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ANALYTIC CYCLES ON COMPLEX MANIFOLDS 

M. F. ATIYAH and F. HIRZEBRUCH 

(Receiued 1 August 1961) 

INTRODUCTION 

LET X be a complex manifold, Y a closed irreducible k-dimensional complex analytic sub- 
space of X. Then Y defines or “carries” a 2k-dimensional integral homology class J’ of X, 
although the precise definition of y presents technical difficu1ties.S A finite formal linear 
combination 1 niYI with ni integers and Yi as above is called a complex analytic cycle, and 
the corresponding homology class c ni)vi is called a complex analytic homology class. If 
an integral cohomology class u corresponds under Poincart duality to a complex analytic 
homology class we shall say that u is a complex analytic cohomology class. The purpose 
of this paper is to show that a complex analytic cohomology class u satisfies certain topological 
conditions, independent of the complex structure of X. These conditions are that certain 
cohomology operations should vanish on U, for example Sq3u = 0: they are all torsion 
conditions. We also produce examples to show that these conditions are not vacuous even 
in the restricted classes of (a) Stein manifolds and (b) projective algebraic manifolds. 

We should emphasize that the subspaces Yi above are allowed arbitrary singularities. 
If one insists that all the Yi are sub-manifolds then much stronger conditions must be 
satisfied by U. For example, according to Thorn [21], Sq2’i”u = 0 for all k (with similar 
results for other primes). In Thorn’s work the complex structure does not really enter, 
only the almost complex structure of X is used. Our proofs however rely essentially on 
deep results in the theory of coherent analytic sheaves. 

If X is a compact KPhler manifold then there is a well-known necessary condition on 
a cohomology class u E H24(X; Z) in order that it should be complex analytic. This is that 
the harmonic form defined by u should be of type (q, q). Hodge has conjectured [ 131 that, 
if X is a projective algebraic manifold, these conditions are also sufficient. For q = 1 this 
conjecture is true [14]. However, for q > 2 the results of this paper show that the conjec- 
ture, in this strong form, is false. It remains a possibility that the conjecture is true when 
reformulated in terms of rational cohomology. 

t This was presented by the first author at the International Colloquium on Differential Geometry and 
Topology, Zurich 1960. 

$ These difficulties vary according to the homology theory used. If one is prepared to assume that the 
pair (X, Y) can be triangulated then simplicial theory can be used. Bore1 and Haefliger have solved the 
problem by use of &sh theory. In this paper we shall adopt a third approach based essentially on singular 
theory. 
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If X is a Stein manifold then it is known [9] that every class u E H2(H; Zj is complex 
analytic. Our results show that this theorem does not generalize to higher dimensions. 

The cohomology operations mentioned above are the differentials d, of the spectral 
sequence H*(X; Zj * K*(X) introduced in [4]. The conditions d,u = 0 (all rj are equiva- 
lent to saying that tl “corresponds” to an element < E K*(X) in this spectral sequence. 
Suppose now that u is complex analytic and is represented by the subspace Y. Then our 
method consists in constructing a vector bundle 5 on X, using a resolution of the sheaf of 
germs of holomorphic functions on Y, and showing that this “corresponds” to u in the 
spectral sequence. 

The contents of the various sections are as follows. In $1, in order to include the non- 
compact case, we extend some of the definitions of [4] from finite complexes to general 
spaces. We introduce an “inverse limit” .% and an “inverse limit cohomology” &‘. Besides 
being essentialf in the non-compact case, x is a convenient technical tool which is used 
to advantage in $5. In $2 we summarize the basic facts concerning coherent analytic 
sheaves and we make a few applications. In .§3 we introduce a construction for K*(X, Y) 
analogous to the difference cochain in cohomology. Applying the construction in $4 to 
the resolutions of sheaves given’ in $2 we define the “Grothendieck element” y(S). The 
essential point is that Grothendieck’s constructionS (cf. [6]), which associates to a sub- 
variety Y of X an element of K’(X), can be loculised in a neighbourhood of Y. The main 
theorem (6.1) follows easily from this if we assume the triangulation of complex spaces. 
However we avoid this assumption by proving a few technical results in $5. Then in $6 
we prove the main theorem and construct the examples (6.3) and (6.5). In $6 we use a 
result on the operators dip+ of the spectral sequence. This result is proved in $7. 

The material of this paper will be employed in a future publication to prbve the 
Riemann-Roth theorem for analytic embeddings. Because of this we have given some of 
our results in greater generality than is necessary for proving the theorems of this paper. 

The authors are indebted to J. F. Adams for many helpful suggestions. 

$1. K FOR GENERAL SPACES 

In [4] we defined, for any pair5 (X, Y) of finite CW-complexes, a ring K*(X, Y). We 
shall now extend this to any pair of spaces as follows. 

DEFIKITION (1.1). Let X be a topological space, Y u subspace, then an element 
r E Xx* (X, Yj is a junctor which assigns to any map .f : (A, Bj + (X, Y) of a pair (A, Bj 
of finite simplicial complexes an element f'( E K*(A, Bj such that 

(i) f !: depends only on the’ homotopy class off, 

(ii) if 9 ‘f; .~Yj 

(A,,B,) ” 

is a commututice diagram, then 
g!(f!<j = fit. 

t See note added in proof on p. 45. 
$ The fact that Grothendieck’s construction extended to the analytic case was pointed out by Grauert. 
5 By a pair (X, Y) of complexes we shall always mean that Y is a subcompkx of X. 
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If Y = 0, x = B, is the classifying space of a group G, then this definition coincides 

with the one given in [4; $4.61 for S*(Bo). If (1, Y) is a pair of finite CW-complexes then 
it follows at once from the definition that X*(X, Y) r K*(X, Y) in a canonical manner. 
If (X, Y) is a pair of CW-complexes then 

X*(x, Y) z 12 K*(X,, Y,) 
(1 

where X, runs through all the finite sub-complexes of X and Y, = Y n X,. Our notation 
therefore agrees with that adopted in [3]. 

In a quite analogous fashion to (1 .I) we can introduce cohomology groups X9(X, Y). 
For a pair of CW-complexes (A’, Y) we have 

X9(X, Y) r 2 W(X,, Y,) 
(I 

with the same notation as above. It is then easy to show that, if Xis a countable complex, 
the natural map 

a : W(X, Y) --t X9(X, Y), 

where Hg denotes singular cohomology, is an epimorphism (for a further discussion see 
[16 ; Lemma 2 1). Since Hq and X4 are both invariants of singular homotopy type it follows 
that x is also an epimorphism if A’, Y belong to the class W, of [15] (spaces having the 
homotopy type of a countable CW-complex). In particular this applies when A’, Y are 
manifolds with countable topology [15; car. 11. 

The elementary properties of K* developed in [4] extend at once to X*. Thus X* is a 
contravariant functor of homotopy type and X*(X, Y) is a module over the ring X*(x>. 
Moreover we have a ring homomorphism 

ch : X*(X) + ***(A’; Q), 

where A?** is the direct product of the X4. On the other hand the exact sequence for a 
pair (X, Y) may no longer hold, and the same applies a forriori to the spectral sequence 
H*(X; Z) =+ K*(X). However the operators d, of this spectral sequence, regarded as higher 
order cohomology operations, can be defined on %“(A’; Z). For our purposes it is sufficient 
to define the statement “d,u = 0 for all r, u E X’(X; Z)” to mean: for any map f: A -+ X 

of a finite simplicial complex A, we have d,( f *u) = 0 for all r. 

