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The index of an oriented manifold
and the Todd genus of an almost complex manifold

Vervielfiltigtes Manuskript, Princeton University, 1953

Introduction. This note gives several applications of the results announced in

the notes [1], [2]. In the note [1] we defined the Todd genus T'(M,) of an almost
-X

e*—1

note [2] we considered the index I (M**) of an oriented differentiable manifold

and proved that I (M*) can be obtained from the Pontrjagin classes by the

complex manifold as the “genus” belonging to the power series In the

power series n hz]/_' In the case of an almost complex manifold M, the index
gh }z

I(M;) can be obtained from the Chern classes by the power series %

Therefore, we may summarize: ghx

For almost complex manifolds M,,

T (Myy) is the e‘_"—l -genus,
and
I1(M;;) is the X _genus
2k tghx g

(“genus” in the sense of note [1], p. 9).
It will turn out that T and I are closely related, the formal reason for this
being the equation
x —-2x

tghx +x=e‘2"—1 ’

By definition, / is always an integer. We prove that 2*~! T (M,) is an integer by
using this fact and the theorem of Thom [3] that in an oriented differentiable
manifold M™ every (m—2)-dimensional homology class with integer coeffi-
cients can be represented by a subvariety. The question whether T(M,) is
always an integer remains undecided. It seems curious that the prime 2 is the
last obstacle towards a positive answer of this question and that, on the other
hand, the prime 2 does not play any exceptional role at all for the Todd poly-
nomials themselves (see the formula for the denominators of the Todd
polynomials in Lemma 1.5). The fact that ] is always an integer allows us to get
rid of all odd primes, i.e. one can prove that 2" T(M,) is always an integer
(2" is the power of 2 contained in the denominator of T,). Since 2" T(M,) is
(mod 2) the class U?" of Wu (which is zero), one gets that 2"~! T (M,) is an
integer. For n=3, we can prove by a theorem of Rohlin [4] that T'(M,) is
always an integer (this result is due to Thom).
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The index of an oriented manifold and the Todd genus of an almost complex manifold

The theory of T and I is in a curious state. The index / has by its original
definition a topological meaning; the theory of Thom [3] (cobordisme) made it
possible to prove that 7 (M**) can be obtained from the Pontrjagin classes by

tghx
of the 7-theory, however, is very unsatisfactory. We suspect for algebraic
manifolds V, that T(V,) = IT1(V,) (see Introduction of note [1]). Is it possible
to give T an intrinsic meaning for almost complex manifolds such that it is
automatically an integer? For example: we know that

the power series tgllﬁ/_ (resp. from the Chern classes by —Z_). The situation
z

Cy

T(M) =—

is always an integer. What is this integer?
All manifolds occurring in this note are differentiable of class C*. All sub-
manifolds are C®-differentiably imbedded.
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1. Algebraic preliminaries

In the note [1] we defined the multiplicative sequence K2 (ai,a;..... aj)
belonging to the power series Q(x) =1+ x + y,x% +.... Now let

C=Yc¢x and D=Y dx (co=dy=1)
i=0 <o

be two power series with indeterminates as coefficients. We may take C as the
power series O (x) and we obtain the multiplicative sequence Kf (a;, ay, ..., a;).
Here Kf is a polynomial of weight j in the a;, the coefficients of which are
polynomials of weight j in the ¢;. We may also take D to be the power series
Q(x) and we obtain the multiplicative sequence K7 (a,,a;,...,a;) where KP
is of weight j in the a; and has coefficients which are polynomials of weight j in
the d;. The following formula follows immediately from the definitions:

%)) KE(dy,dy,...,d) =KP (c1,c2,...,0)) .

We use the formula (1) to determine the coefficient of

r

ai,a;,...a,»,(ilEiz.%.‘.zi,,z i,=j) in K¢.

s=1
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Putagain Q(x) =1+ x+pxi+....
For every m we can split up formally, obtaining

#)) l+nx+px?+. .+ mx"=0+mx) (1 +mx)...(1+gmx).

By formula (1) we get
0 m
Y KP=1] U+amx+anix*+...+anix"+...) mod x™*!.
j=0 i=1

We denote the symmetric function with the generating term

'7{' 7152--‘ '7;.' (hzh=... %i,),
by

PIR AL
and infer that the coefficient of a,a;,... a;, in K2 is

Y nfrng...ni (for j=m).
m
For 0 <j = m we denote by s; the sum > n which does not depend on m.
k=1
We can write s; as a polynomial of weight j in the y, (we put here so=1):

$5=5 (11,7255 %) -

For example
so=1
$1=N
$;=—2p+n
s3=3p—3nn+n.
We have
3) K&(ay,...,a) =s;(n1, %2, ..., %) @+ ... composite terms .

Furthermore, the coefficient of aj in K¢ is equal to the symmetric function in
the #; the generating term of which is #j 775 g (jr=m).

Since the symmetric function with the generating term #{n} equals
1 (52— 52;), we have

@ K£(0,...,0,a;,0,...,0,a5) = 535435+ 3 (s}~ 525) aF .

