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Introduction 
Around 1900 Hilbert, Hecke ([7]), Blumenthal ([2]) and others 

started the study of certain 2-dimensional complex spaces, which are 
closely related to the classification of special types of 2-dimensional 
abelian varieties. These complex spaces can easily be described. In fact, 
let n be a natural number, n >  1, which is square free and let K = Q  q/n).  
Then, if o K is the ring of algebraic integers of K, the group SLz(oK) 
operates in a natural way on ~ • ~ and on ~ • ~ -  where ~ is the 
upper and ~ the lower half plane of C. The quotients of See • ~ and 
Jg  x J g -  by the action of SL2(ov,) are the 2-dimensional complex spaces 
mentioned above. If the field K has a unit of negative norm, then the two 
actions on ~ • ~ and ~ • J g -  are isomorphic. This is true if n is a 
prime congruent 1 rood 4, the only case we shall consider in this paper. 
Therefore, from now on we assume that K=  Q (l,/p), where p is a prime 
congruent 1 mod 4. 

The complex space Jg x .)~/SLz(oK) can be compactified by means 
of a finite number of points, called the cusps, to a compact 2-dimensional 
complex space. After resolving the cusps and also the quotient singu- 
larities on ~ x ~ / S L  2 (OK) , both in a canonical, explicit way, a non- 
singular compact complex surface Y(R) is obtained, which in fact is an 
algebraic surface. The field of meromorphic (i. e. rational) functions on 
Y(p) is isomorphic to the field of meromorphic functions of 

• ~ / S L  2 (OK). 
On the other hand, although no complete classification of algebraic 

surfaces is known, there exists a rough classification in several classes 
(for most of which the surfaces contained in that class can be classified 
completely, at least in principle). In big outline this classification was 
already known to the italian school, but its precise formulation (this 
time also covering the non-algebraic case) and many of the proofs 
involved are due to Kodaira. Now the question considered in this paper 
is the following: where are the surfaces Y(p) to be placed in the rough 
classification of algebraic surfaces? 
1 Inventiones math., Vo1.23 
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Restricting ourselves to the case mentioned, where n is a prime 
congruent 1 rood 4, we are able to answer this question completely. This 
answer is embodied in Theorem lIl.1, which is our main result. 

This paper is composed in the following way. Chapter 1 starts with 
generalities about surfaces, after which the rough classification of 
algebraic surfaces is explained (Theorem ROC). Chapter I contains 
furthermore a number of specific propositions, which are either used in 
Chapter lI1, or will be used in subsequent papers and are stated here for 
convenience. Some of the results proved here are already in the literature, 
or are even well known. They are included here for the reader's conven- 
ience, thus enabling him to understand many of the results of Chapter lI[ 
without any further knowledge of the more refined parts of the theory of 
algebraic surfaces. 

In Chapter II we collect some of the results of [12] which we need in 
Chapter III. Again for the readers convenience, we present them at some 
length and in a form suitable for our purposes, referring for details and 
general background always to [12], which paper also contains a more 
complete list of references. 

As already said, the final Chapter III contains the statement and the 
proof of our results. 

I. Algebraic Surfaces 
Generalities. We shall consider divisors on a non-singular algebraic 

surface X, which is always supposed to be connected. Such a divisor is a 
finite sum ~ n i Ci, n~eZ, where C~ is an irreducible algebraic curve on X. 
The divisor is called non-negative if all n i are non-negative, and it is 
called positive if it is non-negative and not zero. For any pair of divisors 
D and E on X, the symbol DE will denote the intersection number of 
their homology classes, the surface being provided with its natural 
orientation. Sometimes we shall denote the homology class of a divisor 
D also by D. The projective space of non-negative divisors linearly 
equivalent to D will be denoted by JDI. Furthermore, K x or simply K 
will stand for any canonical divisor, i.e. a divisor of a meromorphic 

2 
section of A 0", where 0* is the covariant tangent bundle of X. As usual, 
we write (9 x for the structure sheaf of X, and then set 

dim HI(X, dox)=q(X ), the irregularity of X 

(since X is algebraic, 2q (X)=  bl(X), the first betti number of X); 

dim H a ( X,  (9x) =pg( X), the geometric genus of X ; 

dim ]n KxJ + 1 = P, (X), the n-th plurigenus of X 

(by Serre duality, we have p~(X)= P~(X)). 
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The arithmetic genus )~(X) of X is the Euler-Poincar6 characteristic 
of X with coefficients in C~x ([10], p. 151) 

Thus by the Riemann-Roch theorem ([10], w we have 

z ( x ) =  1 -q(X)+p~(x). 

The arithmetic genus is a birational invariant. 

An exceptional curve on a non-singular complex surface is a non- 
singular rational curve E with E 2 = - I .  Blowing up a point means 
replacing that point by an exceptional curve, the result being another 
non-singular complex surface. Conversely, an exceptional curve can 
always be blown down, i.e. replaced by a point such that the result is 
again a non-singular complex surface (El6], p. 563). Blowing up or down 
(in) an algebraic surface gives again an algebraic surface ([15], p. 125). 

Let X be a non-singular compact complex surface, Y the surface 
obtained by blowing up p~X,  p: Y ~  X the natural projection and 
E = p -  1 (p) the exceptional curve obtained. 

Proposition 1.1. With the notation just introduced, we have ,&r every 
irreducible curve C on Y with C # E: 

K v C = K  x p ( C ) +  CE. 

Proof If p*: H,(X,Z)--* H,(Y,Z) denotes the Umkehr-homo- 
morphism, then ([14], p. 31) 

K y = p * ( K x ) +  E. 
From this and 

p*(Kx) C = K x p ( C )  
the result follows. 

For  an irreducible curve C on the non-singular compact complex 
surface X one defines the virtual genus n(C), in such a way that the 
adjunction formula 

Kx C= - C 2  + 27c(C)- 2 

holds ([15], p. 119). The victual genus is always a non-negative integer. 
It is equal to the genus of C if C is non-singular, and strictly greater than 
the genus of the desingularisation of C if C is singular. Thus n(C) vanishes 
if and only if C is a non-singular rational curve. Also, n(C) = 1 if and only 
if C is a non-singular elliptic curve or a rational curve with exactly one 
cusp or ordinary double point. 

Every non-singular algebraic surface X can be obtained from a non- 
singular algebraic surface X o without exceptional curves by a finite num- 
ber of blowing-ups, i.e. there exists a finite number of non-singular alge- 
braic surfaces X o .. . . .  X k = X  and points p~EX i, such that for i=  1,...,k the 
surface X~ is obtained from Xi_ ~ by blowing up Pi-~. The surface X o is 
J* 
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called a relatively minimal model of the surface X. In this paper we shall 
simply speak of a minimal model instead of a relatively minimal model, 
and surfaces without exceptional curves we shall call minimal surfaces. 
Minimal surfaces are classified by the following "rough classification" 
theorem ([I93, Theorem 55). 

