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In a recent paper [1] Kodaira and Spencer discussed the two different
definitions p,, P, of arithmetic genus of a non-singular algebraic variety V,.
They proved p,(V,) =P.(V,). Kodaira [2] proved the conjecture of Severi
that Po(Va)=ga(Va) —gn-1 (Va) +gn-2(Va) —... +(- l)"—lgl (Va), where g,(V,)
is the dimension of the complex vector space of the holomorphic differentials

of degree i attached to V,. If one defines IT(V,)= Y. (—1)gi(V,), one can
i=0

express the results of Kodaira-Spencer in the following formula (go(V,) =1):
OW)=1+E1D)"pa(Va) =1+ (—1)"P,(V),

and one may say that three of the different definitions of arithmetic genus,
namely 77, p,, P,, are now known to be equivalent.

On the other hand, Todd [3) in 1937 has given expressions for the arith-
metic genus in terms of his canonical classes [4]. Hodge [S] proved for a wide
class of algebraic varieties that the canonical classes (up to sign) coincide with
the Chern classes. Denote by c¢; the Chern class of complex dimension i of the
non-singular algebraic variety V,, i.e., ¢; € H%(V,,Z) = the 2i-dimensional
cohomology group of ¥, with integer coefficients. Then we may define a
fourth arithmetic genus of V,, which we denote by T'(¥,), in the following
way: Take the Todd expressions for the arithmetic genus and replace the
canonical classes by the Chern classes 2T (V) =c;, 12T (V2)=(c}+cy),
24T (Vy)=c1-c2, T120T(My)=(—cs+csci+3cd+4caci—ct)... In general
T(V,) is a well-defined polynomial of complex dimension n in the Chem
classes with rational coefficients. Hence it represents a multiple of the funda-
mental cocycle of V, and may therefore be considered as a rational number.

Todd has proved that 1 + (—1)" P,(V,) = T (V,), where T(V,) is expressed
in terms of the canonical classes! But because of some difficulty in the defini-
tion of the canonical classes themselves, and because it is not proved com-
pletely whether the Chern classes coincide with the canonical classes, the
question whether IT(V,) =T (V,) for all algebraic varieties still seems to be
open. Kodaira [6] has proved that I7(V,) = T'(V,) for all algebraic varieties,
which are a complete non-singular intersection of hypersurfaces in some pro-
jective space.

Since the Chern classes are defined for an arbitrary almost complex mani-
fold, the Todd genus T'(M,) can also be defined for such a manifold. In this
note we give a new definition for the Todd polynomials which simplifies the
calculations heretofore made. We prove for arbitrary almost complex mani-
folds theorems for T'(M,) which are partially known for algebraic manifolds.
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For example: if an almost complex manifold M, is fibred in k-dimensional
complex projective spaces P, with an almost complex manifold B,-, as base,
the fibering being compatible with the almost complex structure of M,, Py,
B,_i,then T(M,) = T (Bp-i).

It is probably true for an algebraic variety that I7 (V,) = T (V,). This would
imply that T(¥,) is an integer. This question will be the main object of a
forthcoming note: Is T (M,) an integer for an arbitrary almost complex manifold
M,? (for n=1 this is trivially true since ¢, is the Euler characteristic). We
cannot answer this question, but by using Steenrod’s reduced power opera-
tions [7] it is possible to obtain partial results, e.g., for an arbitrary almost
complex M,: c? +c=0(6), for an Ms:c;-c;=0(6), for an My: —ca+ ¢3¢
+3c3+4cycl— ¢t = 0(30), etc. It turns out that there is a very close relation
between the Steenrod reduced powers and the Todd polynomials. By using a
recent theorem of Thom [8] we obtain that 2"~! T(M,) is an integer for every
compact almost complex manifold.

1. Algebraic preliminaries

o0
Let 2 a;x', ay=1, be the power series with the indeterminates a; as coeffi-

cients, and let I" be a commutative ring with unit.
Let {K;} be a sequence of polynomials, K; being of weight j in the a; and

Q
having coefficients in I' (Ko=1). If C= ) ¢;x' is an arbitrary power series,
i=0
[eo]
we denote by K (C) the series ) K;(cy, ..., ¢;) x/. We call {K;} a multiplicative
Jj=0

I'-sequence provided that K is a homomorphism, i.e., K(4B) =K (A) - K(B),
0 [ o]

where A and B are the power series Z a;x' and D, b; x' with indeterminates
i=0 i=0

qa;, b1 as coefTicients (ao = bo = 1).