The following criterion for the vanishing of the d, is implicit in [4, $21. 

LEMMA (1.2). Let A be a finite C W-complex, A4 its q-skeleton and let u E Hk(A; Z). 
Then d,r = 0 for all s < r if and only if there exists 

u E Hk(Ak+‘-I, A’-’ ; Z) 

and {E K*(Ak+‘-I, A’-‘), 

such that a(u) = v 

and ch 5 = p*(u) + higher terms, 
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where a is the natural homomorphism 

Hk(Ak+‘-’ ,Ak-‘;Z)zHk(A,Ak-‘;Z)-+Hk(A;Z) 

and p* is induced by the coefficient homomorphism . 
p:Z-+Q. 

This leads to the following result for general spaces. 

LEMMA (1.3). Let Y c X and suppose that any map f : A --) X of a jinite simplicial 

complex A of dimension k- 1 is homotopic to a map g with g(A) c Y. Let u E %‘?X, Y; Z), 

and let v be the image of u in .#“(X; Z). Suppose that tht+e exists r E y*(X, Y) such that 

ch 5 = p*(u) + higher terms. 
Then d,v = 0 for all r. 

Proof. Let f : A + X be any map of a finite simplicial complex A. By hypothesis 

(and the homotopy extension property) f is homotopic to a map g : (A, AL-‘) -+ (X, Y). 

Then 

ch g!{ = p*(g*u) + higher terms, 

and the image of g*u in Hk(A; Z) is f *v. Hence, by (1.2), d,(f *r) = 0 for all I’. Since 

this holds for allfwe have d,(rl) = 0 for all r as required. 

$2. COHERENT SHEAVES 

Let X be a real-analytic manifoldt of dimension n, and let 0 denote the sheaf of germs 

of complex-valued real-analytic functions on X. Then we have the following basic facts 

concerning the sheaf 0. 

PROPOSITION (2.1). 8 is a coherent sheaf of rings. 

Proqf. For the definition of coherence see [18, I, $21. The problem is local, and so 

wc may suppose X is a domain D in R”. If we embed R” c C” then 0 is just the restriction 

to D of the sheaf of germs of holomorphic functions in C”. But this latter sheaf is coherent 

(theorem of Oka see [9, exp. XV]) and hence fi also is coherent. 

COROLLARY (2.2). A iheaf S of 0-modules is cohererrr if and olrly if it iy lo~[lly iso- 

morphic to Coker q, wher’e cp is a homomorphism Gp -+ Gq. 

ProoJ This follows from (2.1) and [I& 1, $2, Prop. 71. 

PROPOSITION (2.3). Let S be a coherent sheaj’qf c-motlulcs. Then “Theorems .4 NIW/ B” 

Iroltl Jar S, i.e. for each x E X the image oJ‘ H ‘(X, S) in S, generates S, as 6,-rlrodule, and 

IIq(X, S) = 0 for q > 1. 

ProoJ According to a result of Grauert [12], X can be real-analytically embedded 

in a complex manifold Y so that Y is a complexitication of X and so that X has a funda- 

mental system of neighbourhoods in Y which arc Stein manifolds. The sheaf C; is then 

the restriction to X of the sheaf of germs of holomorphic functions on Y. Our proposition 

now follows from [8, ThCorPme I]. 

t All manifolds are nssumed to have countrtble topology. For connected complex munifolds this is no 
restriction. 
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COROLLARY (2.4). Let S be a coherent sheaf of O-modules, x a point of X. Then there 

exists a finite number of global sections of S whose images in S, generate S, as Ox-module. 

Proof. Since S is cohemnt S, is a finitely-generated OX-module. Let si, . . . , s,, be a 

system of generators. By (2.3) each si can be expressed in the form 

si = 1 aijuij 

where ciij E 6, and uij is the image in S, of a global section Uij. The set of these Uij is 

then finite and their images in S, generate S,. 

COROLLARY (2.5). Let S be a coherent sheaf of O-modules, A a compact subset of X. 

Then there is a homomorphism Op -+ S which is an epimorphism at all points of A. 

Proof For any~x G:A there exists, by (2.4),, a finite number of global sections of S 

which generate S, and hence generate S, for all _Y in some neighbourhood of x [18, I, $2, 

Prop. 11. The result now follows from the compactness of A. 

PROPOSITION (2.6). Let S be a coherent sheaf of @-modules, A a compact subset of X. 

Then there is a sequence of coherent sheaves and homomorphisms: 

o-*L,-,L,_,~...~L,-,s~o, 

such that at any x E A this sequence is exact and each (Li), is free. 

Proof. By (2.5) we have a homomorphism ‘p,, : L, --) S with L, = Op, and ‘pO an 

epimorphism on A. Let Si = Ker qO, then S, is also coherent [ 18, $2, Th. I]. Repeating 

this construction with S, replacing S, we obtain in this way a sequence 

which is exact on A and has each Li isomorphic to Gp (for some p). Let L, = Ker (~“_i, 

then for any .Y E A we have an exact sequence of flT.,-modules: 

0 + (L,), -+ . . -+ (L,), + s, + 0, 

with (Li),V free for 0 < i < II - 1. But A’,, as module over O,, has projective dimension < n 

[ll, VIII, Th. 6.5’1. Hence (L,), is free for s E A. This completes the proof. 

Wl’c now make the following observation 

LEMMA (2.7). Let L be a locally free? sheaf of @modules. Then L is a projective in the 

catego,:\. of coherent sheaves of O-modules. 

Proof. Let 0 + A’ + A -+ A” -+ 0 be an exact sequence of coherent sheaves. Since L 

is locally free we get an exact sequence of sheaves 

0 4 Hom(L, A’) 4 Horn(L, ‘4) + Hom(L, A”) -+ 0, 

7 Always assumed coherent, i.e. of finite rank 
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where Horn& A) denotes the sheaf of germs of homomorphisms L -+ A. Using “Theorem 
B” (2.3) for the coherent sheaf Hom(L, A’) we obtain the exact sequence of groups 

0 + Hom(L, A’) + Hom(L, A) + Hom(L, A”) --, 0. 

Hence any homomorphism L + A” lifts to a homomorphism L + A, proving that L 
is a projective. 

LEMMA (2.8). Let Li, Mi be locally free sheaves of O-modules and let 

an aI (10 

o~L”-+L,_,-+...-+L~+s-+o 

8. 61 Bo 
O+M,-+M,_,-+...-+M,+S-+O 

be exact sequences of sheaves. Then there is an exact sequence 

0~L”~...YfL18M2~Lo8Mi~Mo-,0 

where yi(x, y) = {ai( Bi+,(y) + (- 1)‘0i(X)}, Bi being a homomorphism Li + Mi (corn - 
mutating with the ai, #Ii). 

Proof. This is a formal consequence of (2.7). We first extend the identity map S + S 
to a homomorphism 8, : L, + Mi of the projective resolutions. Then we define yi as above 
and check that the resulting sequence is exact [I 1, IV, Ex. 31 (this construction is called the 
algebraic mapping cylinder). 

Suppose now that X is a complex manifold, and let ?4’ denote the sheaf of germs of 
holomorphic functions on X. Then X is also a real-analytic manifold and we let 0 have 
the same meaning as above. If T is any sheaf of &modules we put T” = T Oa 0. Then T” 
is a sheaf of O-modules. 