Theorem ROC. Every algebraic surface without exceptional curves 
belongs to exactly one of the following classes: 

1) the projective plane P2 ( K2= 9), 

2) the smfaces S,, n>0,  n:4= 1 (K 2 = 8 ) ,  

3) the algebraic Pl-bundles over a non-singular algebraic curve oj 
genus __> 1 (K2~0), 

4) the algebraic K3-surfaces (K 2 =0), 

5) the 2-dimensional algebraic tori (KZ=O), 

6) the honestly elliptic surfaces without exceptional curves (K2= 0), 

7) the surfaces of general type without exceptional curves (K 2 > 1). 

We now explain the terminology used in this theorem. 
Let ~ be the algebraic line bundle on P1 of degree 1 (i.e. the line bundle 

admitting holomorphic sections with exactly one simple zero). Then, 
for n > 0, the surface 27, is defined as the total space of the projective 
bundle of ~ �9 ~" +1. This bundle has a section with self-intersection - n .  
(If it is blown down in Z1, the resulting surface is P2 .) The surfaces of the 
classes 1) and 2) are exactly the rational surfaces without exceptional 
curves. (A surface is called rational if it is birationally equivalent to P2 -) 
A K3-surface is by definition a surface X with q(X)=0 and with trivial 
canonical bundle, i.e. K x = 0 .  

An elliptic surface is a surface which admits at least one elliptic 
fibring, i.e. a holomorphic map onto a non-singular curve such that all 
but a finite number of fibres are non-singular elliptic curves. Some of the 
surfaces in the classes 1)-5) and of their blow-ups admit elliptic fibrings. 
By an honestly elliptic surface we mean an elliptic surface not birationally 
equivalent to a surface from any of the classes 1)-5). 

Finally, a surface of general type is a surface for which at least one 
n-canonical system tnKl, n>  t, provides a birational equivalence onto a 
(possibly singular) algebraic surface. If such a surface contains no ex- 
ceptional curves, it is known ([3]) that, for n large enough, InK] gives an 
everywhere defined map onto the image. Furthermore, on X there 
exists only a finite number of non-singular rational curves with self- 
intersection -2 .  Let A be the set of points through which passes at least 
one of these curves, and let A 1 . . . . .  A t be the connected components of A. 
Then INK[, n>5, provides a biregular map from X - A  onto its image, 
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and each set Ai is mapped into a normal singular point of the image, with 
different Ai's going to different points. 

If a surface has a minimal model in class 1) or in class 2), it may have 
more minimal models, but these are all contained in classes l) and 2). 
The surfaces of this sort are exactly the rational surfaces. If a surface has 
a minimal model in class 3), it may have more minimal models, bul they 
are all contained in class 3). The surfaces of this sort are the ruled sur- 
faces of genus > 1. 

If a surface has a minimal model in class 4), it has exactly one minimal 
model. So for such a surface we can speak of the minimal model. The same 
holds for surfaces which have a minimal model in either one of the classes 
5), 6), and 7). The surfaces which have their minimal model in class 6) 
are exactly the honestly elliptic surfaces, and the surfaces with their mini- 
mal model in class 7) are exactly the surfaces of general type. 

Remark. The finer classification of the surfaces within classes 1), 2) . . . .  , 
6) is in principle known. For the "large" class 7) only some general facts 
are known. 

The following results will be used in Chapter III to obtain the main 
result of this paper. 

Rational Surfaces 

Since the arithmetic genus is a birational invariant, all rational sur- 
faces have arithmetic genus equal to 1. 

The following result is in essence due to M.Noether  (see for example 
[19], p. 1053). We include an elementary proof of this well known fact, 
since only this result is needed for the proof of the rationality of Y(5), 
Y(13) and Y(17) (see the proof of Theorem III.1). 

Proposition I.Z Let  X be a non-singular algebraic surface with q(X)  = O. 
I f  X contains a non-singular rational curve C with C 2 >=0, then X is a 
rational surface. 

Proof  From Proposition 1.1 and the adjunction formula it follows that 
the self-intersection of a non-singular curve "goes down by one" if we 
blow up a point on the curve. Consequently, we can restrict ourselves to 
the case C a = 0. Let ? be the line bundle on X corresponding to C. Then 
there is an exact sequence of sheaves on X ([-10], p. 130) 

0 --, (9~ - ,  n (~) --, Q '  (~ I c )  ~ 0 

where 9(7 ) is the sheaf of local holomorphic sections of 7 and f2' (y I C) the 
sheaf of local holomorphic sections of the restriction 7] C, extended by 0 
outside C. Since the degree (first Chern number) of 7] C is the self-inter- 
section of C ([15], p. 117) the line bundle 71C is trivial, so 

dim H ~ (X, ~ (~1C)) = 1. 



6 F. Hirzebruch and A. Van de Ven 

Because dim Ha(X,(gx)=q(X)=O, we find dim H~ f2(y))=2. The 
projective space of H~ f2(,])) can be identified with the set of zero 
divisors of holomorphic sections of ,/. If we take two of these divisors, C~ 
and C2, with C1 4= C2, then two sections of ? vanishing (with proper 
multiplicities) on C1 and C2 respectively, form a base of H~ f2(7) ). 
Therefore, if CI and C2 would have a strictly positive divisor D in common, 
all sections of 7 would vanish on D, i.e. D would be equal to C, which is 
impossible, since on C there vanishes only a l-dimensional space of 
sections of 3'. Furthermore, from C 2 =0  we deduce that two zero divisors 
never have any points in common. Hence the zero divisors of holomorphic 
sections of V are the fibres of a surjective holomorphic map p: X ~ Pt- 
From Bertini's theorem ([23], p. 24) it follows t h a t -  except for a finite num- 
ber of them - the fibres of p are non-singular curves. The adjunction for- 
mula then implies t ha t - excep t  for a finite number of excep t ions - the  
fibres are non-singular rational curves, the exceptions being exactly the 
reducible fibres. Again by the adjunction formula, these must have at 
least two different components. Let y" ai C~ be such a fibre, where al is the 
multiplicity of the component Ci. By an elementary case of Stein factori- 
sation ([23], p. 23) the fibre is connected. Therefore, from (~  a i C;) C i=0  
we find that for all components C~ the self-intersection is strictly negative 
Also, from ~ a~KC~=-2  we conclude that there is at least one C~, say 
Cio, with KC~o<0. The adjunction formula now gives C~20=-1, 
= ( C j = 0 ,  i.e. Cio is an exceptional curve. Repeating the argument, if 
necessary, for the surface which results from blowing down Cio, we find 
that X is obtained by blowing up a surface Y which admits a holomorphic 
map onto P1, everywhere of maximal rank, such that all the fibres on Y are 
non-singular and rational. By an elementary argument ([1], p. 68) the 
surface Y is an analytic Pl-bundle over P1, and by another elementary 
argument the surface Y is an algebraic Pl-bundle over P1. Since every 
algebraic Pl-bundle over C is algebraically trivial, Y is birationally equiv- 
alent to P2. Hence also X is a rational surface. 

