modules ﬁm_i(M;Z’.) =V, H(MZ =W are
lattices and WX = ﬁi(m;z) . The Poincaré duallty map



Hm__i(n;za »Hi(m;x) induces a homomorphism §: Vv »wW¥
which, taken as a correlation, defines a bilinear form

S : Hy ,(Mz YXH,(MZ) 2 Z.
The integer S(x,y) 1is precisely the intersection
number of the homology classes x and y . This notion
may be generalized to non-compact manifolds. In fact,
1f M" is non-compact, then the Zrmodules X__ (M;Z) =V
and H,(M;Z) are torsion-free and Bz) o wr.
The Poincaré duality map }&m_i(M;EZ ) Bt (M;Z ) again
induces a correlation ¥ : V — WX and hence defines a

bilinear form
S : m_i(M;Z) x ﬁi(M;Z ) Z .

In this fashion the intersection number of a class
x e , (MZ) and a class y € H,(M;Z) is defined,
i.e. xey = S(x,¥) =y ox . The intersection of cycles
can then be defined by means of the homology classes they
represent.

Let D = (£) be a divisor of M(®) . Accordaing to

(5.1), Y(a(D)) = ¢;(D) = 0 ; this proves

COROLLARY (5.2) If D = (f) , then the intersection
number h(D)ex vanishes for each x € Hy(M;ZZ) .
(Notice that if x 1s a torsion class, h(D) ~x 1is

by definition zero.) If we consider D as a cycle in M,



then for any cycle, ¥ , with compact support in M,
Doy =0.

Now, let p be a point in the complex manifold
M= M(n) . The complex line elements at p in M form
a complex projective space CP(n"l) . "Replacing” the
point p of M by a copy of CP(n"l) we obtain a new
complex manifold o M ; i.e., oM = (M~p)u cpln-1) |
The assignment , M “*JbM s 1s known as o -process,

blowing-up operation or a guadratic transformation. To

make the term “replacing" precise, we take a coordinate
nelghborhood, U, of p in M with local coordinates
Zysee+52, centered at p (i.e. p = (0)) . Let
CP(n'l) be represented by homogeneous coordinates
Wyses.,W, . There is an obvious map, ¥, from U~(0)
onto CP(n'l) . The graph, I, of ¥ 1in U x CP(n'l)
together with Kb = (0)¥ CP(n—l) forms a non-singular

analytic subset, N , of Uxcp(P-1)

Indeed, if

qQ = (wl,...,wn) € CP(n"l) is such that wy £ 0 , then
(0)x @ has a coordinate neighborhood in U’XCP(n-l)

with local coordinates Zj,eeesZ)s WyseeesWy 35 Wy qseeesW.
With respect to these coordinates a point r = (zl,...,zn,
wl,...,wi_l,wi+1,...,wn) belongs to N 4if, and only 1if,
(5.3) 2y = 24V (L¢Jjg<n, J#1) .

Thus Wyseoe Wy _15Z42Wg qse00sWy constitute a system of



local coordinates in N about (0) x g . We then

identify U~ (0) with [N o= N\Kp to obtain crpM .

It can be shown that GbM does not depend on the cholce

of the nelghborhood, U , used to define it and depends

only on M and the point p .
There 1s a projection ﬂ% : obM‘*aM which maps Kb
into p and maps <TbM‘~Kp homeomorphically onto M-~p .
We now restrict ourselves to the case where
dimc =2 . Let p € M, having local coordinates
Zys2p (centered at p ) defined on a neighborhood, U,
of p in M . In the complex manifold ng » these
coordinates are replaced by two systems of local

coordinates, u,v and U,V , such that

Zl =
(Zl # 0) ,
22 = UV
(5.4) .
21 = 'i'zv
~ (32 #0) ,
22 =

as one can see from (5.3). The subspace Kb of ng
is obviously given by the equations u=0 and Vv =0 .
It is also clear that topologically Kb is a 2-sphere

embedded in Ub(M) and hence it represents a cycle with

compact support in Gb(M) .



LEMMA (5.5) The self-intersection number K@ ° K?

18 -'l -

Indeed, without changing of notations, =z
1
(

1 may be

considered as a function defined on 7. ~(U) . (Strictly

speaking, zq is a function defined oi U only. When
we conslder 2z, as a function on ﬂi'l(u) we actually
mean the function which is expressed in (u,v)-chart by
u and in (U,¥)-chart by U¥ (see (5.4)). Similar
remarks apply to (5.7).) The divisor ]zl = 0| in
ﬂ%'l(U) consists of Kb and | = 0! ; in other words
|z = O = Kﬁ + |d = 0] . Since the intersection number
K, © {1 = 0| 1s obviously +1 . Applying (5.2) to the
open manifold 4Tp"1(U) we get

0 =K o | 2, = o =Kpaxp+xpo{’ﬁ'=ol.
This clearly proves the lemma.