PROPOSITION (2.9). If T is a coherent sheaf of %modules, T” is a coherent sheaf of 
&modules. 

Prooj Locally we have an exact sequence 

&8p+9?q+ T-0. 

Since @ is right-exact we get (locally) an exact sequence 

Op+Oq+ T”+O. 

By (2.2) this proves that T’ is coherent. 

PROPOSITION (2.10). L-et Y be a closed complex analytic subspace of the complex mani- 
fold X, and let ay denote the sheaf of germs of holomorphic functions on Y (extended by 
zero on X-Y). Then g; is a coherent sheaf of O-modules. 

Proof. This follows from (2.9) and the coherence of W, [9, exp. XVI]. 

We shall consider now a resolution which plays a fundamental role in the Rismann- 
Roth theorem. It is originally due to Koszul, but in the context of sheaves it was introduced 
by Grothendieck. 
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Let v be a (complex) vector space of dimension q. We denote by V* the dual of V 
and by A’(V) the i-th exterior power of V. Then we have the “interior product” homo- 

morphism (i Z 1) 
v* @I A’(V) + P’(v) 

given by 
h 

f@xx, A ~2 A ... A Xl-:~~~l(-l)“‘f(Xi)x, A 0.. A 9, A -3. A Xi, 

where 2, means that xj is omitted. 

PROPOSITION (2.11). Let V be a complex vector space of dimension q, V* its dual and s 

a non-zero element Of V*. Let Qi : A’(V) 3 AiW1 (V) be the interior product with s. Then we 

have an exact sequence: 

o~~~(V)~n~-‘(v)-t...~nO(V)_,o. 

Proof. Choose a basis e,, . . . , e4 of V such that s(e,) = 1, s(eJ = 0 for i > 1. Then 

Ker a, and Im cx,, l are both seen to be the subspaces generated by the elements 

ei, A ei2 A . . . A et, 

with 2 d ii < iz < . . . < i, d q. Thus the sequence is exact. 

Since the interior product is functorial in V it can be defined also for vector bundles. 

Then (2.11) gives at once 

F~O~OSITION (2,12). Let E be a continuous complex vector bundle of dimension q over a 

topological space X, and let s be a section of E which is nowhere zero. Then we have an 

exact sequence of vector bundles: 
=Q a1 

O-+E,-+E,_,+...+E,+O 

where Ei = rZ’(E*) and ai is given by the interior product with s. 

Suppose now that E is a real-analytic complex vector bundle of dimension q over the 
real-analytic manifold X. Let s : X -+ E be a real-analytic section. Then we may introduce 
the sheaf S of zeros of s: if we identify E locally with X x Cq, s is given by q functions 
sl: X-V C and we define S = OJ(s,, . . . , sJ. clearly this definition is independent of the 
local isomorphism E + X x CY. Now put E, = rZ’(E*), and let a1 : Ej -+ Ei_l be the 
homomorphism given by the interior product with the section s of E. If we denote by 
L, the locally free sheaf corresponding to Ei, and if we let ai : L, + Li-l denote also the 
sheaf homomorphism corresponding to ai : Et -+ Ei_l, then we have a sequence 

% ml 6 
(I) o+L,+L,_l+...+Lo-+s-+o, 

where E : Lo + S is the natural homomorphism (Lo = 0). At points x where S(X) # 0 we 
have S, = 0 and (1) is exact by (2.12). Suppose now that s satisfies the following property: 

(P) For each x with s(x) = 0 there exists a local isomorphism E + X x C4, in a neighbour- 

hood of x, so that the germ s, is represented by germs of functions sI E 0, (1 < i < q) with si 

not a zero-divkort in oX,/(s,, . . . , si-J. 

tForl- 1 thismeanssl # 0. 
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Then by [1 1, VIII, Prop. (4.3)] (1) is exact at x. Hence we have 

PROPOSITION (2.13). Let E be a real-analytic complex vector bundle of dim q over a 

real-analytic manifold X. Let s : X + E be a real-analytic section satisfying property (P). 

Then 
% a1 8 

O-+L*-+L,_,+...-+L,+S-+O 

is an exact sequence of sheaves, where S is the sheaf of zeros of s, Li is the locally-free sheaf 

associated to Ai( ai is given by the interior product with s and E is the natural map 
Lo = 0 + s. 

$3. THE “DIFFERENCE BUNDLE” 

In this section we shall give a general construction for elements ,of K*(X, Y) closely 
analogous to the “difference cochain” of classical obstruction theory. 

First however we require a lemma which belongs to the general K-theory developed 
in [4] but is not giveri there explicitly. 

LEMMA (3.1). Let A, B bejnite C W-complexes, A,, a sub-complex of A. Let a, E K*(A,), 

b E K*(B). Then 

&a, 69 b) = &a,,) @ b 

where thejrst 6 is the coboundary homomorphism K*(AO x B) + K*(A x B, A, x B) and 

the second 6 is the coboundary homomorphism K*(A,) + K*(A, A,). 

The proof of this lemma presents no difficulties in view of the fact that 6 is induced 
by a map [4; $1.41 and that products are natural. The details are omitted. 

COROLLARY (3.2). Let A, A, be a pair of$nite CW-complexes. Then 

S : K*(A,) + K*(A, A,) 

is a homo;orphism of K*(A)-modules. 

Proof. This follows from (3.1) on taking B = A and applying the diagonal map. 

Let X be a finite CW-complex, Y a sub-complex, E, F complex vector bundles on X 
and let u be an isomorphism El Y --, FI Y. Then to the triple (E, F, a) we shall associate 
an element of K’(X, Y) as follows. Let I denote the unit interval and form the sub-space 

A=XxOuXxluYxI 

of X x I. On A we define a complex vector bundle L by putting E 011 X x 1, F on X x 0 
and using u to “join” them along Y x I. More precisely let 

IO = I - (01, I, = I - (11, 101 = 10 f-l 11, 

A0 = XXOUYXZ,, E, = F, 

A, = X x 1 u Y x I,, E, = E, 

and let ,fi : Ai + X be induced by the projection X x I -+ X. Thenf;*(Ei) is a bundle on 
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the open set Al and a induces an isomorphismf~(E,) * f:(E,) on the open set A,-, n Al = 

Y x 101. This gives the required bundle on A. This bundle defines an element e E K”(A). 
From the exact sequence [4, $1.41 

KO(X x Z) + P(A) 1, K’(X x I, A) 

we obtain St E K’(X x Z, A). But 

(X x I)/‘4 = %X/Y) and K’(S(X/Y)) C’ K’(X, Y) (by definition). 

The image of St in this isomorphism is the element we associate to (E, F, a). We shall 

call it the “difference bundle” of (E, F, a) and denote it by d(E, F, a). 

Remark. The universal space for K” is Z x Bu and this is an H-space with a homotopy 
inverse. If we arrange for the inverse to be genuinet then d(E, F, a) could be constructed 
as follows. We represent E, F by maps g, f of X + Z x Bo which agree (using a) on Y: 

Then d- ’ is a map X/Y -+ Z x Bo and this represents d(E, F, a). However the formal 
definition we have given avoids any reference to the universal space. 

We summarize the main properties of the difference bundle in the following proposition 

PROPOSITION (3.3). 