Theorem 1.3 (Castelnuovo's Criterion). An algebraic surface X is 
rational if and only if q(X)=P2(X)=O. 

For  a proof see [19], p. 1052. 

Proposition 1.4. I f  on the non-singular algebraic surface X with q (X)= 0 
there exists an irreducible carve C with KC <O and C 2 >0, then X is a 
rational surface. 

Proof Let Del2KI.  We set D = a C + R ,  with a > 0  and RC>O. Then 
2 K C = a C 2 + R C > 0, which is a contradiction. Hence 12 K t is empty, i.e. 
P2(X)=0, and X is rational by Castelnuovo's criterion. 
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Proposition 1.5. Let  X be a non-singular algebraic surface with q (X) = O. 
I f  there exists on X an irreducible curve C with K C <O and which has at 
least one singular point or which is not rational, then X is rational. I f  there 
exists on X an irreducible curve C with K C <= - 2, then again X is a rational 
surface. 

Proof  In both cases, the adjunction formula implies C 2 >0. Hence X 
is rational by Proposition 1.4. 

Proposition 1.6. U on a non-singular algebraic surJace X with q ( X ) = 0  
there exist two intersecting exceptional curves, then X is rational. 

Proof  Let E~ and E 2 be the exceptional curves with E t E2>0. If we 
blow down E~, then on the blow-down surface 2? the image /~2 of E 2 

satisfies by Proposition I.l the relation' 

K~ Ez  = K x Ez - E1 E 2 

= - 1 - E l  E 2. 

Therefore, )( and hence X is rational by Proposition 1.5. 

Elliptic Surfaces. Let p : X ~ R be an elliptic fibring of the non-singular 
algebraic surface X, and let rn I F 1 . . . . .  m~ F t be the multiple fibres of p 
([16, 17]). Then, if X is free of exceptional curves, the canonical divisor 
class on X is given by 

I 

K x = p * ( A ) +  ~ (m i - 1)Fi 
i=l 

where A is a divisor class on R of degree z ( X ) - e ( R ) ,  the number e(R) 
being the Euler number of the curve R (see [18], Theorem 12). 

Proposition 1.7. Let X be a non-singular algebraic surface with q ( X ) =  0 
and Z (X) = 2. Suppose that on X there exist irreducible curves C and D with 
K C = C 2 = O ,  KD<=O and C D = I .  Then X is a blown up elliptic K 3- 
sulfate. 

Proof  The curve C cannot intersect any exceptional curve E on X, 
for after blowing down E the image of C would satisfy the conditions of 
Proposition 1.4 and hence X would be rational, contrary to the assump- 
tion that Z (X) = 2. In particular, D is not an exceptional curve. Also C itself 
is not an exceptional curve because C2=0.  Using Proposition 1.1 we 
find therefore that after blowing down an exceptional curve on X, the 
resulting surface together with the images of C and D satisfies again our 
assumptions. So it is sufficient to prove the theorem for a surface X' 
containing no exceptional curves. 

From the Riemann-Roch formula we find 

dim JC[ + d i m  I K -  CJ RO. 
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Let A ~]K - C[. Then AD < 0, and in particular A + 0. If we set A = dD + R, 
with d > 1 and RD > 0 we have R C < 0. Consequently, if we set R = e C + S, 
with e > l  and SC>O, we find ( K -  C) C = ( d D + e  C+S)  C>0,  contrary 
to our assumptions. It follows that dim [ K - C I  = -  1 and dim ]C[ > 1. 
In the same way as in the proof of Proposition 1.2 we find that a 1-dimen- 
sional linear subspace of [C[, containing C, gives a holomorphic map p: 
X'-~ P1. By construction C is an irreducible non-multiple fibre of p. From 
Stein factorisation it follows that all but a finite number of fibres of p 
are irreducible. By Bertini's theorem all but a finite number of fibres are 
non-singular, and by the adjunction formula therefore all but a finite 
number of fibres are non-singular elliptic. It follows that p is an elliptic 
fibring of X'. The curve D intersects the irreducible fibre C in one point 
transversally, hence p has no multiple fibres. From the formula given above 
for the canonical class it follows that Kx, =0, hence X' is an elliptic K3- 
surface, and X is a blown up elliptic K3-surface. 

( - 2)-Configurations. Let X be a complex surface. By a ( -  2)-configu- 
ration on X we mean a configuration formed by a finite number of non- 
singular rational curves C~ . . . .  , C~, all of them with self-intersection - 2 ,  
such that C~ w.-. ~ C k is a connected subset of X. The configuration 
formed by C1 . . . . .  Ck will be denoted by { C1, ..., Ck} (any ordering). We 
shall not describe completely which (-2)-configurations can exist on 
the (blown up) surfaces of the classes 1) . . . . .  7) of Theorem ROC, but 
we shall prove a few facts about (-2)-configurations which will be used 
in Chapter III, and in forthcoming papers. 

Let X be a surface of general type without exceptional curves. As was 
mentioned before (after Theorem ROC) the holomorphic map, provided 
by ]n K[, n sufficiently large, maps each (-2)-configuration on X into a 
single point, with different configurations going to different points. The 
singularities thus obtainable are known: these are exactly the rational 
double points Ak, Dk, E6, ET, Es (see for example [4]). From this fact it 
follows which types of ( -  2)-configurations can exist on surfaces of general 
type without exceptional curves, and thus also which ( -  2)-configurations 
can exist on any surface of general type. 

Using only the facts about surfaces of general type mentioned after 
Theorem ROC, we shatl prove the following special result. 

Proposition 1.8. Let X be a non-singular algebraic surface with q(X) =0. 
I f  on X there exists a (-2)-configuration { D1, . . . ,  Dk} such that the matrix 
(Oi Dj)l <=i,j<=k is not negative definite, for example if 

DiDj>= k 
l < i < j ~ k  

then X is not a surjace of general type, and hence, by Theorem ROC, X is 
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either rational, or a (blown up) K3-surface, or a (blown up) honestly 
elliptic surface. 