REMARK (5.6) If we ignore the complex analytic
structure on M and consider M = M4 as a € -manifold,
then o (M) 4is C -equivalent to the connected sum
m# (-cp(3)) .

The blowing-up operation may be iterated. Let Py

be a point in M and consider Gb M . Pick a point Py
1

in Kbl a’ﬂb°1(p) . We may construct a complex manifold

. b th
obzcjblm = Gblpen Denote K§1 v Ki s en Kl

and Ké intersect at exactly one point. There 18 a



projection, ‘rblp2 s plpgm-a-m » which maps Ki U Ké into

p . Take a point pz in 4””1p2 = K) U K, and construct

Gy pem) Pzpzpsm’ ete. Finally ze arrive at a

eomplex manifold M = o, p. M and T aM-—>M with
1'.. s

Tl(p)) = Ky U +ve. UK, - Notice that K, and Ky (14 9)

T (

are elther disjoint or intersecting at one point regularly.
Thus the "spherical space”, 4¥*1(pl), is dual to a tree,

T , in the sense that each Ki corresponds to a vertex,
vy » of T and K, dintersects KJ (1 # j) if, and only
if, vy and v'j are joint in T Dby an edge eij .

We may weight the tree T so that v is welghted by

i

the self-intersection number of K1 in 'ﬁ » The weighted

tree so obtained is called the dual welghted tree of the

spherical space 3%'1(p1) . The self-intersection number
of K; can easily be computed by applying (5.2) to
the open manifold :ﬁfl(U),where U is a coordinate
neighborhood of Py -

We are now ready to investigate how the resolution
of singularities In the "Riemann surface" of an algebraic
function by blowing-up process is related to the plumbing
operation studied in §4. We believe that an example
willl be sufficlent to clarify the situation.

EXAMPLE (5.7) Let M = €° and let f = ’;/zls + 224

be defined on M . The origin p; = (0,0) is the only



3 4
1Ttz s
then the locus |w = 0] 1is a complex analytic subset

non-uniformizable singularity of f . Let w =2

along which the branching of f occurs. Blow-up M

at the point Pq and 1in Gb M conslider the local
coordinates u,v and U,V given by (5.4) . w may be
considered ag a function defined on ablM {see the proof
of (5.5)). The divisor |w = 0] in o M is expressed
by }53(V + 35) = 0| and fu3(1+u4v) = 0| . ‘The last
two loci coincide except at one point. In fact, |¥ = 0]
and |u = 0] gilve the 2-sphere K, = Kbl in a;lm

and }(l+u4v) = 0) = f(# + ﬁs) = 0] . We represent this

divisor by a diagram: ig
i
5/?\\}{,*‘&; = ");
1 \
\

where the Integers, 1 and 3 ; expresses the multiplicity
of the irreducible components indicated. Now the non-
uniformizable singularity of |{w = f (consider as function
on abln) is at the point p, where (4,¥) = 0 . Since
this point does not appear in the (u,v)-chart, we may
consider the restriction of w in (4,V)-chart 1i.e.

we consider only vo(¥+U°) . Blow-up cblm at the point

Po and in <Tplp2M we take local coordinates Uy.vy
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satisfying U = u, , Vo= Uy vy (for reasons similar to

that given above, the other chart may be discarded). 1In

this chart |w = O] is given by )u14 vls(vl + ulg) = 0f
or 1in diagram: ! q
(=

Next, let p; be the point where (ul’vl) = {0,0) .

Blow-up at Pz > (u1 =Uy 5, V3= UVp 5 Uy =’G25 ’

v, = ﬁé) » wWe see |w = 0] 1is given by §ugv§ (votuy) =
~t ne Dpl

o} and §§24v28(1 + u22v2) =0 l.

Finally we blow-up at p, where (ug,va) = (0,0) to
obtain the manifold M = 9p,p,p;p,M in which the divisor
lw = 0] 1s expressed by )u312v33 (vg + 1) = 0} and

13383312(l+§%) «0l . 1In dlagram we have:
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Consider the function £ = JW 1in ﬁk; it is now
uniformizable. Branching of f only occurs along K1
and L = |vz + 1 = 0| where the multiplicitles are odd.

In the Riemann surface (of complex dimension 2) of

f= /W, K, 1s lifted into a 2-sphere, K; , with

two branches, K and L' sticking out (Ki covers

K4 twice, ~Ki covers Ki once and L' <covers L once).
Thus the divisor D = |f = 0| -of the Riemann surface can

be expressed by the diagram

where Ké and Ké cover K3 ; Ké and Ké cover K2 .
All loci except L' are 2-spheres. The dual diagram of
the union of 2-spheres, t)K'i s 18 precisely EG

(with vertices re-named):
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We now compute the self-intersection numbers, Ki oK_,‘L

(1 =1,...,6), by means of (5.2). First notice that

ifr Kj" and K3 are not dlsjolnt then they Iintersect

at one point regularly and hence K:{ oK& = +1 . We

have, for example,
O-Ki°D= 6+3Kiﬁ‘Ki s
O=KjoeD=3+1+4+4+ 6K oK .