We note here also the trivial fact that the coefficient of af in K2 is equal to y,.
By a formula of Cauchy we know that

(5) ( ) X -1 s x/.
0w 2% = Z GV
In the note [1] we considered in pamcular the Todd sequence T; belonging

. - X . .
to the power series Q (x) =——. For this power series we have

( 0 (x)) Q(x)= and ,go 5%/ = 1
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The index of an oriented manifold and the Todd genus of an almost complex manifold

Therefore, in the Todd polynomial T; the coefficient of ¢; is equal to that of c|.
We have

— X _ X d bZk 2%
STt I ot

where the by, are the Bernoulli numbers [5] in the even subscript notation. We
define as usual By = (= 1)*~! by. The B, are positive rational numbers:

1 1 1 1
B;—-"g, 32—36, Bi=7%5> Ba==35
5 691 7 3617
B=%: Pmamor BT BT

T>i+1 does not contain the term a4 4 for k= 1.
(6)
Tyx(ay,s...,a04) =——— ay, + ... composite terms .
Remark. We have already stated in the note {1] that T, is divisible by a,,
hence does not contain ayx+; for k=1 (see 4, (13a) of the present note). In
the note [2] (TheoremI’) we considered the polynomial 22* Ty (a,,...,a)
2

which has integers mod2 as coefficients. The number is an integer

k)
mod 2 which is #0 (mod 2), if and only if & is a power of 2. Since b4 con-
tains 2 exactly with the power one in its denominator (Theorem of von Staudt),
we have

2%% by . o
o # 0(2), if and only if k is a power of 2.

This yields

Lemma 1.1. The polynomial 2 T;(a,,...,a;) reduced mod?2 contains the term q;
if and only if j is a power of 2.

Remark. This lemma can be proved more directly by using the power series

-2x

e—2x —

=l+x+x3+x*+... +x¥+.. . mod2.

We made in the note [2) the convention that we may also consider multiplica-
tive sequences with respect to a power series Q(z), the only difference being
that the indeterminate x is replaced by z. We note the following trivial

Lemma 1.2. Write, in indeterminates,

z=x?, i(—l)ipiz‘=(z cixi)-(Z(—l)’C';:‘").
i=0 i=0 i=0

Let Q (z) be a power series in z. Define O (x) by 0 (x) = Q (x?). We have
K& (ci,rc)=KP(Prrocup) . K£y=0.
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In the note [2] we were led to consider the power series

__V
0O =

and the corresponding multiplicative sequence L;. Let L; be the multiplicative

sequence belonging to . By Lemma 1.2 we have

x
tgh x
) C Lyy=0, Ly(e,..ce)=Li(pr,..,p) -

. —-2x X .
Since —5 =x+ , we obtain
e —1 tghx

(Ta) ¢ Trg-1)(c1,€25-.0s Crg-1)) = G Loy (€15 €25, €rg-1y) mod g, (g 0dd).

z \ — 1 2V7
Q( )) 0@=z+1 s1nh2}f for @(x) = tghx

. Hence for formulas (3) and (5)

For Q(2)= TVEV: we get (

o) =

we have
smh 2x

2041 ) .
=|———"——=B)|pi+... t
L ( N nyz composite terms

Q()

@®

- ; 22j+1(22i—|_]
T

We denote by L the (multiplicative) homomorphism which attaches to a

) Bj) ¢2;+ ... composite terms.

power series C= Z ¢;x' the power series L(C)—Z Li(cy,...,c) x. The
i=0

following lemma, which we state without proof, is analogous to the Lemma 1.4
in the note {1].

Lemma 1.3. Let d\, d,, ..., d,, n be indeterminates, dy= . If one reduces
n [+ o)
L'(_z (1- ,,x)n-fd,xf) WA

modulo the ideal generated by Z (—=m)""'d;, then every L; can be written
uniquely in the form

Li=k? o' + kP 4.+ kP mod Y, (-7 d,.
i=0
kY is a polynomial of weight s in the d,. We have
k2,1 =0, ifj#tn—-1
k™D =1, if n isodd

k'Y =0, if n iseven.
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We state a lemma on the Todd polynomials mod 2 which follows immediately
from the congruence

~2x
= 2, .4 2
pe =l+x+x*+x*+...+x¥+... (mod2).
Lemma 14. For aj=ay=as=...=ay_1=0, we have 2**T**(a,,a,,...,a)

= 2" Tk (a;, A4, 650+ azk) mod 2.
Now we give without proof a formula for the denominators of 7} and L.

Lemma 1.5. The polynomials T, (resp. L) can be written uniquely as poly-
nomials with relatively prime integer coefficients divided by a positive integer

#(To) (resp. 1 (L)). )
u (T =Tgle7).