Proof  To begin with, we shall prove: if some exceptional curve on X 
intersects any of the curves D 1 . . . .  , D k, then X is a rational surface. Indeed, 
if for any i the intersection number ED~> 2, then after blowing down E, 
we find that X is rational by Propositions 1.1 and 1.5. If E intersects two 
of the curves D 1 . . . . .  D k ,  say D 1 and D 2, with ED 1 = E D  2 = l ,  then after 
blowing down E we see that X is rational by Proposition 1.6. If for exactly 
one curve D i, say D1, we have ED~ = 1, then after blowing down E the 
image of D 1 is an exceptional curve. If X is not rational, this curve inter- 
sects exactly one of the remaining curves D 2 . . . . .  D k. If X is not rational, 
we can go on with the image of D1 as we did before with E, and so on. 
This however implies that for a suitable ordering of the curves D l . . . . .  D k 
we have D~ Dz . . . . .  D k _ t D k = l ,  with all other D~Dj=O. But this is 
contrary to the assumption that the matrix (D~ Dj)~ ~i,j__<k is not negative 
definite. Hence, i fX is not rational, then on a surface Y, without exceptional 
curves, from which X is obtained by blowing up, there exists a ( - 2 ) -  
configuration with an intersection matrix which is not negative definite. 
Then, if X and thus Y were of general type, by what is said about surfaces 
of general type after Theorem ROC, there would be a ( -  2)-configuration 

I 

{DI . . . . .  Dk, D~+I . . . . .  Dr} on It, a neighbourhood U of {,_)Di, a complex 
i=1  

surface V with exactly one normal singularity p, a holomorphic map  
1 x l 1 

, t  wou,d mao  -UO, bi p. 
\ = 1  / i-- i = l  

regularly onto V -  p. But then, according to a classical theorem of DuVal  
(see for example [20]) the matrix (D~ Dj)~ =< i.~ =<k would be negative definite, 
contrary to the assumption. 

Let us consider elliptic fibrings p: X ~ R of compact complex sur- 
faces X without exceptional curves. In [16] (p. 565) Kodaira  has described 
all possible types of fibres of such fibrings. F rom Kodaira 's  results it 
follows in particular which (-2)-configurat ions occur as (set theoretic) 
fibres in elliptic fibrings of such surfaces X. Below we give a list of these 
configurations, using Kodaira 's  notation. We point out that in this list 
we consider only the underlying (-2)-configurations,  thus forgetting 
about the multiplicities of the components.  

In the following enumeration C~ always denotes a non-singular ra- 
m 

tional curve with C 2 = - 2 .  By Cio Cj = ~ ~iP~ we indicate that the curves 
i=1. 

C~ and Cj intersect precisely in points p~ ..... Pm (P~W-Pj for i:gj) with 
multiplicity ~ . . . . .  a,, respectively. If an intersection C~o Cj does not occur 
it is understood to be empty. 
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Fibre type Curves Inlersection behaviour 

m l  z C,,  C2 

Il l  Cj, Cz 

IV C1, C2, C3 

mlk Ct . . . . .  C k ( k > 3 )  

1~ CI,  C2, C3, C4, C5, 

..., Ck+5 

1I* C1 . . . . .  C9 

l l I*  C~, . . . ,  Cs 

IV* Ct . . . . .  C7 

Cj o Cz=pt  q-P: 

C1 o C2 = 2pt 

C~ o C 2=C1 ~ 1 7 6  C3=pl 

C, o C~+~ =p~ (i = 1 . . . . .  k -  1), Ck ~ C1 = Po 

C loC s=pl,  C2~ s=p2, C3~ 
C4oCk+s=p,,  C5oC6=p5 . . . . .  Ck+4 ~ 

C t o C 2 = P l ,  . . . ,  C5 o C6=P5  , 

C 6 o C 7 = P6, C6 o C8 = q6, C7 o C9 = P7 

C 1 o C 2 = P l ,  C2 o C 3 = P 2 ,  C3 o C 4 = P 3 ,  

C4 ~ C5 = p,~, C4 ~ C6 = q~, C5 ~ C7 = Ps, 

C 7 o C 8 =P7 

C t ~  Cz ~ C3 ~ 
C3o C 5 = q 3 ,  C4o C6 =p4 ,  C5o C...t=p5 

The ( - 2 ) - c o n f i g u r a t i o n s  occurring in this list will be called the 
elliptic ( -  2)-configurations. 

Proposition 1.9. Let X be a non-singular algebraic surface with q I X ) =  0 
and z ( X ) > 2 .  Suppose that on X there exists a (-2)-configurat ion { CI . . . . .  
Ck, C}, such that {Ci  . . . . .  Ck} is an elliptic (-2)-configuration,  but the 
whole configuration {C1 .... , Ck, C} is not. Then X is a (blown up) dl ipt ic  
K3-surface. 

Proof  F r o m  z ( X ) > 2  it fo l lows  that X is not  rational. Us ing  this fact 
we find in a way quite similar to the first part of  the proof  of  Propos i t ion  
1.8 that no  exceptional  curve on X intersects any of  the curves C 1 . . . . .  C k, C. 
Consequent ly ,  it is sufficient to consider  the case that X conta ins  no  ex- 
ceptional  curves. By the definit ion of  an elliptic ( -  2)-configuration there 
exist strictly posit ive integers a 1 . . . . .  a k, such that ( ~  a i Ci) 2 = 0. (Since we 
shall use it later on, we shall a s s u m e - a s  of  course  we m a y - t h a t  
G C D ( a l  . . . . .  ak) = 1.) Therefore,  by the theorem of  D u V a l  (loc. cit.), X is 
not a surface of general type, and hence  X is either honest ly  elliptic or a 
K3-surface. 

N o w  let p: X - ~  P1 be an elliptic fibring of  X, and let m ~ mj Fj, 
j = l  

with G C D ( m  z . . . . .  m 3 =  1, be a fibre of  p. According  to a theorem of  
Zariski ([23],  p. 165) we have for all integers cl . . . . .  ct the inequality 

c i < 0 ,  and the equality q = 0  holds if and only  if there 
\ j = l  X j= l  / 

exists an integer p such that c i = p mj , j  = 1 . . . . .  I. Since there exist strictly 
posit ive integers a~ . . . .  , at such that ( ~  al C~) a = 0  it fo l lows  that at least 
one  of  the curves C~ . . . . .  C k, C has a strictly posit ive intersection with the 
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fibres ofp. From z(X)>2,  combined with K x C 1 . . . . .  K x Ck=KxC= 0 
and with the formula for K x given earlier, it follows that Kx=O. Hence 
in any case X is a K3-surface. To finish the proof we still have to show that 
X is elliptic. In fact, from the Riemann-Roch formula we derive that 
dim t~ a~ C~I > 1. From the theorem of Zariski just used it follows that 
no 1-dimensional linear subspace of I~ a~ C~l, containing ~ a i C~ has a 
fixed component. Finally, in the same way as in the proof of Proposition 
1.7 we conclude that such a linear subspace gives an elliptic fibring of X. 