Therefore Ki o KJ’_ = Kio K = - 2 . The reader will have

no trouble to show that K_,{a Ki = -2 for each

i=1, 2,...,6 . The dual weighted tree of the union

of 2-spheres, K = UK:'L s 1is E6 welghted by -2 . Let

us denote this tree by (E65"2) ; Eg weighted by +2

'is then denoted by (Eg;2) . It is now clear that if

Vv 1s a tubular nelghborhood of K in the Rilemann

surface of (the modified) f , then V is diffeomorphic

to P(E6;—2) . The last space is by no means new;

indeed, up to orientation it is the same as the space

P(Eg;2) which we studied in ¥4 . In particular,

av % -(s3/7') .
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We now return to the function f = /;13 + 224

on e2 . Let y’ be the projection from the Riemann
surface, R, , of f onto €2 . Then V%'l(o) =g

is a singular point of Rf . Let B Dbe the unlit ball in
02 s ‘then 'Vrl(B) is a neighborhood of g . The
boundary of this neighborhood 1s obviously diffeomorphic
to 2V .

EXERCISE (5.8) Let M = € . Show that for

2 3 i3 5 2 n
f = jlgl(zl +z5") {%1 * 2 R \/zl(zg + 29 )
(n>2), le - zen (n > 2) the dual weighted

trees cbtained from the preceding process are, respectively,

E;s Bg » Dpyy 5 Ap g (here every tree is weighted by -2).
In general, resolving a singularity of an algebrailc

function, f , defined on a complex manifold M(Q)

amounts to replacing the corresponding singular point

in the "Riemann surface” of f by a finite number of

curves, K,.Ky,...,K (dimﬁ K; =2, for each i),

Of various genera such that for any pair i,j (1 # J) ,

the curves K1 and K.j are elther disjoint or intersect

at one point regularly. Thus the intersection relations

give rise to a dual weighted graph, each vertex corresponds

to a curve ; furthermore this dual graph 1s connected.

The quadratlic form, S , assoclated with the dual

graph (in the same fashion as that associated with a tree)
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may be represented by the intersection matrix M - (aij),
where ayy = K1° KJ . We have

THEOREM (5.9) The quadratic form, S , defined
above 18 negative definite.

The proof we are about to give is due to D. Mumford
(Institut des Hautes Etudes Scientifiques, Publications
Mathématiques, No. 9, p. 6) . Let the multiplicity of
Kl be denoted by my which is a positive integer for

each 1 =1, 2, ,..,n. Define a quadratic form

St~ :EE asy XX,
£, WY
where aiJ - mim"ai‘j - m1K1  m,K It is clear that

373
S 1is negative definite if, and only if, S' 1s so.
Notice that
a) “iJ 20 1if 1 ¥ J .
In virtue of (5.2) we have
b) %ah - %:(mix(1 °mK,) <O, for each

i=1,...,n, and

c) 25013 < O for some J .
Conditions a) and b) 1imply that S' 1s negative semi-
definite. To obtain the definiteness we write S' in

the form

2013 1 3 - 2(231:,) X fj C"i,j (xl -

2
xy)
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and put S' = 0 . Condition c¢) shows that Xy = 0

for some J . This together with the connectedness

of the dual graph proves that Xy ®Xo ™ o00 =X, = o,
i.e., 8' 1is definite. The proof of (5.9) is thus

completed.



€. A Theorem of Kervaire and Milnor

We devote this section to prove Theorem (2.5)
which we stated (without proof) in $2 . This Theorem,
as well as the proof we are about to see, is due to
Kervalre and Milnor [2].

Let M be an unbounded (differentiable, oriented,
compact) 4-manifold. Let T : H?(M;ZQ-%»HE(M;%E) be
the reduction modulo 2 and let d € H°(M;Z) be such that
md = WQ(M). Under Poincaré duality, 4@ corresponds
to an element b € Hé(M;ZD . Theorem (2.5) states that

THEOREM (2.5) If b can be represented by a
differentiable embedding, f : 82-9-M s then the self-
intersection number, b ¢ b = (d v d)[M] , is congruent
to (M) modulo 16.

First let us conslder the case where b o b = -1 .
Then f(Sg) in M has normal bundle equivalent to the
bundle n_, defined in $4. In other words f(sz) has
in M a tubular neighborhood, A , whose boundary,

94 , considered as the normal Sl-bundle of f(Sg) is

3 2

the Hopf fibration S°—>§ 4

where e4 is a 4-cell whose boundary Be4 = 83 » is

attached to DA = S° by the identity map. Then

M= M #(-CP(Q)) .