Lemma 1.1. By attaching to a multiplicative I'-sequence the power series
K(+x)=1+y x+nx*+...(y. € I'), one obtains a one-to-one correspondence
between the multiplicative I'-sequences and the power series with coefficients in I,
the constant term being 1.

0
Proof. We construct for every Q(x)=>, 7x' a unique multiplicative
I'-sequence. Writing formally i=0

l+ayx+...+ayx"=N+ax)(I+ox)...(1+a,x),

we express Q(o;x) Q(a:x)... Q(amx) as a power series with coefficients
which are polynomials in the a;:

Q(ox) @Q(azx) ... Q(ttmx) = Zon_m(a|,...,aj) R
i=
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One verifies easily that K, does not depend on m for j = m. We write K; ;= K;
and obtain the multlphcatxve I'-sequence with K (1+x)=0(x). We denote
the coefficient of x* in a power series Q(x) by ¢ (Q). Now let I" be the
rationals.

Lemma 1.2. Q(x)=—x(e*—1)"" is the only power series with 0,(Q"*") =1
fornz0.

Lemma 1.3 Q(x)=—x(e*=1)" is the only power series with g(Q)=1,
0(Q)=%30(2(®)"Q(-x)=0fornz=1.

Definition. The multiplicative sequence belonging to Q(x) =—x(e™*—1)7" is
called the Todd sequence. We denote the polynomials of the sequence by T;
and the corresponding homomorphism by T

2T|=¢11, 12T2=a¥+a2, 24T3=a|a2,
720Ts=(—as+asa,+3a} + 4ayal — af) .

The Todd polynomials have many formal properties [9]. Here we note only
that T, is always divisible by ;. .

Lemmald. Let dy,d,,...,dn, n be indeterminates, dy=1. If one reduces
T(Z (A =gpx)"i d,-x') modulo the ideal generated by lz (- r/)""di], one
i=0 =0

has of course at most the power n"~' in the T;. Moreover, T; does not contain
n"~ for j + n—1,and T, contains (—n)""" as summand.

2. Multiplicative functors for unitary sphere bundles

Let [E, X, n] denote a (2n—1)-sphere bundle E over the finite complex X
as base space with the unitary group U(n) as structure group. For every
[E, X, n] the Chern classes ¢; are defined (0=i< o0, ¢;e H*(X,Z), co=1 and

]
=0 for i>n). We put c(E,X,n)=Zaci and call it the Chern class of
i

[E, X, n). The Chern classes have the following properties: -

1) Invariance under mappings: if g maps X’ into X, then c¢(E’,X’,n) =
g* c(E, X, n). Here E’ denotes the bundle induced by g.

2) Whitney Duality Theorem [10]:

c(E,X,ni+n)=c(E\,X,m) c(Ez, X,ny) .

Here E denotes the product bundle of the two bundles E,, E, over the same
base space X.

Definition. Let I” be a commutative ring with unit. Denote by G (X,I") the
abelian group (cup-product) of all elements of the cohomology ring H (X, I")

o0
which are of the form d= zbd“ die H¥(X,I'); dy=1. A “functor” f which
e
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attaches to every [E,X,n] an element f(E,X,n) € G(X,I') is called multi-
plicative if it obeys 1) and 2).

By using the technique of Borel-Serre [11] and Chem [10] in which the
Chern classes 1, ¢y, ¢z, ..., ¢, may be regarded as elementary symmetric func-
tions of two dimensional classes, one obtains:

Theorem 2.1. Let ¢} be the images of the Chern classes under the narural homo-
morphism H*(X,Z) - H¥(X,I'). If K; is a multiplicative I'-sequence, then
o)

obviously f=Y" K;(ci,...,c}) is a multiplicative functor.
j=0
Every multiplicative functor f can be uniquely obtained in this way. The series

Q (x) is determined by f(S*"~', P,,_.1) for large m.

[e o]
Note. Writing f= Y f;, (f; € H*), then generally f;# 0 for i > n.
i=0

In the following examples, we represent the multiplicative sequence by its
characteristic power series Q (x).
Ox)=1+x — Chern classes ¢;
Q(x)=(1+x)"" — the ¢;-classes considered by Chern [10]
Q(x)=1+x% — the Pontrjagin classes

0 (x) =——

e *—1

— the Todd classes

There will be other interesting examples which give the relations to the
Steenrod power operations as mentioned in the introduction. These will be
discussed in a forthcoming note.

Remark. Theorems analogous to 2.1 hold for orthogonal sphere bundles.