II. Curves on the Hilbert Modular Surfaces 
The Quotient Singularities. As has been announced already in the 

introduction, we recall in this Chapter only the facts we shall need later 
on. For  more details we refer to [12]. 

Let K be the real quadratic field Q(]/~), where p is a prime congruent 
I mod 4, and let o be its ring of integers. If ~ is the upper half plane in C, 
then SL 2 (o) acts on ~ 2  = ~ • j #  by 

c z l + d  ' c'z2 +d '  ] 

where a', b', . . ,  are the conjugates of a, b .... over Q. The Hilbert modular 
group G = S L 2 ( o ) / { + I , - 1 }  acts effectively on ~ 2 .  The orbit space 
,~Z/G is a complex space of dimension 2 with finitely many quotient 
singularities. For  a suitable r, such a singularity is locally the quotient 
of C 2 by a linear action of the group of r-th roots of unity, acting freely 
outside the origin. If for (Zl, z2)e CZand ~r= 1 this action is of the form 

r z2)=(~ zl, ~q z2) 

where q and r are relatively prime, we shall say that the quotient singularity 
is of order r and of type (r; 1, q). 

Prestel ([21]) has proved the following proposition. 

Proposition ILl. Let ar be the number of  quotient singularities of  order r 
in ~ ,  2/G, where G is the Hilbert modular group for the field K=Q(] / /p)  
and where p is a prime congruent 1 mod 4. Then we have 

Jot p = 5 :  a 2 = a 3 = a s = 2 ,  a t = 0  for r>5 ,  

,for p > 5 :  a 2 = h ( - p ) ,  a a = h ( - 3 p ) ,  a , = 0  for  r > 5 .  

Here h(b) denotes the class number of the field Q (l/b). The numbers ar are 
even. Half of the singularities of order 3 are of type (3; 1, l) (the first kind) 
and half of them are of type (3; 1,2) (the second kind). For  p = 5, the quo- 
tient singularities of order 5 are of type (5 ; 1, 3). 



12 F. Hirzebruch and A. Van de Ven 

The minimal resolutions of the quotient singularities of ~g~2/G can 
be described by the following diagrams. In these diagrams the lines indi- 
cate non-singular rational curves, and the numbers are their self-inter- 
section numbers. The intersection of different curves is transversal. 

Quotient singularity of order 2" 

-2 

Quotient singularity of order 3 and of the first kind' 

-3 

Quotient singularity of order 3 and of the second kind: 

;>< 
Quotient singularity of type (5; t,3): 

;5<5 
The Euler number of ~'f2/G is given by 

r - 1  
e(~Z/G)=2~K( - 1)+ ~ a t - -  (1) 

r > 2  r 

where r,~ is the ~-function of the field K. If we resolve the singularities of 
~ 2 / G  by way of a minimal resolution we obtain from JC~2/G a (non- 
compact) non-singular complex surface X(p). Blowing up a quotient 
singularity increases the Euler number by the number of curves occuring 
in the resolution. Therefore, by Proposition II.1 and formula (1) we ob- 
tain 

Proposition II.2. If G is the Hilbert modular group for the field 
K=Q(1/~), then the minimal desingularisation X(p) of ~ 2 / G  has the 
following Euler number 

e(X(5)) = 13 

e(X(p))=2r, r~ ( -1 )+3h( -p )+~h( -3p) ,  for p>5.  

The Cusps. The manifold X(p) can be compactified by finitely many 
"cusps", which are in one-to-one correspondence with the ideal classes 
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of the ring of algebraic integers in the field K = Q  (I f  p). The compactified 
space X(p) has h(p) singular points, corresponding to the cusps. If we 
replace each of these singular points by a minimal resolution, we obtain 
a non-singular algebraic surface Y(p). These surfaces are the Hilbert 
modular surfaces as they appear in the Introduction. 

It has been shown in [12] that the singular points of X(p) admit a 
cyclic resolution. Since in our case (p prime congruent 1 mod 4) the ring o 
has a unit of negative norm, in o the groups ~; of wide ideal classes and 12 + 
of narrow ideal classes coincide. The squaring operation Sq: n ~ n-2  
from ~ to if;+ is bijective, because h(p)=ll$l=J(g +1 is odd ([12], 3.7). 
Therefore the cusps are of type (9)l, 112), where 11 is the group of units of o 
and 73l runs through a complete system of representatives of the ideal 
classes of o. The group 112 equals the infinite cyclic group 11 + of totally 
positive units. Thus the result on the desingularisation of the h (p) singular 
points of X(p) can be formulated in the following way. 

A real quadratic irrationality w is called reduced if 

0 < w ' < l  < w  (2) 

where w' is again the conjugate of w over Q. A real quadratic irrationality 
w is reduced if and only if its continued fraction of the form 

1 
w = a ~  1 ( a i E Z ,  a i>2  for i > l )  (3) 

a l - - -  

is purely periodic, i.e. there exists a natural number r > l ,  such that 
that a i = a i +r for i > 0. A quadratic irrationaliy w has discriminant p if 

M+I/p 
w 2 N (4) 

where M , N  are integers, N > 0  and M 2 - p  congruent 0 mod4N.  Let 
L(p) be the set of all reduced quadratic irrationalities of discriminant p. 
The set L(p) is finite, and its cardinality will be denoted by :(p). If w e L(p) 
and 

1 1 
w = [w] + 1 - = b - - -  (5) 

Wl W 1 

then w I eL(p). Thus for each weL(p) we have a successor wleL(p).  In 
this way, the finite set L(p) is arranged in finitely many cycles, which are 
disjoint. Alternatively, we can say that Z acts on L(p) with finitely many 
orbits. Formula (5) is the beginning of the continued fraction for w. The 
a 0 of(3) equals b, and we have b__>2. The following proposition is a refor- 
mulation of results in [12], w 2 and w 3. 
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Proposition 11.3. The number o['eycles in L(p) equals the class number 
h(p). There is a natural correspondence between the singular points o f  
X(p)  and the cycles in L(p). To each weL(p) one can associate a rational 
curve S w occurring in the minimal resolution of that singular point oJ 
X(p) which corresponds to the cycle of  w. The re?ationship thus established 
between the curves of  the minimal resolution o f  a singular point of  X (p) and 
the elements of  the corresponding cycle in L(p) is one to one. 

For p = 5, we have f(p) =1 ,and the unique reduced quadratic irrationality 

is w - - 3  + k/52 - 3--1~'w In this case the curve St,. is a rational curve with 

one singularity, an ordinary double point, and S 2 = - 1. 
For p > 5, the curves S w are all non-singular and their se(f-intersection 

2 number is Sw= - [w] - 1. Furthermore, we have [(p)>3,  and in .fktct each 
cycle has a length >= 3. Each curve S,,. intersects only its successor arwl its 
predecessor, each of  them transversally in exactly one point. 