Clearly wg(Ml) = 0 and hence ﬁ(Ml) = 0 (mod 16) by
(2.2). Stnce T(M) = (i) + of-ce(®)) = () -1,
our theorem is verifled for this particular case.

By reversing the orientation of M 1f necessary,
we may suppose that beb=8> 0. Let Pl’PQ""’Psﬂ
be 8 + 1 coples of —CP(E) and let

M' = M#Pl.ﬁ:?afm... #P .9 -
Using the natural isomorphism

J: (M ©H(P5Z) B ... @ Hy(P,3%) - Hy(M'Z)
let
c=ib@g B ... ®5,,;) -
where g, denotes a generator of Ha(Pi;ZQ . We then

have
s+l
cocabab‘i‘zgi‘?gig-lc
I=1
Using the hypotheslis that b can be represented by a

differentiable embedding of Sg in M, 1t follows easily

that ¢ can be represented by a differentiably embedded
2-sphere. Applying the special case we Jjust proved we get
T(M') = -1  (mod 16) .
Since T(M') = T(M) - (s+1), we deduce that
boeb=sg = (M) (mod 16) .



EXAMPLE (6.1) Let M = 82 x $° and let a,p
€ H?(M;ZQ be the standard generators. Then HQ(M;ZQ
=Z-.a0 ® Z.p and with respect to this basis the
guagdratic fornm, SM s of M 1is given by the matrix

o 1
G o)
An element in H?(M;ZQ is of the form mg + npg . Its
reduction modulo 2, M{Ma + ng) , 1is equal to WZ(M)
if, and only if, m and n are both even. Assume this
to be the case and let m =2m' , n =2n' . Using the
relation
(2m'q + 2n‘5)2 =8m'n' a UP ,

it follows that the dual homology class of mg + ng can
be represented by a differentiably embedded 2-sphere only
if 8m'n' 1is divisible by 16 or m'n' = 0 (mod 2) .
In particular 2g 4+ 28 18 not representable by a
differentiably embedded 2-gphere in M ,

EXAMPLE (6.2) Let M = cP(®) and let g € H2(M;m)
be the standard generator. The dual homology class of g
is obviously represented by a differentiably embedded
2-sphere; however the dual class of 3g , for example,
i8 not. Indeed, an element, ng , of H?(M;Z) satisfies
the relation t{ng) = we(M) if, and only if, n 1is odd.



consider an element (2k + l)g in H?(M;ZQ . If its
dual homology class is representable by a differentiably
embedded 2-sphere then (2k + 1)° =1 (mod 16); i.e.
K = 0,3 (mod 4) .

On the other hand, the dual homology class of 3g
is represented by a combinatorially embedded 2-sphere in
M= CP(Q) « To see this we let Zg s 29 5 Zg be the
homogeneous coordinates in CP(Z) and let P =
P(zo,zl,ze) be a homogeneous polynomial in three variables
of (total) degree n . This polynomial defines a
divisor of €p(®) in the obvious fashion (e.g., in the
chart where z, # 0 we consider the function
P(1, zl/zo, ZE/EO)), and the homology class of this
divisor 18 represented by the algebraic curve P = 0O .
If Q= Q(zo,zl,ze) is another homogeneous polynomial
of the same degree, n , then P/Q 1s a meromorphic
function, globally deflned on CP(E) ;3 therefore, as a
divisor 1t gives the zero homology class. In other
words, the curves P =0 and Q = Q represent the same
homology class of CP(e) « Since the dual class of g is
represented by the complex projective line Zg = 0, the
homology class represented by the curve P = 0 for any
homogeneous polynomial, p , Iin 20,21,22 of degree

3 is dual to 3g . In particular we let P = 21220 - 223.



The curve P = O has only one singularity which 1is a
cusp at (0,0,1) . Using the formula

genus = (E:l%i&:ﬁl__ local items ,

we see that this curve has genus zero. It follows that
the curve P = 0 considered as a (real) surface in the
4-manifold CPce)is a 2-sphere (smooth except at a
cusp) which 1s apparently combinatorially embedded.
REMARK (6.3) Kervaire and Milnor proved that in the

manifolds 32 X 82

and CP(E) » any 2-dimensional
homology class can be represented by a combinatorially

embedded 2-sphere.



Te Integral Unimodular Quadratic Forms ™

let £ = (f,V) be a non-degenerate integral
quadratic form of rank n . The set of non-negative

integers, {|f(x,x)}} has a minimum, which we shall

xev
denote by min £f . In case min £f = 0 , we say that f

is a zero form or, equlivalently, f represents zero.

If a base (81)15;59 i1s chosen in the lattlce, V ,
the quadratic form, f , may be expressed by

i,J
Recall that we can always choose the base (ei) of V
so that the expression (T.l) of f 1is Hermite-reduced.