The product is over all primes q with2 =g =k +1.
2k
u(Ly) =Hq[ﬁJ .
The product is over all odd primes g with3 =g=2k +1.
22k pu(Li) = p(Toi) -

We close these algebraic preliminaries with a short list of the polynomials
T;(c1,¢2,...,¢) and L (p1, pas--., pa):

T|=—;‘C|, T2=1—12(C%+6‘2)» T3=2—l4€|6‘2,
T4=7;U(-—c4+c3cl+3c§+4czc%—c‘,‘),

Ts= 14140 Bclei—cyci+esci~cacy),

T6=601180 Res—2csci—9cscz—5caci—c3+11cscaei+5¢;5¢3

+10c3+11c3ci~12¢c,¢t+2¢))

(62ps—13p, p2+2pi),

1 1 1
Li==—p, Lz=7~5-(7P2—P%), L;= 3.5.7

3

L, (381 ps=T1 p3p1 =19 p3+ 22 pi p2~3pt) ,

R
T 345207
1

L=y

(5110 ps— 919 ps p1 — 336 p3 p2 + 237 pi p3
+127 p, p3—83pi p2+10p3) .
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2. Manifolds M?** with Poincaré polynomial 1+ ¢ + £*

Let M?** be a compact manifold of 2k dimensions (not necessarily
orientable). For every element v € H* (M?*,Z,) we have

vv=Ukyp

where U*=2XT, (w),ws,...,ws) is the class of Wu (note [2], Theorem I’). As
an immediate consequence of Lemma 1.1 we have

Theorem 2.1. If there exists an element v € H* (M?*, Z,) with vv # 0, and if the
k
Stiefel-Whitney classes w; vanish for i = [7] , then k is a power of 2.

This theorem implies the known fact [6] that manifolds with the Z,-
Poincaré polynomial

2k
14+ 2= dimH (M} Z)) - v
r=0

can exist only if & is a power of 2. It implies also that manifolds with the (real)
Poincaré polynomial -

2k
1+ &+ 2% =) dimH (M**R) - 1",
r=0
which do not have torsion [6], can exist only if k is a power of 2 and k # 1.

Remark. A manifold M'? (resp. M?®) with the (real) Poincaré polynomial
14641 (resp. 1+ 1'%+ %) cannot exist.

Proof. 1=1(M"?)=L;(pi,p2,p3) = 3—36%1—’—3—,7 is impossible. Similar proof for
M?® by using Ls.
3. The function 1

In the note [2] we defined for a compact oriented manifold M™ with m =4k
the integer /(M™). For a manifold M™ with m % 0 (mod 4) we put 7 (M™) =0.
We recall that I (M™) = I(M™) for manifolds M™, M™ which are cobounding
(cobordantes).

Thom (3] proved that in an oriented manifold M™ every homology class
h € Hy,_2(M™,Z) can be represented by a submanifold ¥™~2 Moreover, two
manifolds ¥™-2, ¥™-2 both representing h are cobounding. Hence the index
I(V™"?%) depends only on h. Passing to cohomology we have: for every
u € H*(M™,Z) there exists a submanifold V™2, the homology class of which
is dual to u. The index 7(¥™~2) only depends on » and may be denoted by
I(u). The number 7(u) is always O if m=2(mod4). The mapping I of
H?*(M**%Z) into the integers Z was considered by Thom, who raised the
question whether the mapping I is a topological invariant of M***2. We shall
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The index of an oriented manifold and the Todd genus of an almost complex manifold

express /(u) as a polynomial in u and the Pontrjagin classes of M**2 For
convenience, we introduce for an arbitrary oriented manifold M™ the following
notation: for ¢ € H* (M, Q) (Q: rationals, the *-superscript denotes cohomol-
ogy ring) let x(c) be the m-dimensional component of ¢. When no misunder-
standing is possible, we shall identify an element of H™ (M™, Q) with the cor-
responding rational number.

If u e H*(M™,Z), then

Z ( l)r— L a— T
r=1 )

is a well-defined elemgnt of H* (M™,Q). The ¢, are the so-called tangent coef-
ficients [5],

tghu =

B 22r(22r_ ])

r— 2r Br’

which are positive integers. We are now able to formulate the

Theorem 3.1. For an oriented manifold M**? with the Pontrjagin classes
1, p,..., px we have

k
I(u)=x(tghu~ };()L,(p,,...,p,) .

Proof. Represent the class u € H?>(M**2 Z) by a subvariety V** denote by i
the imbedding map V** — M**2 The tangential bundle of M**? restricted
to V*k splits up into two factors, the tangential SO (4k)-bundle of V**, and
the normal SO (2)-bundle. The sum of all Pontrjagin classes is i* (1 +u?) for
the normal bundle and i* (1+p+ p,+...+ pi) for the restricted tangential
bundle of M**2 Since the Pontrjagin classes obey the Whitney duality
theorem (modulo torsion), we see that the Pontrjagin classes (modulo torsion)
of V* are given by the formula

k
9a) 2 (V= [(4pitpatectp) ()]

Since L; is a multiplicative sequence we have

tgh

K
(9b) ZoLj(PI(V4k)a-‘-9Pj(V4k))=i* Z Li(prs--..p)| -
j=

By Theorem II of the note [2] we know that
I(V*%) = Li(py (V*9), ..., pe (V*9)) .

This completes the proof.
Examples.
2 5, 16 5 272, lo,o2 17
=u-— — W -——d .. =u-——w+t— -
ghu=u-spuwt -t Su-gud o st

Mé: I(u)=-3—(—u3+p| u),
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MY I(w) =—41—5—(6u’ —5pu+(Tp—pdu,

MY I(u) = 3T'1§‘7 (514" +42p u*— (49p,—Tp}) v
+(62ps—13pip2+2p) w).