{1/~} + l / P ,  where {l/p} = 2 a + l  is the smallest odd integer Let w o = 2 

greater than ]fp. The cycle of w o corresponds to the ideal class of the 
principal ideals of o. The successor of w o will be called wl, its predecessor 
W 1, and so on, until for a certain t the curves Sw, and S,,_, intersect. 
The curves Sw, will simply be denoted by S i. If we put 

then we have 

In particular, 

bi = [wi] + 1, 

S2 i=S  z - b i  - b l  

$2= - b o =  - { l ~ } =  - ( 2 a +  I). 

As observed before, the resolution of the cusp, corresponding to the 
cycle of w o looks as follows 

/ 

S_ 2 

/So\ 

t t 
/ 

/ 

(6) 
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If we denote continued fractions of the form (3) by 

[ [ a o , a , , a 2  . . . .  33 
we have 

Wo =[ [bo ,  bl . . . . .  b,, b, . . . . .  bl]]  

where the bar indicates the period. Observe that bt +1 = b_t = b t ,  etc. 

The first prime p congruent 1 mod4  with h(p)> 1 is p=229. If we 
want to tabulate all elements of L (p) for p < 229, we only have to consider 
the cycle of w o. We put 

M i + ] ~  
w , -  2N i 

It is easy to show that N _ i = N  i. Therefore, we shall tabulate bi and Ni 
only for 0 _ i N t .  The M i w e  do not need. Table 1 (p. 22) gives the b i and 
N~ for p<73,  whereas in Table2 the numbers {(p) can be found for 
29<p=<317. 

The boundary V of a suitable compact neighbourhood U in Y(p) of 
the union S of all curves S w is a 3-dimensional manifold with h(p) 
connectedness components, each of which is a torusbundle over a circle. 
The neighbourhood U has S as a deformation retract. Therefore, the 
betti numbers of U are given by: bo(U)=bt(U)=h(p); b2(U)=f(p), 
bl (U)=0 for i >  3. The Euler number e (U) equals ((p). The complement 
in Y(p) of the interior of U is a compact manifold, with boundary V, 
which is a deformation retract of X(p). A simple additivity property of 
the Euler number (e (A va B) = e (A) + e (B) - e (A c~ B)) implies in virtue of 
e (V) = 0 the formula 

e (Y(p)) = e (X (p)) +/'(p). (7) 

Since bl(Y(p))=O, formula (7) enables us to calculate the second betti 
number of the surface Y(p). For the sake of completeness we indicate a 
proof of the fact that bl (Y(p)) vanishes; for more details we refer to [6] 
(see also [5], Yeil I, Satz 8). 

Proposition II.4. The Hilbert modular surfaces are regular, i.e. their 
first betti number bt ( Y(p)) vanishes. 

Proof We remove from ~ 2  suitable open balls around the points 
with non trivial isotropy groups. The resulting space (~2),  is simply-con- 
nected, and ( J ~ z ) ' / G  is a (non compact) manifold with a boundary con- 
sisting of finitely many lens spaces. According to Serre ([24]) the abelian- 
ised group G/[G,  G] is finite. Therefore, the first betti number of (~2) ' /G  
and also of X(p) vanishes. The last fact follows because the tubular 
neighbourhoods of the configuration of curves into which a quotient 
singularity is blown up, are simply connected. Therefore, ba(Y(p)-U) 
vanishes. Each one-dimensional homology class of U can be represented 
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by a cycle in U - S ,  and thus by a cycle in OU=V.  The van Kampen- 
Mayer-Vietoris theorem applied to Y(p) = ( Y(p) - U) ~ U gives the desired 
result. 

The Curves F N. Next we recall some facts about the curves FN on the 
surfaces Y(p) ([12], w 4). 

A natural number N is called admissible with respect to p if N is not 
congruent 0 rood p2 and if N does not contain any prime number q 4: p 

with ( q )  = - 1, i.e. all the primes contained in N are quadratic residues 

rood p. Thus in o c Q (1/~) all these primes are equal to a product of two 
different prime ideals q, q', where x ~ x' denotes as before the non-trivial 
automorphism of the field K = Q  (l/p). 

For  every admissible N there is defined an algebraic curve F N on the 
surface Y(p). It is always irreducible, but may have singularities. For  
different admissible numbers N1, N2 the corresponding curves Fui and 
Fu2 are also different. We do not recall the definition of the curves FN in 
full generality, but restrict ourselves to the following special case. 

If N = jj', wherej is a totally positive integer in K which is not divisible 
by any natural number 4: 1, then N is admissible, and the curve 

Z 1 =it 
t E ~  (8) 

z z = j ' t ,  

o n  ~,r projects down to a curve in ~2/G. The closure in Jl~Z/G of this 
last curve is an algebraic curve on Y(p), and this curve is precisely FN. 

If the class number h(p) of the field K equals 1, then any admissible N 
can be written in the form N =  jj', where j has the properties mentioned 
above. 

The curve F N has a non-singular model ~Vg/F, where F is a discrete 
group acting on ~ and where the bar indicates the compactification of 
~ff/F by the finitely many cusps of F. If N is not congruent 0 rood p, then 
F = Fo (N), where 

If N =  1, then F=SLa(Z) ,  and the curve F 1 comes from the ordinary 
diagonal zt = z z in ~f,2 

If N = p, then F = F. (p) which group is the extension of index 2 of F o (p) 
by the element (p0 
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The curve Fp can be given in the form (8) with j = I / P  eo, where e 0 is a 
positive unit of negative norm (e; <0).  In our  case such a unit always 
exists, as was already ment ioned  before. Also the equat ions z t = e g z2 or 
zt z2 = - 1 give rise to the curve Fp. 

There  is a natural  m a p  

J f / F  - ~ / F  ~ S (9) 

which indicates where the curve FN passes th rough  the curves Sw. The  
(finite) number  of points in ~ / F  - Yf/F,  i.e. the number  of cusps of F will 
be denoted by ~(F). There are well known formulae  for ~(F). The  number  
~(F) equals 2 r if N is a product  of  r different pr imes (:t=pl, it equals 1 if 
N = 1 or  N = p. Some informat ion  about  the m a p  (9) is conta ined in the 
following proposi t ion.  

Proposit ion 11.5. I f  the reduced quadratic irrationality w e  L(p) is of the 

form M + ] ~  
W 

2 N  

then the curve F N intersects S w transversally in a point which is not a double 
point of S. 

The curve F1 intersects So transversally and this is the only intersection 
of F~ with S. 

The curve Fp passes through the intersection point of St and S_t, inter- 
secting S, and S_t transversalty. This is the only intersection of Fp and S. 

