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Introduction. We use the notation of a preceding note [1]. Let M™ be a
compact oriented differentiable manifold. The reduced powers [2] are defined
for every odd prime ¢:

25 HY (M™Z,) — H:@D (M 7).

In case k+2r(g—1)=m, there exists by Poincaré duality an element
s; € H¥*@ Y (M™ Z,) such that

Pju=sju foral ueH*M"Z).

We shall express s; as a polynomial in the Pontrjagin classes py, p,, ps,... of
M" where p;e H*(M™,Z). We shall use the formalism of the multiplicative
sequences described in the note [1]. For formal reasons (since the Pontrjagin
classes have “quaternion” dimensions) we replace the indeterminate x in the
power series by z.
Let {L;} be the multiplicative sequence (rational coefficients) corre-
sponding to the power series
0(2) =V5(tgh}/§)“=l+i-—z-2—+ 2z
3 45 945

One has 3L|=a|, 45L2=7a2-—a%, 945L3=62a3-—13aza|+20?.

Theorem I. The class s; can be expressed as a polynomial in the Pontrjagin
classes:
$3= 9" Ling-1r(Prs---sPrr@-nles

i.e., Lipag-1)» multiplied by q" is a polynomial with coefficients which are integers
mod g (do not contain q in the denominators) and which reduced mod q is s;.

For example:
ss=p, S=-p+pt, sd=p+pp+pl, ... (mod3)
s=3p+pi, ... (mod$)
sh=3p;=3ppatpl, ... (mod7)

Since s;=0 for r> [_%] , we obtain from Theorem I many divisibility
relations for the Pontrjagin classes of an M™. Here we note only the following:
MY p=03), M Tp,—pi=0(15),
M 62p;~13p py+2p1=0Q21), ...
MY @D ¢ Ling-y:(P1,...) = 0(modg) .
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The following theorem, which is a consequence of a theorem of Thom [4],
gives stronger divisibility properties than those obtainable by Theorem I.

Theorem II. For an M* denote the index of the (symmetric) intersection matrix
of the 2k-dimensional rational homology classes by 1(M**). (The index of a
matrix is the number of + signs minus the number of — signs in the diagonal
form.) Then

1(M4k)=Lk@l"“5pk) .

Hence Ly (py,..., px) for an M** is always an integer.

For example,
M8 Tp,—pt=0 (45).

We assumed that the prime g is odd. In case g=2 we consider the
Steenrod squares Sq¢’ and arrive at theorems of Wu [5]. For an arbitrary M™
(not necessarily oriented) Wu defined the class U'e H'(M™,Z,) by Sq'v=U'v
for all v € H"/(M™,Z,). Let w, wy, ..., w,, be the Stiefel-Whitney classes of
M™ where w; € H'(M,,, Z,). Then:

Theorem I'. We have U'= [2'T;(wy,...,w)), where T; is the Todd polynomial
(1] and where 2' T; has coefficients which are integers mod 2.

The proofs of I and I’ are based on the “diagonal” method of Thom [6] and
Wu [3], [5] and on the topological interpretation of the multiplicative se-
quences. We sketch the necessary lemmas and the proof for I, but we omit the
analogous lemmas and proof for I'. Full details will appear elsewhere.

Applications of I, I, II, especially to almost complex manifolds, will be
given in a following note.

1. Algebraic preliminaries

Lemmal.l. Q(2) = VE(tgh l/z_)‘I is the only (rational) power series with
0,(Q*"*Y) =1 for n= 0. (g, = the coefficient of z*.)

Let {L;} be the multiplicative sequence belonging to Q(z) =}z (tgh}/z)™".
We consider Jz (tgh }/z)~! modulo an odd prime g. We put z=x? and note that
x(tghx)'+x==2x(e"?*—1)"". It is therefore sufficient to consider the
series —x (¢e~*—1)"! modulo ¢ where ¢ may also be the prime 2. We write for
the moment B(x)=—x(e*—1)"', B(x)=1 +—+ Z (2 k)' x% where b,y
are the Bernoulli numbers. By using the theorem of von Staudt [7] which
states that b+ Z—;; is an integer (the sum is over all primes with 24
divisible by p—1) and by easy number theory, we prove that B (¢'/"!
power series with coefficients which do not contain ¢ in the denominator.