The last term can be defined inductively as follows:
1) If £ = (£,V) dis of rank 1, then f =a;,x; is
Hermite reduced.
2) For quadratic form of rank n > 1 , the expression
£ = Zay §%1%; 18 Hermite-reduced if
a) }all] > 2 )aljg for J> 1,
b) lajq) =min £,
¢) a,,f = (:ialixi)g + fl(xa,...,xn) s
where fl(x2’ «es» X} 18 a Hermite-reduced form of rank

n""l -

* fThe content of this section is based on an article
of J - P. Serre (see Serre [1]) as much as on the

original lectures.



We have
THEOREM (7.2) If £ = :EaijxixJ is Hermite-reduced
and 1f f 1is not a zero form, then
lagql < 473272 Jaep ¢ AT

COROLLARY (7.3) Let £ m Iiaijxixj be an integral
unimodular quadratic form of rank < 5 . If f 1is not

a zero form then it is equivalent to either :5y12 or
2
-2?1 -

This corollary shows in particular that any indefinite
unimodular integral quadratlec form of rank < 5 represents
zero. For quadratic forms of rank > 5 this is true for
any indefinite form. Preclsely, we have

THEOREM (7.4) Every non-degenerate indefinite
integral quadratic form of rank > 5 represents zero
(Meyer).

Proofs of these statements can be found in the useful
monograph of B. W. Jones (Carus Monographs No. 10; see
Theorem 23, Corollary 23 and Corollary 27d there).

We now turn to study the Grothendieck-Witt ring
@,(Z) which we defined earlier in Appendix A . 4n
integral unimodular quadratic form, £ , represents an
element (also denoted by f) in the monoid ?;(ZQ (see
page A - 2) . The elements in ?L(Za represented by the
forms xg » ~x2 and xy will be denoted respectively by
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1, -1 snd u . The element in GO(ZZ} represented by
£ € % (Z) will be denoted by £ .. This notation differs
slightly from that used in Appendix A.

LEMMA {T.5) Every unimodular indefinite odd quadratic
form of rank > 2 can be decomposed into the form
1+ (~1) +g, where g is a non-singular form,

To prove this lemma we let f = (£,V) be a given
unimodular indefinite odd form. By (7.3) and (7.4), ¢
is a zero form. Let x € V be an indivisible element
satisfying f(x,x) = O0-. Since f is non-singular
(unimodular), the correlation, ¥, of f maps x into
an indivisible element ¥(x) 1in V' . Therefore there
exists an element y € V such that <¥(x),y> = £{x,y) =1 .
We may furthermore choose y 8o that f£({y,y) 18 odd.
Por if f£(y,y) 1is even, we choose an element 2z € V
satisfying f£(z,z) =1 mod 2 (this is possible because
£ is odd) and replace y by y' =z + [1 - £f(x,¥)]y »
Then f£(y',y') is odd and f£(x,y) =1 . Now assume
£(y,y) 18 odd and let f£(y,y) =2m + 1 . The elements
e =y -mXx, &y =y - (m+l)x are indivisible in V
for f(e;,e;) =1 and f(eys€5) = -1, Our lemma now
follows from (0.4).

THEOREM (7.6) If £ 1is a unimodular indefinite odd
quadratic form then f 18 equivalent to L a (-1) .



Indeed, Lemma (7.5) shows that f is equivalent
to 1+ (-1)4+g. Sinceoneof 1+g and (-1 1g
has to be indefinite, (7.6) follows from a simple induction,

COROLLARY (7.7) Two unimodular indefinite odd
quadratic forms are equivalent if they have the same rank
and same index.

We are now ready to show that Go(zz.) ~ Z ®Z as
we announced in (A.5). In fact we shall show that

THEOREM (7.8) 6,(2) =z .1 @ z,(-1) .

For each f € (Z), etther 1 + £ or (-1) +f is
odd and indefinite. Using (7.6} we conclude that
T=a'I+a.(-1) in G,(Z) and this shows that I
and -1 generates G_(Z). Since the homomorphism
(a,a7): G, (Z) —> Z® Z maps these generators into the
free generators of Z@ Z, it follows that G (Z) =
Zzi@z.(-1) .

. REMARK (7.9) Corollary (1.10) , which states that
f(w,w) ~ T(f) w0 (mod 8) for any integral unimodular
form £ , now folldws easily from (7.8) . The map
h: 9*‘0(%-% Q/Z defined by h(f) = fﬁ‘"‘é’) =%

{reduced modulo 1) 18 a monoid-homomorphism which induces
a homomorphism h = G{Z)—>@/Z. Corollary (1.10)

is equivalent to saying that h vanishes indentically
on G,(Z ; but this is clear since h vanishes on the
generators 1 and -1 of G (7 .
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The structure of integral unimodular indefinite
odd forms 18 completely determined by Theorem (7.6).
The structure of unimodular indefinite even forms can
also be determined (see Serre [1]). In particular two
such forms are equivalent 1f, and only if, they have the
same rank and same index. Combining this with (7.7),

we have

THECREM (7.10) Two integral unimodular indefinite
quadratic forms are equivalent 1f, and only if, they have
the same rank and same Iindex.