(i) d(E, F, a) is functoriul, i.e. iff: (X’, Y) --, (X, Y) is a map then d(f*E, f *F, f *a) = 

f! W, F, a); 
(ii) d(E, F, a) depends only on the homotopy class of a; 

(iii) If Y = f21, then d(E, F, a) = E - F; 

(iv) Iff’ : K*(X, y) --, K*(X) is rhe natural map, then f’ d(E, F, a) = E - F; 

(v) Zf a extends to an isomorphism E + F on X, then d(E, F, a) = 0; 

(vi) d(E @ E’, F @ F, a G9 a’) = d(E, F, a) + d(E’, F, a’); 

(vii) d(F, E, a-‘) = -d(E, F, a); 

(viii) Zf D is a vector bundle on X, then d(E @ D, F @ D, a @I 1) = d(E, F, a). D, where 

on the right we use the K’(X)-module structure of K”(X, Y). 

Proof. (i) follows at once from the construction which defines d(E, F, a). Now let II 

he the projection X x Z -+ X and let i, : X + X x Z be the inclusion x -+ (x, t). A homo- 

topy a, of isomorphisms El Y --) I;( Y is by definition an isomorphism 

p: n*EIY x Z+n*FjY x 1. 
Then we have 

d(E, F, ao) = d(izlr*E, itz*F, i*,/3), 

= ib d(x*E, IE*F, B) by (9. 

Similarly d(E, F, a,) = ii d(n*E, n*F, /3). Since i. N iI and K’(X, Y) is an invariant of 
homotopy type it follows that d(E, F, ao) = d(E, F, a1) which proves (ii). For (iii) we 

have to consider the homomorphism: 

6 : K”(X x So) + K’(X x I, X x So) r K’(X), 

t Sime Z x &J is a loop space it can, using a construction of Milnor, be represented by a topological 
group. 
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where So = (0) u {I} c I. Since X0(X x So) r K’(X) 8 K”(So) it follows, using (3.1), 
that we need only consider the case when X is a point, i.e. 

6 : K”(So) + K’(I, So) g K’(point). 

Since b and the suspension isomorphism u both commute with ch [4, $l.lO] it is sufficient 
to consider 

6 : lP(SO) --) H’(I, SO) = HO(point). 

But 6(a,) = + 1, 6(u,) = - 1, where a,, (I~ are the generators of H”(So; Z) corresponding 
to the points 0, 1. This completes the proof of (iii). From (i) and (iii) we deduce (iv). 
Considering the map (X, Y) --) (X, X) we see that (v) follows from (i). The construction 
gives (vi) immediately. We turn next to the proof of (vii). Let r, q be the bundles on 
A = X x 0 u X x 1 u Y x I defined by (E, F, a) and (F, E, a-‘) respectively. Clearly 
q z f *t where f: A + A is induced by the map x + 1 - x of I. Hence 6~ = g!bs’ where 
g : S(X/ Y) + S(X/ Y) is induced by the map x --, 1 - x of the suspension coordinate. 
Butitisprovedin[4,§1.5]thatg! = -1. Hence@ = -standsod(F,E,a-‘) = - d(E,F,a). 
Finally we observe that (viii) follows at once from (3.2) and the construction of the 
difference bundle. 

We shall now give a generalization of the “difference bundle’*. Let E,, . . . , En be vector 
bundles on X, and let 

G =1 (10 
(1) O~E,-,E,_,~...-*E,-,E,jO 

be an exact sequence of vector bundles on Y (strictly speaking E, should be replaced here 
by Ei 1 Y). Then we define a “generalized difference bundle”, 

d(Eo,EI ,... ,E,;ai, a2,..., a,)EK’(X, r) 
as follows. 

An exact sequence of the form (1) breaks up into short exact sequences 

(2) O-,F,-+E,+F,_,+O, l<r<n, 

where F, = Ker a,, is a vector bundle on Y. An exact sequence of the form (2) splits 
(cf [2, $11) and any two splittings are homotopic, since they differ by an element of the 
vector space Hom(F,_,, F,). Choosing one such splitting for each r we obtain isomorphisms 

w~Ezt+CF, 
r 

and the homotopy classes of 1, p are independent of the splittings. Thus x = i.-‘1~ is an 
isomorphism c Ezk --, c E2f+l, whose homotopy class is independent of the splittings. 
Hence, by (3.3)(ii), we can define a unique element 

d(Eo, . . . , En; al, . . . ,a,) = d(C L, 1 L+ 1, a)~ K”(X, Y>. 

Where no confusion can arise we write just d(E,, ai). 

The properties of this “generalized difference bundle” are summarized in the following 
proposition. 
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6) 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 
(vii) 

(viii) 

d(E,, . . . , E, ; al, . . . , a& is jiictoriul (cf. (3.3(i)); 

d(E,, . . . , E, ; al, . . . , a,,) depends only on the homotopy class of (aI, . . . , z,,) ; 
I’Y = 0, then d(E,, . . . . E,; aI, . . . . a,& = &,(-l)‘E,; 
Zff! : K”(X, Y) -P K’(X) ii the natural map, then 

f’W%, . . . , &; a1, . . . , a,) = i$J-l)iE’; 

If a1, . . . . a, extend to X with 0 --* E,, 2 E,,_, -+ . . . 2 E. + 0 exact on X then 

d(E,, . . . , E,; a,, . . . , aJ = 0; 

&El @ Ef, a1 Ci3 6) = d(E,, ar) + d(E;, a;); 
d(0, E,, . . . . E,; 0, a,, . . . . a.) = -d(E,, . . . , E,, aI, . . . , a”); 

If D is a vector bundle on X, then 

d(E, @ D, aI @ 1) = d(E,,-ar). D. 

Prot$ (i) follows at once from the construction (cf. (3.3)(i)). In (ii) a homotopy of 

(a 1, **a, a,,) means that we have an exact sequence 
0” bl 

O+F,-+F,-l-+...-+Fo+O 

on Y x I, where Fi = x*Ei and x : X x I -+ X is the projection. Hence a homotopy of 

(a 1, .**, a& induces a homotopy of the is6morphism a : c Ezk + 1 Ezk+ 1 of the construction 
above. Thus (ii) follows from (3.3)(ii). The remaining points (iii)-(viii) follow at once 

from the corresponding parts of (3.3). 

We propose next to consider a particular difference bundle. Let X be a finite simplicial 
complex, E a complex vector bundle over X of dimension q. Let A, A denote the unit 
ball and unit sphere bundles of E. Let x : A --) X be the projection map. Then n*E has a 
canonical section s nowhere zero on A and hence (2.12) we have an exact sequence pf 
vector bundles on A 

O+Fq:F,_, =I +...+Fo-+O 

where F, = n*L’(E*). Hence the element 

d(F,, F,, . . . , Fe; a1, . . . , aJEK’(A, A) 

is well-defined. From its definition we see that it behaves functorially. 

PROPOSITION (3.5). Let E be a complex vector bundle on thefinite simplicial complex X, 
A, A the associated unit ball and unit sphere bundles, x : A + X the projection map. Let 

r = d(n*I’(E*), aJ EK’(A, A). Then ch r = (p,%(E)-‘, where ‘p* is the Gysin homo- 

morphism and 2 is the total Toad class. 