T o  describe the basic configuration of curves on Y(p) as we need it for 
our results on classification we have to recall the propert ies  of the involu- 
tion t on ~r induced by the involut ion (Zl ,Z2)~(z2 ,  zl) of 3r ~2 
(compare  [12], 5.4, where this involut ion is called T). The involut ion t 
acts on the quot ient  sigularities of 3ff2/G. The  description of  this act ion 
([22]) depends on the residue class of  p mod  24. Therefore we define: 

= 1 for p congruent  1 rood 3, e = 0  for p congruent  2 mod  3 

8 = 1 for p congruent  1 rood 8, 8 = 0  for p congruent  5 mod  8. 

Now consider/7l and Fp as curves on -~f2/G. Then the following holds on 
Jr: 2/G: 

F~ and F v are both  pointwise fixed under  7. 

Of the h ( - p) quotient  singularities of order 2, half of  them lie on Fp, and 
not on F1, and one of them (represented by (i, i ) e ~  2) lies on F 1 and Fp, 
and is the only intersection point of F1 and Fp in )(t:Z/G. There  are in 
addi t ion ~ quot ient  singularities of order 2 which are fixed under t. 
" T h e y "  lie neither on F~ nor  on Fp. The remaining order  2 singularities are 
interchanged pairwise under  ~. Of the h ( -  3 p) quot ient  singularities of  
2 [nventionesmath., Vok 23 
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order 3, exactly half of them are of type (3; 1, 2). They lie on F n. There is 
one singularity of type (3; 1,1), represented by (r, r), where r = - �89  + �89  
which lies on Fl, whereas ~ such singularities lie on Fp. The remaining 
singularities of type (3; 1, 1) are interchanged pairwise. The involution 
acts freely outside F~ and F r and the quotient singularities of order 2 and 3. 

The involution z can be carried over (lifted and extended) to Y(p). 
Since F~ and Fp are pointwise fixed under i it follows from general 
theorems about involutions on complex surfaces that F t and Fp are non- 
singular curves on Y(p), which do not intersect on Y(p). 

On Y(p) we have the following basic configuration. (In this diagram 
we omit the curves coming from the cusps belonging to non principal 
ideal classes, and also the curves coming from quotient singularities 
which are pairwise interchanged.) 

Bi 

S~ ' ,,,\ 
I I 
! I 

I 

Pl 
o-.--.- B2 

E 

Fp 

J 

P2 (if ~'=1) o - -  

L (if d = l )  

The basic configuration 

The involution 1 interchanges the curves Sj and S_j. The curves B 1 
and B 2 come from the resolution of the quotient singularities of type 
(3; 1, 1) which lie on F I and F~ respectively (the curve B 2 exists only if ~ = 1 ), 
and have both self-intersection number - 3 .  The curve E comes from the 
quotient singularity of order 2 which lies on both F 1 and Fp. The curve L 
(which exists only if 6 = 1) comes from the quotient singularity of order 2 
which is fixed under t. The curves Ci, C'~ represent the resolutions of the 
h ( - 3 p )  

quotient singularities of type (3; 1, 21; they are interchanged 
2 
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by ~. The curves Di are the resolutions of the h ( -  p) quotient singularities 
2 

of order 2 which lie on Fp. The curves E, L, Ci, C'i and Di all have self- 
intersection number - 2 .  The curves B~, B2, E, D~ and L are mapped to 
themselves by i. The points Pl, P2, P3, P4 and P5 are isolated fixed points 
of 1. On Y(p) the involution z has exactly 2 +~ + 26 isolated fixed points. 

To every normal isolated singular point of a 2-dimensional complex 
space one can attach a Chern divisor. In extenso ([12], 4.2), if the union 
of the curves A1 . . . . .  A k is a minimal resolution of the singular point p, 

k 
then the Chern divisor of p is a sum ~" a iAi where the a i are rational 

numbers (the usual divisors, as introduced in Chapter I, have always 
integer coefficients). Thus the Chern divisor of a cusp singularity is equal 
to the sum of the curves in the resolution, and the Chern divisor of a 
quotient singularity of type (3 ; 1,1) equals �89 times the only curve in the 
resolution. The Chern diviser vanishes if only non-singular rational 
curves with self-intersection number - 2  occur in the resolution. 

Let c~ ~ H 2 (Y(p), Z) be the first Chern class of Y(p). If K is a canonical 
divisor on Y(p), then its cohomology class under Poincar6 duality equals 
- q .  For a curve FN we need information on c~ [FN] = - K F  N. If F N has 
,~r as non-singular model, then 

cx [F~]=2  ~ o~+~C~')FN (10) 
o~/F v 

where ~ o~ is the Euler-GauB-Bonnet volume of ~ / F  and C~ ~) runs 
9F/F 

through the Chern divisors of all the singular points in the compacti- 
fication of ~(r (compare [12], 4.3). Taking into account that F = F, (p), 
that ESLz(Z): Fo(p)] = p +  1 and that S c0 = - ~  we derive from (10) 

~'~/SL 2 (z)  

and Proposition II.5 the following formula for N =p :  

cl [F v] = P + 1 e 6 +-~-+2. (11) 

Since Fp is non-singular, we have by the adjunction formula 

c, [Fp] - Fp z = 2 - 2 n (Fv) = e (Fp) = 2 - 2 g,  (p) (12) 

where e(Fp) is the Euler number of F r. Formulas (11) and (12) imply the 
following proposition. 

PropositionII.6. The self-intersection number of the non-singular 
curve F~ on the Hilbert modular surface Y(p) is given by the Jbrmula 

2* 
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From a classical formula for the genus g.  (p) it follows that g.  (p)= 0 
for p=5,13 ,17 ,29 ,41 ,  that g . ( p ) = l  for p=37,53,61,89,101,  that 
g,  (p)= 2 for p = 73, and g.  (p)= 3 for p = 97. This information covers all 
the values of g.(p) for p <  101. Using suitable estimates, Helling has 
shown recently ([8]) that for the primes p congruent 1 mod 4 the above 
are the only values of p for which g, (p)=0 or g . (p )=  1. 

Formula (10) implies for the curves FN (N not congruent 0 mod p) the 
following result ([12], 4.3). 

Proposition II.7. Let N be admissible with respect to p and N not con- 
gruent 0 rood p. Then for the curve FN on the Hilbert modular surface Y(p) 
the number c 1 [FN] = --KFN can be bounded fi'om below by a number c I (N) 
depending only on N: 

e 1 [FN] > c~ (N). 

For  the values of N occurring below in (13) the curve FN is rational and the 
corresponding numbers c~ (N) are as indicated. 

N 1 2 3 4 5 6 7 8 9 10 12 13 16 18 25 
(13) 

cl 1 1 1 1 0 0 0 0 0 - 2 - 2 - 2 - 2 - 4 - 4  

For  N = 1, the basic configuration shows that c~ [F1] = 1. Hence F 1 is an 
exceptional curve on Y(p). 