As for definite forms, our Knowledge 18 meagre. We

have, for example,

PTHEOREM (7.11) Two integral unimodular quadratic
forms of the same rank < 8 are equivalent if they have

the same signature and type (i.e., even or odd).

REMARK (7.12) The last theorem ceased to be true
for forms of rank > 8 . For example, let £ be the
quadratic form assoclated with Eg as defined in P. 1-9
and let £' wmwf +1 . Ten f' and g=1+1+ ... +1
(9 times) are of the same rank, same signature and same
type. If (7.11) were true for this case, f and g
would be equivalent. This is impossible for f'(x,x) = 1
has 2 solutions by g(x,x) = 1 has 18 solutions.



8. More about Quadratic Forms.

et f be a quadratic form over a ring A . For
an element a € A we shall denote by af the quadratic form
form defined by af(x,y) = a.f(x,y).

So far we have consldered exclusively quadratic forms
which are non-degenerate. This is not an essential
restriction; for if f = (£,V) 4is any quadratic form,
the kernel, Rad (V), of the correlation { : V~—>V' of
f 1is a submodule of V and f 1nduces a non-degenerate
quadratic form, £ , on V/Rad(V) . We shall use
Pl et .~ Pl
det £ (resp. DET f) to denote det f (resp. DET f,
cf. p. 0-10) and agree that 1f f 1is totally isotroplc
(1.e. f£(x,y) =0 for all x and y in V) then
P
DET £ = 1 .

THEOREM (8.1) Every non-degenerate quadratic form,
f , over R(p) may be decomposed into
. . 2 . f k
(8.2) £ =fy+pfy +pfy + e +p 1,
where f, (0 <1 < k) 1is a non-singular quadratiec form
of rank r; > O .

COROLLARY (8.3) Every non-degenerate quadratic form
over R(p) (p ¥ 2) decomposes into unary forms.
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The corollary follows immediately from (8.1) and
(0.5). To prove (8.1) we choose a basis in the lattice,
VvV, on which f 1s defined, and express f by its
matrix

Mp = (aiJ) ’ (1,3 =1, «.., 7).
If every ay g is divisible by p € R(p) we shall say
that Mf is divisible by p and, if this is the case,
put M, -'ptM‘ » where M' = (“ij) is not divisible by
P « Notlice that M' may not be invertible.

a). If not all the diagonal entries of M' are
divisible by p , then some of them are units. Applying
(0.4), we may split off these entries.

b). If all the diagonal entries of M' are divisible
by p , then there is at least one entry off the dlagonal
which 1s a unit and we lose nothing by assuming thls entry
be “ie ; but then the minor

@1y “ie')
oy %o/
is non-singular and hence splits off.
By repeated application of a) and b) we get
f = pt(f’t + g) , where f, 1s non-singular and the

matrix, N, of g is divisible by p . We write
N = p°N' such that pPM' and repeat the preceding



argument to obtain f = ptft + ps+t(f

st + g') , where
fs+t is nonsingular and g' 1s divisible by p . Our
theorem now follows readlily from an obvious induction.

Let r, (0 <1 <k) be the rank of £, in (8.2).
Then ri's are uniquely determined by the equivalence
class of f . Indeed, the cokernel of the correlation
F: V- V' is isomorphic to ZR(p)/@J , where O Caes
«eeCly % R(p) are ideals uniquely defined by <, hence
by £ (cf. [B - Alg] CH. VII. $4. Th. 2). In R(p) the
only ideals are of the form ptR(p) « The number of times
R(F)/btn(p) appears in EER(F)AQJ is clearly equal to
Ty . This gives an invariant definitlon of the ri's .

Each f, 1n (8.2) is a non-singular quadratic form.
Therefore det fi is a unit. We define

_— {1 , Af det £, € R(p)*™
-1, 1if det £, ¢ R(p)™™”

In other words, if we identify R(p)/R(p)™ with ({1, -1}
then ¥, = DET f;, . As we shall see that the Y¥,'s
depend only on the equivalence class of [ ; they are
called the Minkowskl invariants of [ .