ProoJ Since d(n*A’(E*), ai) is functorial it is sufficient to prove the result in the 
universal case, i.e. we may suppose X is N-classifying for U(q). Now by (3.4)(m), 
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if q denotes the image of 5 in K’(A) z K’(X), then q = c (- l)iAi(E*). Hence 
ch rl = c,(E)*%(E)-’ [6, $131. But H*(BU(q), @U(q - 1); (2) + H*(BU(q); Q) is an iso- 
morphism onto the ideal generated by c,(E) and, from the definition of (p*, p*(x) + c,(E)-x 
in this isomorphism. Thus (making N -+ 00) we have 

chS = ‘p&(E)-‘. 

$4. THE GROTHENDIECK ELEMENT 

We are now in a position to perform our basic construction. Let X be a real-analytic 
manifold, 8 the sheaf of germs of complex-valued real-analytic functions on X, and let Y 
be any subspace of X. Then to every coherent sheaf S of O-modules on X with support 
in Y we shall associate an element yr(S) E %‘(X, X - Y) in the following way. 

To define yy(S) we have first (cf. $1) to define an element f!vr(,S) E K”(A, B) for any 
map f : (A, B) + (X, X - Y) with (A, B) a finite simplicial pair. Since f(A) c X is compact 
we can find an open set U 3 f(A) with i? compact. Now apply (2.6) with I7 instead of A, 

and then restrict to U. We get an exact sequence of sheaves in U 
a, 011 ‘a. 

(1) 0-+L,-+L,_,+...~L,+S-+0 

with all the Li locally free.? Let Ei be the complex-vector bundle on U corresponding 
to Li. Ei has a real-analytic structure but we ignore this and consider only the underlying 
topological structure.$ Since the support of S is in Y we have an exact sequence of vector 
bundles 

O+Eman -tE,_1--, . . . hodO 

in U - U n Y. Sincef(B) c U - U n Y it follows that we have an induced exact sequence 
on B. We then define 

f%G) = d(f*Eo, . . . ,f*J%; f*al, . . . ,f*aA 

where the right hand side in the “generalized difference bundle” defined in 53. We will 
first show that fir,.(S) is independent of the choice of resolution (1). Suppose therefore 

O+M”SM,_I 
81 PO 

-+...-+M,+S-+O 

is another resolution in U. Then applying (2.8), with U instead of X, we get an exact 
sequence of locally free sheaves on U 

0-r L,L; . . . -+L1~Mzl:Lo~M1~Mo+O 

where YiCx* Y) = {ai(X), Pi+ l(Y) + (- l>‘ei(x>l* 

Passing to the corresponding vector bundles we get an exact sequence 

04,: . . . 
Yl VO 

-+Ei@Fz+_EoCBF~+Eo+O, 

t As remarked in [18, II, $41 a coherent sheaf L is locally free if and only if Lz is free for all x. 
$ In fact according to deep results of Grauert the topological structure determines the analytic structure 

up to isomorphism. 
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where y1 is given by the same formula. Since the yi are defined in all of U it follows from 

(3.4)(v) that, applyingf*, 

(2) d(f*gi @I*J’r+ ~,f*rJ = 0. 

On the other hand, in U - Y A U, we have a homotopy of yi with a, @ Bi+l obtained 

by defining 

Y& Y; 0 = {ai( Bi+r(~) + (- IP.Mx)); 

the fact that, for all t, this preserves exactness is easily checked; for example it follows 
from the same formal result as (2.8) taking S = 0 and replacing 0, by to,. Hence from 
(3.4)(ii) we have 

(3) d(f*Ei Qf *Fi+ 1, f*ri) = d(f*Ei @f*F,+ r,f*ai @f*Bi+ 1). 

Then from (2), (3) and (3.4)(vi), (vii) it follows that 

d(f*Ei, f*aJ = d(f*J’i, f*Bi), 

showing that our definition off?y,(S) is certainly independent of the resolution (1). 

Next we observe that f!yr(S) does not depend on the choice of U. In fact if V 1 U 

is an open set with Vcompact, then a resolution of S in Y restricts to give a resolution in U. 

Then using this resolution to definef!yr(S) we see at once that it is the same whether we 
use U or V. 

The naturality of f!yr(S) follows from (3.4)(i). It remains therefore to prove that it 
depends only on the homotopy class off. Suppose therefore F : (A x I, B x I) + (X, X - Y) 

is a homotopy. Choose U open containing F(A x I) and with U compact. The result 
now follows from (3.4)(ii). 

The element y,(S) will be called the Grothendieck element of S. It plays an important 
role in the Riemann-Roth theorem. We shall now compute yr(S) in the simplest, but 
most important, case. 

~oPosITloN (4.1). Let X denote the domain 1; Izil’ < 1 in C”, Y the sub-space of X 

given by zI = 0 (1 < i <q). Let 24y denote the sheaf of holomorphic functions on Y (zero 

on X - Y), aS;: = ay @I LsxOx (0, = sheaf of real-analytic germs X + C). Then 

ch yr(%) = u, 

where u is the generator of &‘2q(X, X - Y; Z) corresponding to Y. 

Proof Since @r = Ox/(z,, . . . , zq) we can apply (2.11) with E the trivial bundle 
X x Cr. This gives us a resolution of .@i. Restricting this resolution to the ball A given by 

,ir Izij2 G l/7-, zi = o(i > 412 

and its boundary,& and applying (3.5) we get 

ch ~0’;) = u, 

where u E Hzq(A, A; Z) is the generator corresponding (or dual) to Y. Since 

P’(A, A; Z) z .?P(X, x - Y; Z) 
this concludes the proof. 
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Remark. Applying (4.1) with n = q we get a sheaf-theoretical construction for the 
Bott generator of K”(Sz4, point). 

$5. ANALYTIC CYCLES 

The purpose of this section is to overcome the technical difficulties, referred to in the 
Introduction, concerning the definition of complex analytic homology and cohomology 
classes. We should perhaps point out that, for our purposes, it is sufficient to consider 
complex analytic subspaces of a complex manifold : abstract complex spaces are not needed. 
This is a simplification which enables us to get by with an elementary treatment. 

We start by giving a proof of the following “well-known result”. 

LEMMA (5.1). Let X be a differentiable manifold, Y a closed submanifold of 
codimension k. Let f : A -+ X be a map of a finite simplicial complex A of dimension <k 
into X. Thenf is homotopic, by an arbitrarily small homotopy, to a map g with g(A) c X - Y. 

Proof. First we prove the lemma in the case when X is an open cube in R” (ixil < 1, 
1 < i < n)and Yisgivenbyxi = 0, 1 < i < k. Then it is trivial to construct a triangulation of 
X, of arbitrarily fine mesh, and such that Y n Xk-’ = 0, where X’-’ is the (k - I)-skeleton 
of the triangulation. Now apply the simplicial approximation theorem and the result follows. 
In the general case we can take a sufficiently fine subdivision of A to ensure that, for each 
simplex u of A, we have f(u) c U,, where U, is an open co-ordinate cube (lxi( -C 1) and 

YnU,=@or Y n U,is given byxi = 0, 1 6 i < k. We now use the lemma for lJ, (as 
just proved) and push the simplices off Y one at a time. At each stage we choose all the 
homotopies f, so small that f,(o) c U, (for all cr) so that no change of co-ordinate cubes 
is necessary. The homotopy extension property of subcomplexes has to be invoked in the 
form: a “small” homotopy off on a subcomplex extends to a “small” homotopy on the 
whole complex. 

LEMMA (5.2). Let X be a complex manijbld, Y a closed complex analytic subspace of 
complex codimension q. Let (A, B) be a finite simplicial pair of dimension < 2q. Then any 
map f : (A, B) -+ (X, X - Y) is homotopic to a map g with g(A) c X - Y. 