Remark. We obtain for a manifold M®: «*= p,u (mod3), for a manifold
MY 45 =~ (7 p;— p}) u (mod 5), for a manifold

M u'=3(62ps—13p1p2+2pt) u(mod7).
This agrees with Theorem I of the note [2]. The function 7 (x) can be general-
ized in the following way. Let u,u,,..., u,(r = [%]) be elements of

H2?(M™ Z). Represent 4, by a submanifold ¥™~2 of M™, restrict u; to V™2
and represent this restriction by a submanifold ¥™~* of V™2 ... etc. Finally
restrict u, to ¥™~2¢~D and represent this restriction by a subvariety ¥™~% of
ym-20-D_ By successive applications of the formulas (9), Theorem 3.1, we get

Theorem 3.2. The index 1(V™~*") depends only on (uy,u,...,u,), without
order, and may be denoted by I (uy, u,,...,u,). We have

[+ ]
I(u.,uz,...,u,)=x(tghu,-tghuz-...'tghu,- ZOL,(pl,...,pj)).
j-

By using Theorem 3.2 and the formula
tgh (u+v) = tghu + tghv — tghu tghv tgh (u+v)

we obtain

Theorem 3.3. For a manifold M**** and u,v € H* (M**+%, Z) we have
T(u+v)=I@w)+1@)—1W,v,u+v).

If uv(u+v)=0, then I (u+v) =1(u) + I(v). In the case of an M®, we have
that I (u,v,u+v) =uv(u+v). Now we give a theorem on the index I which is
analogous to the Theorem 4.4 in the note [1].

Theorem3.4. Let 7 be a bundle with the compact oriented manifold M" of r
topological dimensions as base, the complex-projective space P,_, of n—1
complex dimensions as fibre, and the group of all projective transformations of
P, as structure group. We have for the manifold 7

1(£)=1(M") I(P,-y), i.e.,
I1(A)=1(M"), if n isodd,
1(X)=0, if n is even.

Proof. The @heorem is trivial if r is odd. Therefore, we may assume that r=2m.
The tangential bundle of the manifold .~ “splits up” into two factors, the bundle of
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tangential vectors of -~ tangential to the fibres and the bundle induced by the
projection from the tangential bundle of the base. The first factor admits
U (n—1) as structure group. In the notation of Section 3 of note [1] the Chern
class (= sum of all Chern classes in the various dimensions) of this first
factor is

> (1=m"d;.
i=0

We regard the rational cohomology ring of M2™ as a subring of the rational
cohomology ring of -~ and obtain by using the formula 1,(7)

: onLf(P' (@), pi()) x¥ =
(10) -

L ( _Zo (1-nx)""'d, x") : 20 Ly (pi (M*™),...., pj(M*™)) x¥
i= j=

(Here x is an indeterminate, the coefficient of x is always of complex dimen-
sion 7). On the right side of the equation (10) every product in the d; and p; of
complex dimension greater than m vanishes because the d; and p; belong to the
cohomology ring of M?™. Hence, we get, from Lemma 1.3, that the coefficient
of x™*"~! on the right side of (10) is (~#)"' L, (p, (M*™),...), if m is even
and n is odd, and is zero otherwise. Therefore, we have for m even and n odd:

Lipmen-1y (21(),..) = (=m)"" Lpa (p1 (M?™),..) .

Since (—#) restricted to the fibre P,_, is dual to the positive hyperplane P, -,
of P,_,, we obtain

I(#X)=1(M*"), if n isodd and m is even,
I1(*) =0 otherwise. Q.E.D.

4. Formal properties of the Todd genus

This section stands in analogy to the preceding section. However, the
results discussed here are almost entirely formal properties of the Todd
polynomials. The function I has a direct topological interpretation and takes
only integral values. But it is still unknown whether the Todd genus coincides
with the I7-genus for algebraic manifolds (see Introduction of note [1]) and
whether T(M,) is always an integer.

Let M, be a compact almost complex manifold of n complex dimensions
and u € H*(M,,Z). Denote by ¢, the Chern classes of M,. We define

n—1

Tw=x|(1—e"Y Ti(c,....c)|, ie.,
j=0
n-1

(n—1)!

T(ll)=(—"])"‘l:—’:+(—l)"_2 Tl(C|)+...+ uT,,_|(c|,...,c,,_|) .

Theorem 4.1. Assume that u € H*(M,,Z) can be represented by an admissible
almost complex subvariety V,_,. Denote by i the imbedding map V,_, > M,.
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The Chern classes of V,—, are given by
14 (Vac)) + 2(Vat) + oot enmt (Va)) = i* [(1+ 01 ...+ ¢) A+ w) 7]

In particular, we have for the Euler-Poincaré characteristic of V,-, the formula
(71
("‘ l)n_l E(V,,_]) =y"— " ¢+ un? C—...+ (-- l)"'—l UCh-y.

Moreover, the Todd genus of V,_, equals T (u).