X) is a
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Lemma 1.2. [B(¢"9 'x)};=1+ (x—xI+x7—x7+...)9"}, i.e., reduced modq
all coefficients ‘‘vanish’ which contain a positive power of q in the numerator.

Remark. The reduced series is a series in x7~1. Hence, for ¢ > 2, we may define
a series S (2) by replacing x2 by zin 1 + (x — x9+4 x4 —.. )91,

Lemma 1.3. ¢'T,-1)(q=2) and q" Li;4-1y,(90dd) have integers modq as
coefficients.

Remark. We can even prove that these polynomials do not vanish mod g.

2. Multiplicative functors for orthogonal sphere bundles

We denote an (n—1)-sphere bundle with the base space X and the
structure group SO (n) by (E, X, SO (n)). For such a bundle the Pontrjagin
classes p; are defined [8); pie H¥(X,Z), 0si< o0, pp=1, p;=0 for 2i>n;
in the notation of Wu [8] p;= P¢’. The Pontrjagin classes themselves do not
obey Whitney duality, but the p; reduced to a coefficient field I" of character-
istic #2 do satisfy duality. A proof for this apparently does not exist in the
literature, but follows immediately from the fact that the Pontrjagin classes
(mod I') can be regarded as elementary symmetric functions {9].

Definition [1]: A “functor” f which attaches to every (E, X, SO(n)) an
element f(E,X,SO(n)) e G(X,I') is called multiplicative, if it commutes
with mappings and if it obeys Whitney duality.

Theorem 2.1. Let the field I' be of characteristic + 2. Let p} be the image of p;

under the natural homomorphism HY (X,Z) - HY (X,I'). If {K;} is a multi-
a0

plicative I'-sequence [1), then obviously f= ), K;(p},...,p}) is a multiplicative
j=0

Sfunctor. Every multiplicative functor f can be uniquely obtained in this way, and
therefore has automatically vanishing components in the dimensions 4i+2. Let
(S*™=", Pp_y,S0(2)) be the Hopf fibering and let g € H*(Pm-) generate
H(Pmu-1). Put g*=1z; then Q(2)=f(S*"),Pp-1,80(2)), m— o0, is the
characteristic power series of f.

3. Reduced powers

Let X be a finite complex. We consider the group [1] G(X,Z,). If

@
d e G(X,Z,), then the (finite) sum D, #/d is also an element of G(X.Z,).
The #] satisfy. r=0

Lemma 3.1 (Steenrod [2]). #;(ab)= ), #}(a) #/(b) where a, be H(X,Z,).
i+

J=r
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Lemma 3.2. We have a (multiplicative) isomorphism #; of G (X,Z,) onto itself
defined by #7,d = i)?q’ d. In particular,
Z(+u)y=1+u+u! (ueH*(X,Z,),
ZA+u)y=1+u—ui+u’—u’+....
Obviously #, commutes with mappings.

- Let 14+ p{+ p3+... be the Pontrjagin classes (modulo the odd prime g) of
(E,X,S0(n)). We take the power series Q(z)=1+z2@"D denote the
corresponding multiplicative Z,-sequence by {B,;} and introduce the classes
b,j= B, ;(Pi,...,p)); b, is different from 0 only in “quaternion” dimensions
which are mulitiples of 1/2 (¢ —1). The class b3 ; is p; reduced mod 3. The class

bg1n4-1yi is equal to the class R*@~V(mod q) of Wu [3]. Moreover, Z by

and %! Z b,, ,) are multiplicative functors in the sense of Theorem 2 1. We
=

can write uniquely %, ( 2 b,,,,-) = Z §,, where ;e H¥ @V (X,Z,).
j=0 r=0

@
Lemma 3.3. Z §q is the multiplicative functor belonging to the series S(z) =
r=0

1+ (x = x9+x7—x7+...)9"" where x*=z. (See Lemma 1.2.)
0
Proof by computing )’ 5} for the Hopf fibering.
r=0
By using Lemmas 1.2 and 1.3 we get

Theorem 3.4. 5, = q" L1y g1y (P1,...).
In the case where n=2k and (E,X, SO(Zk)) admits U(n) as structure

group, one has Chern classes 1,¢,c¢;,...,cie H¥(X,Z), where [8]
1=p +P2—P3+---=( > C.-) ( > (-l)fc,) and the formula
i=0 j=0

5q=qur(q—|)(Cf,~~), ci=ci(modgq) .