Proof. There is a sequence of closed subspaces of Y: 

0 = Y. C Yi C . . . C Y” = Y 

such that Yi -, Yi_l is a closed submanifold of X - Yi_ 1. (5.2) now follows by a repeated 
application of (5.1) : since all homotopies are small we can ensure f;(B) c X - Y throughout 
the homotopy. 

LEMMA (5.3). Let X, Y be as in (5.2). Then i : X-Y + X induces isomorphisms 

i*:.ST(X;Z)+W(X-Y;Z) 0<&2q-2. 

Proof Let A be any finite simplicial complex, f : A + X a map. Applying (5.2) to 
the pair (Az4-‘, a), where A2q-’ is the (2q - I)-skeleton of A, we see that f N g with 

g(A zq-1) c X - Y. This shows that i* is a monomorphism. Now apply (5.2) to the pair 
(A29-2 x I, A2q-2 x 0 u A2q-2 x 1) and we see that the homotopy class of 
g: A24-2 + X - Y is uniquely determined by f. This shows that i* is an epimorphism. 
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Using (5.3) we can now define the class dual to a complex subspace. Let X be a con- 
nected complex manifold, Y a closed complex analytic subspace of complex codimension q. 
Let W be the singular subspace of Y, so that the complex codimension of Win Xis 2 q + 1. 

Then by (5.3) applied to X, W we get an isomorphism 

i* : .2f2’(X; Z) + 3cpzq(X - W; Z). 

But Y - W is a closed submanifold of X - W, and both are naturally oriented by the complex 
structure. Thus Y - W defines a classy’ E H2q(X - W; Z) and hence a class 

y’ E JP(X - w; Z). 

Then, in view of the fact that i* is an isomorphism, we obtain 

PROPOSITION (5.4). Let X be a complex manifold, Y a closed complex analytic subspace 
of complex codimension q, and let W be the singular subspace of Y. Then the[e is one and 
only one class y E .#“‘(X; Z) whose image in gzq(X - W; Z) is the class y’ defined by the 

closed submanifold Y - W of X - W. 

The class y of (5.4) will be referred to as the class defined by Y. 

LEMMA (5.5). Let X, Y, Wbe as in (5.4). Thenj : (X - W, X - Y) 4 (X, X - Y) induces 

isomorphisms 

j*:.zqx,x- Y;Z)+JqX- W,X- Y;Z) (0 i r d 2q). 

ProoJ This is quite similar to the proof of (5.3). Letf: (A, B) -+ (X, X - Y) be a 
map with A, B a simplicial pair. Applying (5.2) to the pair (Azq+‘, Bzq+‘) and the spaces 
X, X - W we see thatf E g : (A, B) + (X, X - Y) with g(A2’+‘) c X - W. This shows that 

j* is a monomorphism. Applying (5.2) to the pair (A2q x I, B** x I u A2q x 0 u AZ9 x 1) 
and the spaces X, X - W we deduce as in (5.3) thatj* is an epimorphism. 

LEMMA (5.6). Let X, Y be as in (5.2) with Y irreducible. Then S2yX, X - Y; Z) is an 
inj;nite cyclic group, generated by an element u whose image in &‘2q(X; Z) is the element y 
de$ned b?. Y. 

ProoJ By (5.3) and (5.5) we have a commutative diagram 

j* 
.@(X,X- Y;Z)-3@(X- W,X- Y;Z) 

1 i* 1 

.eyx ; Z) ------+x2q(x - w; Z) 

with i* and j* both isomorphisms. In view of the definition of y this shows that for the 
proof of the lemma we can replace X, Y by X - W, Y - W i.e. we can suppose Y non- 
singular and connected (since it is irreducible). 

With this assumption consider the commutative diagram 

H24(X,X- Y;Z)LFJ(X,X- Y;Z) 

I P 
6 I;, 

H2’(X; Z) -%@(X ; Z) 
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As pointed out in $1, a is an epimorphism. Now Hzq(X, X - Y; Z) is infinite cyclic, gener- 
ated by an element u’ with B(u’) the class defined by Y. Hence .#‘?yX, X - Y; Z) is generated 
by u = a(u’) where y(u) = @(u’) = y. It only remains to check that u has infinite order, and 
this follows at once on considering the restriction of u to a small neighbourhood of a 
point on Y. 

The generator u of &‘2q(X, X - Y; Z) will be called the canonical generator. 

$6.THEMAINTHEOREMS 

Let X be a complex manifold and let y E x24(X; Z). We shall say that y is complex 
analytic if there exist closed irreducible complex analytic subspaces Y, of X (1 < i d k) 
and integers ni so that y = r1 niyi, where yi is the element of &‘2q(X; Z) defined by YI 
(cf. $5). Then we may state our main theorem. 

THEOREM (6.1). Let X be a complex manlyold, and let y E Szq(X; Z) be complex 
analytic. Then d,y = 0 for all r, where the d, are the d@rentials of the spectral sequence 
H* =S K* (cf. Introduction). In particular for each prime p, 6,9:(y) = 0. 

Remark. 9’: is considered here as a homomorphism .JP’~(X, Z) + &‘2q+2p-2(X; Z,) 
and, for p = 2, S,9$ is to be interpreted as Sq3. 

In view of (1.3), (5.2), (5.6) and (7.1) this theorem will follow from: 

PROPOSITION (6.2). Let X be a complex manifold, Y a closed irreducible complex 
analytic subspace of complex codimension q, u the canonicalgenerator of X’2q(X, X- Y; Z). 

Then ch yu(&) = p*(u) + higher terms, 

where ~~(93;) is the Grothendieck element of 9; an’d p* is induced by the coeficient homo- 
morphism p : Z + Q. 

23; is coherent by (2.10) so that ~~(a;) is defined ($4). Since ~,(a;) and u are both 
functorial, and since u generates JIp2q(X, X- Y; Z) (5.6) it is sufficient to prove (6.2) for the 
special case when X is the domain c; Izi12 < 1 and Y is the subspace Zi = 0 (1 < i < q) 
But this case has been proved in (4.1). Thus (6.2) and hence (6.1) are proved. 

Remark.7 If X has the homotopy type of a finite CW-complex, then &’ in (6.1) can be 
replaced by the singular cohomology H. For example if X is compact then either from 
the triangulability of X or from Morse Theory it follows that X has the homotopy type 
of a finite CW-complex, so that H*(X) E s*(X). 

Theorem (6.1) gives necessary conditions on a class y E s2q(X; Z) in order that it 
should be complex analytic. In order to show that these conditions are not vacuous we 
have still to exhibit examples of complex manifolds X with classes y such that d,(y) # 0. 
This is our next task, and we shall actually construct examples in two restricted classes of 
complex manifolds, namely projective algebraic manifolds and Stein manifolds. This will 
show that (6.1) gives non-trivial conditions even in these more restrictive classes. 

First we deal with Stein manifolds. 

7 See note added in proof on p. 45. 



ANALYTIC CYCLES ON COMPLEX MANIFOLDS 41 

THEOREM (6.3). For any prime p there exists a Stein mantfold X, and a cohomology 
class y E H*(X; Z) with ~5~5 # 0. This class is not complex analytic. 

Since S,,9$ # 0 in the Steenrod algebra this will follow from (6.1) and the following 
general result. 