The proof is similar to that of Theorem 3.1. We call T () the virtual Todd
genus of u. The function T (¥) can be generalized in the following way. Let
uy, ..., u, (r = n) be elements of H*(M,, Z). We define

n—r

T(u,uy,...,u) =x|(1—e™) (1-e™™) ... (1—€™™) ZoTj(claCz, cee5 )
j=
and have, by successive applications of Theorem 4.1:

Theorem 4.2. Assume that u, can be represented by an admissible almost complex
subvariety V,,_,, that the restriction of uy to V,,_, can be represented by an
admissible almost complex subvariety Vyy_3 of V-1, ..., and that finally the
restriction of u, to V.. can be represented by an admissible almost complex
subvariety Vy_, of Vip—,+1. Under these assumptions

T(Vp-r) =T (uy,u2,..., 1) .
By using the formula
l—et)=(l-e)+(—-e)=-(1—-e)Y(1—¢e")
we obtain

Theorem 4.3. For an almost complex manifold M,, and u,v € H 2(M,, Z) we have
Tu+v)=Tw)+T(@)—T(4v).

We define
xTw) = n(e“jio Ti(crs...s c,))
and have
a T(Mp) =T () + £ (- )

T(M,)=x"(0).

Theorem 4.3, formula (11) and other formulas stated at the end of this section
are algebraic identities in indeterminates ¢;, u, v, ... etc. They can be proved
easily from the definition of the Todd polynomials in the note [1]. They are
interesting because very probably the following formula (?) is true for every
non-singular algebraic manifold M,:
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Let D be a divisor of M,, the homology class of which is dual to the

element d e H*(M,,Z). Let D denote also the faisceau of germs of mero-
morphic functions which are multiples of the divisor — D. Define [8]

x(D) = i (—1)"dimH"(M,,D).
r=90

The formula in question is

™ x(D)=x"(d).
In particular, ’
™ . xO=I0M,)=T(M,).

Formulas. Let M, be almost complex and let 1, ¢}, ¢3, ... be the Chern classes
of M,. The following formulas are formal algebraic identities. One may regard
¢y, €3, ..., u as indeterminates and T'(M,) as a symbol for T, (¢, ca, ..., Cn).

(12) K@=ED" " (—u—c)

(13a) T(a)=2TM,), if nisodd

(This yields a proof that T, (cy,..., c,) is divisible by ¢, for odd n),
(13b) T(c))=0, if niseven.

We denote by y;(0 = j = n) the rational number

T(_Cl,"'('h...,—C]).
J times

We have wo=TM,), w.=(—c)".

If n is odd, then we have the formulas

_ZO'//J-= ~T(M) =17, X w==2T(M,)
Jj= j=

(14) ket ik B
J j B - "
jgk[( k—1 )+( k )]V’i—O, l=ks= —

If n is even, then we have the formulas

n

2 W=TM)=1"(~c), Zl ¥ =0
<

(15) /=0
" j—k—l) n
=0, l=k=—2_1.
j-2k+l( k v 2

Under the assumption that M, is algebraic and that the Todd genus coincides
with the classical arithmetic genus, the numbers y; introduced here are
integers and essentially identical with the classical invariants Q,, namely

U=, Y¥=CD"7Q,,+1 O<j<n.
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The relations (14), (15) are due to E. A, Maxwell and J. A. Todd [9]. As
special cases one gets the relations of Segre and Severi [9]. We state one more
relation [9] which can be derived from (14). If n is odd, then

(16) > 2"y =0.
j=0

Remark. In the case that the y; are integers, this formula implies
ci=0(mod2).

In fact, we have for an orientable manifold M***? with vanishing Stiefel-
Whitney class w; that

0= qu W%k - W%k U= W%k+|

(see note [1] Theorem I’).

5. Steenrod’s reduced powers in almost complex manifolds

Theorem I of the note [2] gives a formula for the classes s; in terms of
Pontrjagin classes. Theorem I’ gives a formula for the classes of Wu (Steenrod
squares). By using formulas 1,(7) and Lemma 1.4 we can summarize these
results for the special case of an almost complex manifold in the following
theorem.

Theorem 5.1. Let M, be almost complex and let c; € H* (M,,Z) be the Chern
classes of M,,. For k +2r(q—1)=2n the class sj € H*"@"V(M,,Z) is defined
by

Flv=shv forall ve H*(M,,Z,).

We have the formula
5;=q" Tyq-1y(€1,€2,...,Crg-1y) mod g.
The classes s; are obtained from the Chern classes mod q by the power series
1+ (x—x9+x7—xT+..)77 L,
For the classes U' of Wu (U' € H'(M,, Z,)) defined by
Sq'v=U'v forall veH* (M,Z),

we have the formula

U¥+'=0, U¥=2T(c,...,c;)mod2.

The classes U*" (r=1,2,..,n) are obtained from the Chern classes mod 2 by the
power series | + x+x+ ...+ x¥'+ ... . We define s5= U*" and have the formula

57=q T, q-1y(C1s...,Cr(g~1)) for all primes.

We are going to give some applications of Theorem 5.1.
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Theorem 5.2. Let M, be almost complex and q a prime. If r > [_nq_] , then

qr T,(q_” (Cl,Cz,...,C,-(q_l)) =0 (modq) .