4. The Thom [6]-Wu [3}, [S] construction for reduced powers

For a (n—1)-sphere bundle (E,X,SO(n)) with the projection n: £ - X
we construct the associated bundle 4 over X with the » dimensional unit ball
as fibre. Here A can be considered as the mapping cylinder of n and E as
subspace of 4. The projection of A onto X may be denoted by 7. The following
theorem is due to Thom (6] (I is a field).

Theoremd4.1. There exists a natural isomorphism g* of H'(X,I') onto
H™*"(A,E;I'), where ¢o*1=UeH"(A,E,I') satisfies: p*a=a*auv U,
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a€ H(X,TI'). In case X is an oriented manifold, U is the dual in A—E to
the homology class represented by X.

Lemma 3.1 and Theorem 2.1 imply

00
Theorem 4.2. By attaching to every (E,X,SO (n)) the element Q"'"( > & U)

r=0
of G(X,Z,), we obtain a multiplicative functor which (computed for the Hopf
fibering) has the power series Q (z) =1+ z'2@~D. Hence

[+ <] = o]
o* 12, y;U=jZo by -

r=0

Now let M be a compact oriented differentiable manifold of dimension m.
We want to apply Theorem 4.2 to the tangential bundle of M. Consider the
diagonal map M — M x M which maps M one-to-one on the diagonal 4. The
normal bundle of 4 in M x M is isomorphic to the tangential bundle of M. The
class U of Theorem 4.1 may be regarded as the dual of 4 in M x M. We make
the same calculations as Wu [5] did for g=2 and Steenrod squares and
obtain for the classes s; of M (see Introduction and 3):

] e
Theoremd.3. Y b, ;= 97:,( > s;). Hence s;=5,=q Lipg-1r(Pl,...).
j=0 r=0

This is Theorem I of the Introduction.

Theorem 4.4 (Wu [3]). The b, ;(modgq) are topological invariants of M (inde-
pendent of the differentiable structure). In particular, for q =3, the Pontrjagin
classes are topological invariants mod 3.

§. The index of a manifold M**

In this section we consider compact oriented differentiable manifolds which
are not necessarily connected. Thom [4] has made the class of all differentiable
manifolds into an algebra © by identifying M™ and M™ if there exists a
bounded N™*! with ON™*! = M™— M™, and by defining addition of manifolds
as the union and multiplication as the topological product, these operations
being compatible with the identifications. Thom considers the algebra 2 ® @
(@Q denoting the rationals) and states the Theorem: Q ® Q is generated by the
complex-projective spaces Py, of 2k complex-dimensions (k > 0).

By Thom [6] (Corrollaire V, 11) we know that I(M**) =0 for a bounding
manifold (variété-bord). It is easy to check that I(MxN)=1I1(M)-I(N).
Hence we have:

Theorem 5.1. 1(M*¥) defines an additive and multiplicative homomorphism of
2 ® Q into the rationals.
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For an M* we define L(M**) by L,(pi,...,p:), for an oriented
M"(m=*0(4)) we define L(M™)=0. By the Whitney duality theorem
(modulo rationals) for the classes L; we have L(MxN)=L(M)-L(N).

k

Because an arbitrary term [] (p)* (with > vi=k) vanishes for a bounding
i=0

manifold, we have

Theorem 5.2. L(M*¥) defines an (additive and multiplicative) homomorphism of
- Q ® Q into the rationals.

[
The Pontrjagin clags ) p; of the complex-projective space P, is
i=0
(1+g»H**! (g = generator € H?(Py,Z)). From Lemma 1.1 we get

Theorem 5.3. L(Py) =1. The multiplicative sequence {L;} with the series
VE (tgh VE)" can be characterized by L(Py) =1 for all k=0. Moreover
I(P3;) = L(P2y).

Since L and 7 are both additive and multiplicative homomorphisms of
2 ® Q into the rationals @ which coincide on the generators P,; of 2 ® QQ we
conclude that I (M**) = L (M*¥) for all compact oriented differentiable mani-

2 folds M**. This is Theorem II of the Introduction.
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