3. A Theorem on complex-projective bundles

Let [L, X, P,-,, p] be a projective bundle, i.e., L is a bundle over the finite
complex X with the complex-projective space P,_; as fibre, the projection D
and the group G of all projective transformations of P,.; as structure group.
We denote the space of all tangential unit vectors of P,_; by V(P,_,). This is a
unitary (2n— 3)-sphere bundle over P,.,. The group G operates in a canoni-
cal fashion on V(P,-;). Hence we can construct the associated bundle with
V(P,-y) as fibre, the total space of which we call Ly. This is a (2n— 3)-sphere
bundle over L:[Ly, L, n—1]. In case X is a manifold, Ly is the space of all unit
vectors in L tangential to the fibres. We give without proof a formula for the
rational Chern class of [Ly, L,n—1].

It is known that p* maps H(X,R) isomorphically into H(L,R) (R
denoting the rationals). We consider H (X, R) as a subring of H (L,R). We can
find an element n € H?(L, R) which, restricted to the fibre P,_,, is dual to the
negative hyperplane P,_, in P,_; (generator of the cohomology of P,_)).
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There is a unique relation
N-dn'+d—.. . +(=1)"d,=0 with 4 e H¥(X,R),

and H(L,R) is generated by H(X,R) and n together with this relation
(Formula of Hirsch [10]).

n
Theorem 3.1. We have ¢’ (Ly,L,n—1)= Y, (1—n)""'d;, where ¢’ is the image
i=0
of ¢ under the canonical isomorphism H (L,Z) — H (L, R).

Remark 1. One verifies directly that this expression does not depend on the
choice of 7 and that ¢, =0.

Remark 2. In case [L, X, Pn—,, p] admits GL(n,C) and with this also U(n) as
structure group, # can be chosen integral, # is the characteristic class of a
1-sphere bundle E over L. The d; are in this case the Chern classes of the
associated (2n—1)-sphere bundle [E, X, n]. Restricted to P,_;, 5 is the char-
acteristic class of the Hopf fibering $2"~1/S!= P,_, which is dual to the nega-
tive hyperplane P,_, in P,_,. For integer classes Theorem 3.1 reads

c(Ly,Lin=1)=2, (1-n)""d;.
i=0

4. The Todd genus

Let f be a multiplicative functor in the sense of Section 2. For a compact
almost complex manifold M, we consider the tangential (2n—1)-sphere
bundle [V(M,),M,,n] (Chemn class c(M,)=1+c;+c2+...+c,). We call
fIV(M,), My, n] the f-class of M, and f,[V(M,), Ma,n] the f-genus of M,,
which is to be considered as element of the coefficient domain I" (multiple of
the fundamental cocycle (M,) of M, in its natural orientation).

The Chern class of the complex projective space P, is (1+g)"*! where g is
dual to the positive hyperplane P,_;. Hence from Lemma 1.2 we have:

Theorem 4.1. The unique (rational) f-genus with value 1 on P, for all n is given by
the Todd sequence. We call this genus T (M,); it is a rational number. Hence for
P,.T(P)=IH(P,)=1.

Let M, be a complex manifold, construct the complex manifold o, M,, i.e.,
puncture M, in p and replace p by the P,_; of all complex line elements in p
(Hopf o-process [12] or elementary birational transformation with p as funda-
mental point). Then o, M, is a “topological sum” of the two manifolds M,, P,.
In the sum, M, has its natural and P, its “unnatural” orientation. Here
H (o, M,) is generated by H(M,) and by one element g (dual to P, in
a,M,) together with the relation g"= (— 1)"~! (fundamental cocycle).
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Theorem4.2 [13]). c(o,M,)=c(M,) +(1—g)"(1+g) —1. Hence, because of
Lemma 1.3, the Todd genus is the unique f-genus which has value 1 on P, and is
invariant under the o-process.

Theorem 4.3. Becduse the Todd classes obey the duality theorem, one has obvi-
ously for almost complex manifolds T(MxN) =T (M) - T(N) (Todd [3] proved
this for dimension of Mx N = 6).

Let L be a projective bundle (fibre P,_;) over the almost complex mani-
fold M,, as base. The tangential bundle of the manifold L “splits up” into two
factors: the bundlg of tangential vectors of L tangential to the fibres and the
bundle induced by the projection from the tangential bundle of M,,. Hence L
admits U (m) x U(n—1) as structure group and is therefore almost complex.

Lemma 1.4, Theorems 3.1, 4.1, and the duality theorem for Todd classes

imply
Theorem 4.4. T (L) = T(M,) T(Pn_1) = T (M,,).

The Theorems 4.3, 4.4, and other properties of T (M) not here discussed
show that 7 (M) behaves like the Euler characteristic. This is not too
surprising, because one conjectures for algebraic manifolds IT(M) =T (M),
and /7(M) is in fact an Euler characteristic [1].
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