We now seek for an invariant definitlon of these
‘Ki’s. If this is done, the invariance of Ei is
automatically established. ILet f = (£,V) . Ve may
extend f to a quadratic form over V @F(p) . The



extended f , formerly denoted by fF(p) » will also
be denoted by f for simplicity. Consider V <V ® F(p)
and let V' be the "dual” of V in V ®F(p) , i.e.,
V' = (x € V@F(p) | £(x,y) € R(p) for every y € V} .
Then U =V'/V 1is a finite abelian p-group. The
quadratic form, f , 1induces a bllinear pairing

t: U X UﬁF(p%{(p) .
Filter the group U by

{0} = Ub ClUi C ese < U,
where Uy = {x € Ui pix = 0} . It is clear that every
element in the guotient group Wi = Ui Ui—l is of order
P . We may consider Wi as a vector space over Z@ »

It is also easy to see that the palring, t , deflned
above 1lnduces a bilinear palring

. '%IR(p) 4

Therefore fi

o E
e /zzp** is defined. Identifying Z’p/xb**with
92 = {1, -1} , we see that ﬁﬁ@ fi =+ 1 . We claim

is a quadratic form over zb and ﬁgb fi

Fa
that ¥; =DET f] (1 =1, ..., k). To show this we let
£y = (£, V;) 1n (8.2). Then V = (Bfém v, and
vt = Si.v,c VOF(p) . We compare the definitions of
pN
% and DET £ and apply (0.17) to conclude that
= DET £} for i =1,...,k . The invarlance of Bb now

follows as a consequence.
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The following lemma is not hard to prove (see
Jones, p. 91).

LEMMA (8.4) Iet f and g be non-singular quadratic
forms over R(p) . For p¥ 2, £ and g are equivalent
if, and only if, they are equivalent over F(p) . For
p==2, £ and g are equivalent if, and only 1f, they

have the same type and are equivalent over F(2) .

THEOREM (8.5) ™Two non-singular quadratic forms f‘ﬁéxvﬁ,
over R(p) (p ¥ 2) are equivalent if they have the same ;'?ﬁéf
i e ,,«"T
rank and same DET . ! R
i’("""% £

Iet £ and g be two non-singular guadratic forms

ey 7
over R(p) such that rk f mrk g and DETf = DET g . ,zﬂﬁ’f‘”
Fln Loy

7

Since p ¥ 2, cp(r) - gp(g) = 1 1in virtue of (0.24). %ﬁh%g&é%
It follows from (A.9) that £ and g , when considered ““= .’
as quadratic forms over F(p) , are equivalent in

@(P(p)) (i.e., in the notation of §7 , T = ). We then

apply (A.1) and (0.8) to conclude that £ and g are
equivalent over P(p) . Our theorem now follows from (8.4).

COROLLARY (8.6) FPor non-degenerate quadratic forms
over R(p) (p ¥ 2) , the integers TL. oY (1 =0, 1, «oa,k;
constitute a complete set of invariants for the eguivalence
classes.

Returning now to integral quadratic forms. Two such
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forms, £ and g , are sald to be equlvalent over

R{p) 1f fR(p),v R(p) . We say that f is seml-
equivalent to g or f and g have the same genus if

£ 1is equivalent to g over R(p) for p =2, 3, ... ®,

We have

THEOREM (8.7) Two integral even quadratic forms,
f and g , with odd determinants are semi-equlvalent
if they are equivalent over R(p) for all p # 2
(including p = o) ,

In virtue of (8.4), we need only to show that ¢
and g are equivalent over F(2) . Notice that f ~g
over R(w) implies rk f =rk g . We then apply (0.25)
to obtain c,o(f) = e (g) , and hence &,(f) = cr(s) .
Since f and g are even forms, the last equality shows
that det £f mdet g (mod 8); that is DET f = DET g
(cf. (0.17) and the proof of (0.18)). It follows from
(A.9), (A.1) and (0.8) that f ~ g over F(2) and this
proves (B8.7).

THEOREM (8.8) The rank, index and type (even or
odd) form a complete system of invariants of the genus
of an integral unimodular quadratic form.

This is a consequence of (0.24), (8.4) and (8.5).

Let f = (£,V) be an integral quadratic form. The
invarients Y, and r, of £8P} 4111 ve aenoted by



Yi(p) and ri(p) , which are invariants of f . Consider

VevEeQ and let viw{{xev ®Q|f(x,y) € Z for

all y € V] . Define U= V'/y as before. The quadratic

form, f , then induces a bilinear pairing
t:UXxU—=Q2Z .

For any odd prime, p , let Ui(p) = {uevU )pi u = 0}

and put WY/ = "1 /.(p) . We then obtain a bilinear
i-1

j:airing

W§p) X wip) - Zp .
It is clear that Xj(‘p), r§p) (1> 1) of f can be
defined by means of this palring.

Iet ¥'= Yé‘k be a {compact, differentisble, oriented)
4k-manifold with boundary oY = X . For simpliclty we
assume that

1) Y has no torsion,

2) Y is acyclic in dimensions ¥ 0 or 2k ,

3) Y 1is a rational homology sphere.