Note. These congruences are not trivial (see the Lemma 1.5). Now we give a
theorem of Borel-Serre [10] on unitary sphere bundles (in a slightly different
formulation) and then the application of this theorem to the tangential bundle
of an almost complex manifold. We write % instead of S¢?".

Let [E, X, U(n)] be a unitary (2n—1)-sphere bundle with the Chern classes
¢; € H*(X,Z). Write formally
l+ax+eax?+... +tex"=(0+ux) (1 +uzx)...(1+u,x),

i.e., x is an indeterminate, the c¢; are the elementary symmetric functions in the
u;. In the following formulas only symmetric functions in the u; occur which
have to be regarded as polynomials in the ¢;. A symmetric function will be
characterized by its generating term. For example

Sut-udi=> ut-up.

i, iy

Theorem 5.3 (Borel-Serre [10]). For the Chern classes ¢, ca,...,cn of
[E, X, U (n)] we have the following formulas mod q (q = 2):

%’ck=9q’z U dy... U= Z u'{ llg u‘,’ Upp]oen uk(rék) .
In particular (g =n+1)
(17 Plepgir=cCnogri 2t ' —Crogea D ul™ 4. —cprcr+ncy.

Remark. In case g=n+1, #/¢,_44,=0 and (17) is an algebraic identity,
namely the familiar recursion formula for the sum > u].

Corollary 5.3. If for an [E,X,U(n)] the Chern classes ¢\, c,,...,c,_, vanish,
then ¢, = 0 mod q for all primes q = n which do not divide n.

In the case that [E, X, U (n)] is the tangential bundle of an almost complex
manifold M, we can compare (17) with the formulas 2=g=n+1)

yql Cn—g+1 = Cn—g+1 Sz'; = Cp—g+1 Z u(f—]
and obtain
Theorem 5.3*. For the Chern classes cy, ca, ..., cx of M, we have the following
Jormulasmodg 2=qg=n+1):
Crgrr U I = Cpogra i+ cpici—nc, =0 (modg) .
For example, n ¢, =0 (mod?2), c,- ¢, — n ¢, = 0 (mod 3),

cn-33c3=3cieatel) —cno2(c—2¢) +coyr—nc, =0 (modS).
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If all the characteristic numbers ¢;* ¢;,*... "¢, Withn—1=ihzi=...2i, and
iy +i+... +i,=n vanish, then ¢, (= the Euler-Poincaré characteristic of M,) is
divisible by all primes g = n+1 which do not divide n.

Corollary 5.3*. If in an almost complex manifold M, the Chern classes
ClsC2yenns "[i] vanish, then the Euler-Poincaré characteristic of M, is divisible
2

by all primes q = n+ 1 which do not divide n.

Remark. Corollary 5.3* implies that the spheres S2*, except S2, S¢, are not
almost complex (Borel-Serre, only S* escapes Corollary 5.3). It seems to be
interesting to ask for sharper theorems on the Euler-Poincaré characteristic of
an almost complex manifold M, for which all characteristic numbers

Ci,* Cip* ... -c,-,(n—l =hzhz...21, i1+i2+...+i,=n)

vanish. In the last section we shall return to this problem. For which complex
dimensions n does there exist an almost complex manifold M, for which these
characteristic numbers vanish and for which ¢,# 0? For which complex
dimensions n does there exist an almost complex manifold with ¢;=¢;=...

= c[l] =0 and ¢,#07? (The algebraic surface of degree 4 in P; supplies an
2
example to the second question for n= 2. In this example ¢, =0 and ¢;=24.)

Remark. By combining Theorems 5.1 and 5.3 one can obtain numerous con-
gruences for the Chern classes for an almost complex manifold M,.

6. The Todd genus for manifolds of type (r,)

In Sections 6 and 8 we study properties of the Todd genus of an almost
complex manifold M,. In particular, we prove in Section 8 that 2"~! T'(M,)
is always an integer. In Section 7 we make some general preparations for Sec-
tion 8. .

We say that an almost complex manifold M, of n complex dimensions is of
type (n,), if there exist elements u,, u,, ..., u, € H*(M,, Z) such that

l+e+a+...+e=0+u)(+u)...(1+u)
(¢; denotes the Chern classes of M,, ¢;e H*(M,,Z)). For example, the
complex projective space P, is of type (7,4+1). If M, is of type (n,), we say

simply “M, is of type (n)”. For a manifold M, of type (n,) we can express the
Todd genus by means of the function 7.

Theorem 6.1. Let M, be of type (n,) and

I+ +a+.. +e=>0+u) (1 +u)...(1+u).
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We have

2"T (M) = 1(M,) + z': Tuw)+ Y, I(uy,up)+...
i=1

I1=h<ip=r

+ Z I(u,~l, u,-z,...,u,-,) s

Isih<..<i,sr

2"T(M,) = I (M,) + Z > T (i .. ) .

s=1 1Z2h<...<iy=r

Proof. (x denotes the 2n-dimensional component.) We have the following
formulas:
—-2x x

e*—1 tghx

+x,

r

— Uy — U — U, U;
"T(M,) = - = i ’
2'T(My) eh—1 e -1 e —1 iI=II (u * tgh u,-)

r

© © U;
j;o Li(pi(My),...) =,§‘o Ly (My),..) =11 wh

(See Lemma 1.2.)
These formulas together with Theorem 3.2 establish the proof.
Theorem 6.1 yields the

Lemma 6.2. The number 2" T (M,) is an integer for every almost complex mani-
fold of type (n,).