Pnoposrrro~ (6.4). Let A be a finite polyhedron. Then there exists a Stein manifold X, 
having the homotopy type of a finite polyhedron, and having A as a retract. In particular 
H*(A; Z) ti a direct factor (as module over the Steenrod algebra) of H*(X; Z). 

Proof. By a construction of Thorn 121, III, $21 we can embed A in a compact C”- 
differentiable manifold B so that A is a retract of B. By a theorem of Whitney [22] B can 
be given a real-analytic structure. By results of Grauert [12] we can then embed B in a 
complexification X which is a Stein manifold, has B as a retract and is the interior of 
a compact manifold X with regular boundary. Thus X and X have the homotopy type of a 
finite polyhedron (cf. the Remark after (6.2)). This completes the proof. 

Next, we consider projective algebraic manifolds. 

THEOREM (6.5). For any prime p there exists a projective algebraic mantfold X and a 
cohomology class y E Hzq(X; Z) such that 

(9 a/:(y) Z 0. 
(ii) y is of order p. 

This class is not complex analytic. 

This will follow from (6.1) and the following general results. 

F’ROPOCUTION (6.6). Let G be any finite group and n any positive integer (n > 2). Then 
there exists a projective algebraic mantfold X having the same n-type as the product of 
Eilenberg-Maclane spaces K(Z, 2) x K(G, 1). In particular H*(G; Z) (up to dimension n) 
is a direct factor of H*(X; Z). 

PROPOSITION (6.7). Let p be any prime, rhen there exists a finite group G and a coho- 
mology class y E H2q(G; Z) of or&r p with &9$(y) # 0. 

Remark. Proposition (6.6) and its proof which we give below, are due to J-P. Serre. 
More generally Serre has remarked that the construction of [19, $201, but with a projective 
representation instead of a linear one, gives a projective algebraic manifold X having 

Zl = 0, (3 I i < n), 7c2 = Z, n, = G (operating trivially on n,) and with any given k- 
invariant k E H’(G; Z). The case (6.6) corresponds to the case k = 0. 

Proof of (6.6). In [19, $201 Serre showed that given r 2 1 one can tind a representation 
of G in CN+’ and an algebraic manifold Yin PN invariant under the operation of G (induced 
from the operation on Cn+l) such that: 

(i) G operates without fixed points on Y; 
(ii) Y is the complete intersection of a number of hypersurfaces of PN of degree d which 

are non-singular on Y and intersect transversally; 
(iii) dim eY= r, 
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and that then Y is necessarily connected and X = Y/G is a projective algebraic manifold. 
We observe first that Y + PN is a (r - I)-homotopy equivalence. To see this consider the 
embedding PN + PM given by all polynomials of degee d. Then by (ii) Y is the intersection 
of PN with a linear subspace L of P,, the intersection being transversal. Now it is easy 
to show by a differential-geometric argument that the map L A PN + PN is homotopically 
equivalent to L’ n PN + PN, where L’ is any other linear subspace of the same dimension 
which intersects P,, transversally. Thus Y + PN may be replaced by Y’ + P,,, where Y’ 
is a comfilete intersection of non-singular hypersurfaces of PN which meet transversally. 
But now we can apply the Lefschetz theorem, in the form given by Bott [7], using induction 
on the number of hypersurfaces. Now let o E H2( Y; Z) be the class induced by the canonical 
generator of PN : - u may be considered as the Chern class of the bundle on Y induced 
from the line bundle CN+’ - (0) + PM. S’ mce G operates on this whole bundle it follows 
that there is a line bundle l on X such that q = A*<, where x : Y + X is the covering map. 
Then o = n*u, where u is the Chern class of 5. Let f : X + K(Z, 2) be a map representing U; 
g : X + BG a map inducing the covering Y -+ X, @ : Y -+ EG the covering map of g. Then 

(fox, g): Y + K(Z, 2) x E G is the covering map of (f, g) : X + K(Z, 2) x BG. By what we 
have shown above .( fox, g3 is a (r - 1)-homotopy equivalence. Hence (J g) is a (r - l)- 
homotopy equivalence. Taking r - 1 2 n, and recalling that BG is a K(G, 1) this com- 
pletes the proof of (6.6). 

Proof of (6.7). Consider first the case when p is odd. We take G = Z, x Z, x Z,. 
Since this group has exponent p it fo!lows that every non-zero element of ZP(G; Z) (q 2 1) 
has order p. Hence from the exact cohomology sequence of the coefficient sequence 

o+z-+z-+z,+o, 

we see that we may identify H+(G; Z) with the kernel of the Bockstein homomorphism 

B : H*(G ; Zp) -+ H*(G ; Z,,). 

Now, by the Kiinneth formula over a field, we have 

H+(G ; “J = Z,,[u,, ~29 ~3, ~1, ~2, ~1 

where u,? = 0, i = 1, 2, 3, Moreover we have /l(ui) = vi, B’(u,) = 0, S’(Ui) = fl. If we 
put 1’ = /99” - 9’fi then .@ is an anti-derivation and for x E Ker /? we clearly have 
9l(x) = /%9’(x). Hence to prove (6.7) we have only to find y E H2Q(G; Z,,) such that 
B(y) = 0, 9’(y) # 0. An element y with this property is y = /?(u~u~uJ. In fact /Iy = 0 
trivially and 

P(y) = I’ c tJlU2U3, 

= - ~(UlU2~Uj - UIU2CJ’), 

z 0, 

where each 2 is summed over the three cyclic permutations of the suffixes 1, 2, 3. 

For the case p = 2 the same element works, with the understanding now that tri = I$. 

Remarks. (1) The element J' constructed in the proof of (6.5) was of dimension 4. A 
closer examination of our construction shows that, for p = 2, we can take X in (6.5) to 
have (complex) dimension 7. In (6.3) we can also take y to have dimension 4 and, for 
p = 2, dim ,X = 8. 
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(2) It is known [9] that every 2dimensional integral cohomology class on a Stein 
manifold is complex analytic. (6.3) shows this-does not extend to cohomology classes of 
higher dimension. 

(3) The classical theorem of Lefschetz-Hodge [14] implies that every element of 
finite order in H’(X; Z) (X a projective algebraic manifold) is complex analytic (i.e. 
algebraic). ‘(6.5) shows therefore that Hodge’s conjecture [13] is not true for cohomology 
classes of higher dimension. 

(4) The preceding remarks involve torsion in an essential manner. It seems likely 
that the answers would be quite different for H*(X; Q). 

$7. THE OPERATORS dt,l 

In this section we shall give a proof of the statement concerning the operators d,,_l 
of the spectral sequence H* * K*, which was used without proof in $6. More compre- 
hensive results in this direction will be found in [l], although the formulation there is in 
terms of the Postnikov system of Bv and not in terms of the spectral sequence. 

The result used in $6 is: 

PROPOSITION (7.1). If d,u = 0 for all r, where the d, are the operators of the spectral 

sequence H*(X; Z) a K*(X), then 6$5$(u) = 0. 

This will follow from the following more precise result: 

PROPOSITION (7.2). Let u E H’(X; Z), p a prime, then there exDts an integer N prime 

to p such that d,(Nu) = 0, s < 2p - 1, and d2p-1(NU) = -N~$‘:(u). 

Remark. Taking p = 2 it follows that d3 coincides with the primary operation Sq3. 