(These assumptiors may be weakened.) Consider

Hyp (¥) = Hyy (¥,X) 3 H, 1 (X) >0

\ a2 (y)
i

Hom(Hék(Y),ZQ



Since Hﬂk~1(x) is a finite torsion group, if we put
V = Hy (Y) then Hom(H,, (¥)Z) = H, (¥,X) is essentially
V' and Hy(X) = U. Te quadratic form, S, , of Y
induces a bllinear pairing

L:UxU~»2Z,
which, as informed reader may have already observed,
gives the linking numbers In X . Thus L , and con-
sequently Xi(p) and ri(p) (1>1, podd), are
invarlants of the oriented homotopy type of X = JY .
From (8.7) we conclude that if ¥, and Y, are
4k-manifolds with boundariles satisfying 1) - 3) and if
the quadratic forms S}. and Sy of Yl and Y2 are
even, with odd determlnants, and are equlvalent over
R(w) = R then 8, and S, have the same genus provided
ayl and aYa have the same oriented homotopy type.



References

Books and Monographs

[H] Hirzebruch, F. Neue Topologlsche Methoden in der
Algebraischen Geometrie (Berlin, 1956-1962)

[H-W] Hilton, P. J. and Wylie, S. Homology Theory
{Cambridge, 1960)

[5-T] Seifert, H. and Threlfall, W. Lehrbuch der
Topologlie (Leipzig, 1934)
[B-Alg] Bourbaki, N. Algtbre.

Papers and Notes

Borel, A. and Hirzebruch, F.

[1]1 Characteristic classes and homogeneous spaces I
Am. J. Math. 80(1958), 459-538.

[2] ~=~e- II. 4bid 81(1959), 315-382.

[3] ~~---IIT. 1ibid 82(1960), 491-504.

Hirzebruch, P.

[1] Uver vierdimensionale Riemannsche Flichen mehr-
deutiger analytischer Funktionen von zweli Komplexen
Veranderlichen. Math. Ann, Bd 126, 8. 1-22 (1953).

Kervaire, M. A. and Milnor, J. W.

{11 Bernoulli number, homotopy groups, and a theorem of

Rohlin., proc. Intern. Congress of Math, (Edinbergh,



{2] On 2-spheres in 4-manifolds. Proc. Nat. Acad. of

Milnor, J. W.
{1] On simply connected 4-manifold. Symposium Intern.
de Topologia Algebraica (Mexico, 1958), 122-128.
{E] Differentiable manifolds which are homotopy spheres.
(Princeton 1959).
[3] A procedure for Killing homotopy groups of differen-
tiable manifolds. Proc. of Symposlia in Pure Math.
A.M.S. Vol. III.
[{4] Lectures on characteristic classes. (Princeton 1957)
[5] Differentiable structures. [Princeton 1960).

Rohlin, V. A.

[1] Classification of mappings of S™*3 onto S (Russian)
Dokl. Akad. Nauk S3SR. 81(1951), 19-22.

{2] A new result in the theorey of 4-dimensional manifolds
(Russian) ibid 84(1952) 221-224.

Seifert, H.
[1] Topologle dreidemensionaler gefaserter Riume.

Acta Math. 60(1932), 147-238,

Scm, J"‘Eo
[1] Pormes Wlineares symetriques entidres 3 discriminant
* 1. H. Cartan Séminaire 14° année Exp. 14.

whitehead, J. H. C.
{1] On inecidence matricea, nuclel and homotopy type. Ann.

Math, 42(1941), 1197-1237.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 
	Seite 34 
	Seite 35 
	Seite 36 
	Seite 37 
	Seite 38 
	Seite 39 
	Seite 40 
	Seite 41 
	Seite 42 
	Seite 43 
	Seite 44 
	Seite 45 
	Seite 46 
	Seite 47 
	Seite 48 
	Seite 49 
	Seite 50 
	Seite 51 
	Seite 52 
	Seite 53 
	Seite 54 
	Seite 55 
	Seite 56 
	Seite 57 
	Seite 58 
	Seite 59 
	Seite 60 
	Seite 61 
	Seite 62 
	Seite 63 
	Seite 64 
	Seite 65 
	Seite 66 
	Seite 67 
	Seite 68 
	Seite 69 
	Seite 70 
	Seite 71 
	Seite 72 
	Seite 73 
	Seite 74 
	Seite 75 
	Seite 76 
	Seite 77 
	Seite 78 
	Seite 79 
	Seite 80 
	Seite 81 
	Seite 82 
	Seite 83 
	Seite 84 
	Seite 85 
	Seite 86 
	Seite 87 
	Seite 88 
	Seite 89 
	Seite 90 
	Seite 91 
	Seite 92 
	Seite 93 
	Seite 94 
	Seite 95 
	Seite 96 
	Seite 97 
	Seite 98 
	Seite 99 
	Seite 100 
	Seite 101 
	Seite 102 
	Seite 103 
	Seite 104 
	Seite 105 
	Seite 106 
	Seite 107 
	Seite 108 
	Seite 109 
	Seite 110 
	Seite 111 
	Seite 112 
	Seite 113 
	Seite 114 
	Seite 115 