7. Fiberings with the flag manifold U (n)/T" as fibre

We shall prove that 2"~' T(M,) is always an integer by constructing, for
every M,, an almost complex manifold (of higher dimension) which is of type
(n) and the Todd genus of which coincides with T (M,). Before doing so we
have to make some general preparations. (See Borel [12] and Chern [13].)

For a group G and a subgroup U we define G/U by “g;~g, o gi'g,e U”
(g1, g2 € G). The group G regarded as group of /eft translations of G operates
on G/U.

Let U(n) be the unitary group regarded as group of all unitary nxn
matrices. The group U(m) x U(m) x...x U(n) with my+m+...+m=nis a
subgroup of U(n)

Tm)  Jevon

For U(1)x...xU(1) x U(n—k) we write T*x U (n—k). In particular, 7" is
k times

the subgroup of all diagonal matrices (maximal torus of U(n)). By
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T*'x1xU(n—k) we denote the subgroup of T*x U (n—k) consisting of
those matrices which have 1 at the k* place of the diagonal.

The manifold U (n)/T" is the so-called flag manifold (= space of all n
frames of unitary orthogonal complex line elements in the origin of the n
dimensional vector space over the complex numbers). The manifold U(n)/T"
is almost complex (U(n)/T" is even a rational algebraic manifold). The
manifold U (n)/T" can be fibred in complex projective lines Py:

Um)/T"—= Un)/T"*xU(2).
Moreover, we get a sequence of ﬁbenngs in complex projective spaces
Un)/T2xUQ) 2 Umy/T"3x U3)
Un)/T"3x U(3) —L Un)/T* *x U@4)

Um)/T'x U(n—1) 2= Um)/U(@n).
The bundle

(18) Um)/T*xU(n—k) 22Um)/T*'x U(n—k+1) (1=k=n)
admits U (n— k +1) as structure group with the associated bundle
(19) Un)/T*'x1xU(n—k)

S!(I— n+1
-

Um)y/T*'x Un—k+1).
We also have the fiberings (1= k=n)
(20) Un)/T*'x1xU(n—k) <5 Um)/Tkx U(n—k).

The manifolds U (n)/T*x U (n—k), 0 = k = n, occurring in the fiberings (18)
have a natural almost complex structure compatible with the fiberings. The
group U (n) operates on all manifolds occuring in (18), (19), (20) in such a way
that these fiberings are preserved. Therefore, if [E, X, U(n)] is a unitary
(2n—1)-sphere bundle, we may construct the associated bundles #; — X and
Z—X with Un)/T*xU(n—k) (resp. U(n)/T*'x1xU(n—k)) as fibre
(1=k=n), and we get a sequence of fiberings which we illustrate by the
following commutative diagram.

Fn- Tn-3 Fi=E
(21) 1\ l\ l\ 1\
n“‘“"-/nlp Ino2 FPIn-3 = ... > AF X_/b

We denote by u, the charactenstic class of the S Lbundle %, - 7,
(u, € H*(#,, Z)). The cohomology ring H* (#,, Z) may be regarded as a subring
of H*(#,+,Z). We observe that the bundle 7,,, — 7, lifted up to 7, splits
up over %4, in the bundles %,,, = %4, and %42 = Z4+1. By successive
applications of the Whitney duality theorem for Chern classes we obtain by
inductionover k (k=n-r, k=1,2,...,n).

Lemma 7.1. The Chern class of the bundle

Fnk+l —s“—_l’f};-—k is (1 tup—i+1) (M1 ttp—is2)... (1+uy).
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Now we can apply Theorem 3.1 (Remark 2) of the note [1] to the complex-
projective bundle

Py_y
Ln—k+l —— Ln_k -

That is, we consider the space V' (P,—;) of all unit tangential vectors of P _,

SIk—:{

V(Pg-1) —— Py,
and the associated bundle 7, _; . y with fibre V(P)_))
Ln-k+1,v Y&

22) ls/

sl
F k1= Ln-k+1

As indicated in the diagram, % _s+,» is a unitary (2k—3)-sphere bundle
over .7, -x+1. By Theorem 3.1 of the note [1] we infer that the Chern class of
this bundle is given by

n

(23) ¢ (Bkrrvstaasr, Uk=1)= I (A +w—up_ss1).

j=n—k+1
Repeated application of formula (23) leads to the

Lemma 7.2. Let M, be an almost complex manifold and denote by 1+ ¢, + ¢,
+...+ ¢, the Chern class of its tangential bundle. Let

E S2n-1 Mr

be a unitary (2n-—1)-sphere bundle over M, with the Chern class 1+ d, + d,
+...+d,. Make the construction of the diagram (21) with respect to the
bundle E. Then we arrive at a manifold #,_, of complex dimension

n(n-1)