In general, let C be the class of abelian groups in which every element has finite order 
prime to p. Then (7.2) asserts that the term E, in the spectral sequence is isomorphic 
(mod C) to H*(X; Z) for r Q 2p - 1, and that on E2p_1 the boundary d,,_, coincides 
(mod C) with -6$$. 

In (1.2) we gave conditions for the vanishing of the operators d, in terms of the Chern 
character. In the same direction we can give the following description of the first non- 
vanishing d, (cf. [4; 521). 

LEMMA (7.3). In the notation of (1.2) suppose that d,v = 0 for all s < r and that a is a 

co&in representative for (ch &+r-l. Then 6a is an integral co&in and is a representative 

for d,v. 

For the proof of (7.2) we shall require the following properties of the Eilenberg- 
MacLane spaces K(Z, n) (cf. [lo]): 

(1) H”+Q(K(Z, n); Z) is finite and independent of h for 0 < q < n; 

(2) The p-primary part of Hn+‘(K(Z, n); Z) is zero for 0 < q < 2p - 1 I n; 
(3) If n > 2p - 1, the p-primary part of Hs+Zp-l(K(Z, n); Z) is cyclic of order p with 

generator 69:(v) where v is the fundamental class. 
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We shall also need the corresponding results on the stable homotopy of spheres 
(c.f. [17, $6, Prop. 111); 

(4) zi = 7c,+,(S”) is finite and independent of n for 0 < q < n - 1; 
(5) The p-primary part of 4 is zro for 0 < q < 2p - 3. 
(6) The p-primary part of &_ 3 is cyclic of order p. 

Using these we shall tist prove an auxiliary lemma. 

LEMMA (7.4). Let p be a prime and let P,(C) denote complex projective space ofdimen- 
sion n. Then there exists an S-map g : S2p -+ P,(C) of degree Mp where M is prime to p. 

Proof. We consider the exact stable homotopy sequence of the pair P,(C), P,_,(C): 

+ nXPn- I(C)) -5 QPAC)) -5 $- 2n -5 

Here we have written n:(X) for the stable group z,+~(S”(X)), and we have used the iso- 
morphism [5 ; $7, Th. II] 

?cs,(X, Y) z 7$x/Y). 

To prove the lemma we have to show the existence of an element a E ngp(Pp(C)) with 
j*(a) = Mpg, where 4 is the generator of n$ z Z. This is equivalent to showing that 

a(~) E &-df’p-,WN h as order dividing Mp. But putting q = 2p - 1, n = 2, . . . , p - 1 
in the exact sequence and using (5) and (6) we deduce that the p-primary part of 

Gp-l(pp-l(C)) is cyclic of order p. This completes the proof. 

We turn now to the proof of (7.2). Since the spectral sequence is natural it is sufficient 
to take X as a large finite skeleton of K(Z, k) and u as the fundamental class L’. Then 
from (l)-(3) we deduce the existence of an integer N prime to p such that d,(Nc) = 0 for 
s < 2p - 1 and 

d2p- ,(A%) = D/6,8;(o), 

for some 1 E Z,. Since moreover the spectral sequence is stable under suspension it follows 
that 1 is independent of k. To determine the value of 1 we take an example space 

X = S2”(Pp(C)) u E2n+2p+1, 

where the cell E2n+2p+1 is attached by a map g of degree Mp as given by (7.4). We consider 
u = Oar E HZ”+’ (X; Z) where x is the generator of H2(Pp(C); Z) and u2” is the suspension 
isomorphism. Now we have an element 5 E K*(P,(C)) with 

x2 XP 
ch5 = eX-1=x+15-1_...+- 

P! 

and hence an element q = a”‘(r) E K*(S’“(P,(C))) with 

u2”(xP) 
chrl=a2”(e”--l)=u+...+-. 

P! 
Then by (7.3) we see that d,u is represented by the cochain My/(p - l)! where J* if the 
generator of the cochain group C 2n+2p+1(X; Z). On the other hand in P,(C) we have 

9;(x) = xp, 

where,k is the mod p reduction of x, and hence 6,8:(u) is represented by the cochain My. 
Since (p - l)! = - 1 mod p this shows that A = - 1, and completes the proof of (7.2). 



ANALYTIC CYCLES ON COMPLEX MANIFOLDS 45 

REFERENCES 

1. J. F. ADAMS: On Chern characters and the structure of the unitary group, Proc. Comb. Phil. Sot. 57 

2. M. F. ATIYAH: Complex analytic connections in fibre bundles, Trans. Amer. Math. Sot. 85 (1957), 
181-207. 

3. 

4. 

5. 

6. 
7. 
8. 

9. 
10. 
11. 
12. 

13. 

14. 

15. 

16. 
17 

M. F. ATIYAH: Characters and cohomology of finite groups, Publ. &‘l’Znstitut des Hautes Etuuks 
Scientifques (1961). 
M. F. AnYAH and F. HIRZEBRUCH: Vector bundles and homogeneous spaces, Proceedings of Symposiam 
of the American Mathematical Society, Vol. III (1960), pp. 7-38. 
A. L. BLAKERS and W. S. MASSEY: The homotopy groups of a triad-II, Ann. Math., Princeton, 35 
(1952), 192-201. 
A. E~REL and J-P. SERRE: Le tMo&me de Riemann-Roth, Bull. Sot. Math. Fr. 86 (1958), 97-136. 
R. Barr: On a theorem of Lefschetz, Mich. Math. J. 6 (1959);211-216. 
H. CARTAN: VarittCs analytiques &les et varittes analytique complexes, Bull. Sot. Math. Fr. 85 
(1957), 77-99. 
H. CARTAN: SPminaire Carian, Paris 1951-52. 
H. CAXTAN: Shminaire Cartan,Paris 195655. 
H. CARTAN and S. EILENBERG: Homological Algebra, Princeton University Press, 1956. 
H. GRAUERT: On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math., Princeton, 
68 (1958), 460-472. 
W. V. D. HODGE: The topological invariants of algebraic varieties, Proceedings of the Znternatioml 
Congress of Mathematicians, Vol. I, Harvard (1950), pp. 182-191. 
K. KODAIRA and D. C. SPENCER: Divisor class groups on algebraic varieties, Proc. Nat. Acad. Sci., 
Wash., 39 (1953), 872-877. 
J. MILNOR: On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Sot., 90 
(1959), 272-280. 
J. MILNOR: On axiomatic homology theory, Pacif. J. Math. (to be published). 

II. J-P SERRE: Groupes d’homotopie et classes de groupes aMliens, Ann. Math., Princeton, 58 (1953), 
258-294. 

(1961), 189-199. 

18. J-P. SERRE: Faisceaux al&briques cohCrents, Ann. Math., Princeton, 61 (1955). 197-278. 
19. J-P. SERRE: Sur la topologie des vari&Cs algebriques en characteristiqut p, Symposium Znternacional 

de Topologia Algebraica (Mexico, 1958), pp. 24-53. 
20. R. THOM: Espaces fib& en spheres et Carrcs de Steenrod, Ann. Sci. Ec. Norm. Sup., Paris, 69 (1952). 

109-182. 
21. R. THOM: Quelques proprietts globales des vari&&s difI&ntiables, Comment. Math. Helvet., 28 (1954), 

17-86. 
22. H. WHITNEY: Differentiable manifolds, Ann. Math., Princeton, 37 (1936), 645-680. 

The Mathematical Institute, Mathematisches Institut, 
10 Parks Road, Wegelerstrasse 11, 
Oxford. Bonn. 
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