+
r 2

which has a natural almost complex structure compatible with the fiberings of
the diagram (21):
£ LT A

We have the formulas (u; € H*(#,-,,Z) and c;, d; € H*(M,,Z)):
l+di+dy+...+dpi=(1+u) (N +uy)...(1+u,).
The Chern class of the tangential bundle of _#,_, is

(+c+e+..+e) 1T+ u—u).

i>j

Remark. The lemma applies in particular to the case that M, is a point. We
obtain a formula for the Chern class of the tangential bundle of the manifold
Umny/r"

(24 cUm/TY=1](0+u—u).

i>j
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Hence U (n)/T™" is of type (7). We have
u; e H*(U(n)/T" Z)
and
(25) A+u)(d+u)...(0+u)=1.

The cohomology ring H* (U (n)/T" Z) is generated by the u;(1=i=n) with
the only relation (25)(Borel [12]). By the method employed in this section the
Chern class of the manifold

U/ (Um)xUm) x...xU(mg)), m+m+...+m=n,

can be determined. Moreover, A. Borel pointed out to the author that (24)

can be generalized to an arbitrary compact Lie group G: Let T be a maximal

torus. The manifold G/T is a complex manifold of type (z). Namely, if

,...,tm € H*(G/T,Z) are a choice of “positive roots” of G, then G/T has an
m

almost complex structure with ¢(G/T) =[] (1+r;), m = complex dimension
i=1

of G/T. In particular, the product of all roots is the Euler-Poincaré character-
istic of G/T.

8. The Todd genus. Manifolds of type (y)
We are now able to prove the

Theorem 8.1. The number 2"~'T(M,) is an integer for every compact almost
complex manifold.

Proof. We construct the almost complex manifold #,_, of Lemma 7.2 taking as
bundle E the tangential bundle of M, (hence r=n and ¢;=d;). For the Chern
class of #,-, we have the formula

c(£-1)=(1+u) (l+u2)...(1+u,,)lr[j(l+u¢—-uj).

Therefore, the manifold .#,_, is of type (7). We know from Theorem 4.4 of the
note [1] that

T(Mn) = T(_f;,_]) .

By Lemma 6.2 the Todd genus 7°(M,) multiplied with a power of 2 is an
integer. The Todd polynomial T, is a polynomial with (relatively prime)
integer coefficients divided by a big denominator (Lemma 1.5). This de-
nominator contains 2 exactly n times. Hence 2" T(M,) is an integer which by
Theorem 5.2 is even. This completes the proof.

No example of an almost complex manifold M, is known where T'(M,) is
not an integer. R. Thom has communicated to the author that T (M) and
T (M) are always integers. He pointed out that this fact is related to a recent
theorem of Rohlin [13].

If the second Stiefel-Whitney class of an orientable compact differentiable
manifold vanishes, then the Pontrjagin class p, (V?*) is divisible by 48.
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Before showing how “T'(M3) is an integer” can be derived from this
theorem of Rohlin we state the following trivial lemma:

Lemma 8.2. If the statement “T (M,) is an integer for all complex manifolds of
complex dimension n” is true for n = ny, then it is true for all n < ny.

Proof. Assume n < ny. We have
TM,)=T(M,) x T(Ppy—p) =T (M,xP,,—,) = integer .

Theorem 8.3 (Thom). The Todd genus is an integer for all almost complex mani-
folds M,, M;.

Proof. By Lemma 8.2 it is sufficient to prove that 7(M;) is an integer.
Represent in M; the Chern class ¢, by a subvariety ¥* (not necessarily almost
complex). By Whitney duality the second Stiefel-Whitney class of ¥* is 0. By
3,(9a) we find that

pl(V4)=-2C| Cy.

By Rohlin —2¢;¢; =0 (48). Q.E.D.

We are now returning to the question discussed in Theorem 5.3* (Remark).
For brevity we say that an almost complex manifold M, is of type ()
when all characteristic numbers ¢ ¢;,... ¢, with n—1=zi,zi,=... =i, and
iy +iy+...+1i,=nvanish. We say that M, is of type (y) when

C],Cz,...,c[l]
2

vanish. Obviously (y") implies (y). For a manifold M, of type (y) the Todd
genus and the index are rational multiples of the Euler-Poincaré characteristic
c2x of My By 1,(6) and 1,(8) we obtain the formulas (B: Bernoulli number):
22k+| (22k—| _ 1)
2k)!

(26) I(My) = (= 1)t By~ ca,

@) T(M) = (D4 T o,

(28) I (M) ==~22¥1 221 =) T(M2) -

Because 22%~! T'(M,,) is an integer we obtain by (27) divisibility properties
for cyx. The question whether these divisibility properties formally imply
those of Theorem 5.3* seems to be of a difficult arithmetic nature involving
curious properties of the Bernoulli numbers By. Since B, is always # 0, we can
see that for a manifold M,, of type (y) either T, I, c;; are all 0 or #0. The
formulas (26), (27), (28) are of a rather questionable character, because of
missing examples (see the two questions, 5.3* Remark).
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