The curves F N are mapped to themselves by t. 
Before continuing the study of the curves F u on the Hilbert modular 

surfaces Y(p), we have to recall the formulas for the arithmetic genus of 
Y(p) and of Y(p)/l (with the quotient singularities coming from the iso- 
lated fixed points of t resolved, see the basic configuration). It was shown 
in [11] and [-12] that 

Z (Y(P)) = �88 e (Jg~ Z/G). (14) 

Formula (1) and the estimate ~K(-  1 ) > ~ o P  ~ imply: 

X (Y(p))> v@0p } 

and explicit calculations (tables by D. Zagier) show: 

z (Y(p) )=I  ~* p = 5 , 1 3 , 1 7  

x(Y(p))=2 ,.~ p=29 ,37 ,41  (15) 

z ( r (p ) )=3  ~ p=53 ,61 ,73 .  

The information contained in the basic configuration and formulas for 
branched coverings imply 
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Estimates and explicit calculat ions give ([11, 12]) 

z ( Y ( p ) / t ) > 2  for p > 3 1 7 .  (17) 

According to (15) the surface Y(p) is not  rat ional  for p >  17. 
In the following we assume p > 17. 
Then  Proposi t ions  1.5, II.4, II.7 together  with the adjunct ion formula  

imply that  F~, F2, F3, F4 are exceptional  curves. The curves F 2, F4 exist 
only if 2 is admissible with respect to p, i.e. if 8 = 1. The  curve F 3 exists 
only if 3 is admissible with respect to p, i.e. if e = l. 

It was shown in [12] that  F 3 passes through the point  P2 in the basic 
configuration,  intersecting B 2 transversally.  The  curve F 2 goes through 
exactly one of the points P3, P4, intersecting L transversally.  The  curve F 4 
passes th rough  P5, intersecting S o transversally.  In ~t ~2 the curve F 4 can 
be given by 

z 2 = t + } % ,  W o -  2 

In the case that  the number  2 is not admissible the Eqs. (18) still determine 
a curve F on Y(p), which passes through Ps. We have t (F )=F,  and it can 
be shown that  F is always exceptional  on Y(p). Thus for any p we have an 
exceptional  curve F which coincides with F~ i f2  is admissible. 

In the sequel the following terminology will be used. Let X be a 
complex surface, and C, D . . . .  curves on X. If an  exceptional  curve E on X 
is b lown down, then, in as far as they are different f rom E, we shall speak 
of the images of (2, D . . . .  c a  the new sl rface as of  C, D . . . . .  Thus  if we say: 
we blow down E, F, ... successively, we mean that  first we blow down E, 
then on the new surface the image of F, and so on. The basic conf igurat ion 
shows that  we can blow down on Y(p) successively the curves F~, E, B 1 . In 
view of  Proposi t ion  1.6, the curves F, F 2 , F 3 are disjoint and do not inter- 
sect any  of the curves F 1, E, B. So we can also blow down the curve F;  the 
curve F2, then L if 6 =  I ; and the curve F 3 if a =  1. The  non-s ingular  
algebraic surface thus obta ined  will be denoted by yO(p). It  is obta ined  
from Y(p)by  blowing down 4 + 2 8 + a  times. 

We conjecture that  (always for p_>_29) yO(p) is a minimal model, 
i.e. that it does not contain any exceptional curves (see Chapter  III ,  
Remark  t). 

Let c o be the first Chern  class of  yO(p) and  K ~ a canonical  divisor of 
yo (p). For  the investigation of the surfaces yO (p) it is impor tan t  to know 
the n u m b e r  (c~ 2 [-rO(p)] =(KO)2 (see T h e o r e m  ROC).  This  number  can 
be calculated in the following way. Using the second Todd  polynomial ,  

we have  z (Y (p ) )=  )~ (Y~176 +e(V~ 

(c~ 2 = 12 Z (Y(P)) - e (yo (p)) 

= 122' ( Y ( p ) ) - - e ( V ( p ) ) + 4 + 2 6 + ~ .  
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By Propositions II.1 and II.2 and the formulas (1), (7), (14) we get for p > 29 

(cO)2[yO(p)]=4~K(_l) h ( - 3 p )  - g ( p ) + 4 + 2 ~ + e .  (19) 
6 

It is interesting to observe that h ( - p )  drops out. In Table 2 we list for 
29<p< 317  the values of ~,K(- 1), h ( -  p), h ( -  3p), f(p) and (K~ 2. It can 
be proved that (c~ 2 [yO(p)] >0  for p > 89. This involves estimates con- 
cerning •(p)which will be carried out in [13]. But we shall be able to 
prove our classification result in the next Chapter without using this fact. 
We shall only need (c~ 2 [yO (p)] >0  for 89 < p < 317, a fact that follows 
immediately from Table 2. 

Table 1 

p=5  

i 0 

b~ 3 
Ni 1 

p=13 

i 0 1  

b i 5 2 
N~ I 3 

p=17 

i [0  1 2 

b, [ 5 3 2 
N, 1 2 4 

p= 29 

i 0 1 2 

b~ 7 2 2 
N~ 1 5 7 

p=37 

i 0 1 2 3  

b ~ 7 3 2 2  
N ~ 1 3 7 9  

p=41 

i 0 1 2 3 4 5  

b i 7 4 2 3 2 2  
N i 1 2 5 4 8 1 0  

p=53 

i _ [ 0 1  2 3 

b, ] 9 2 2 2 
N~ 1 7 11 13 

p=61 

i 0 1 2 3 4 5  

b ~ 9 2 4 2 2 2  
Ni 1 5  3 9 1 3 1 5  

p=73 

i 0 1 2 3  4 5 6  7 8 9 10 

b, 9 5 2 3  4 2 2  3 2 2 2 
N, 1 2 6 4  3 8 9  6 1 2 1 6  18 
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Table 2 
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p 6r~K( - 1) h ( - p )  h ( - 3 p )  r (cO)Z [yO(p)] 

29 3 6 6 5 0 
37 5 2 8 7 0 
41 8 8 2 11 0 
53 7 6 10 7 0 
61 ll  6 8 11 0 
73 22 4 4 21 0 
89 26 12 2 21 2 
97 34 4 4 27 2 

101 19 14 10 l l  4 
109 27 6 12 17 4 
113 36 8 6 23 6 
137 48 8 6 27 10 
149 35 14 14 15 10 
157 43 6 16 19 12 
173 39 14 18 13 14 
181 57 10 12 25 16 
193 98 4 8 47 24 
197 49 10 22 15 18 
229 81 10 12 29 28 
233 106 12 10 39 36 
241 142 12 4 59 42 
257 120 16 6 39 46 
269 83 22 14 21 36 
277 103 6 28 29 40 
281 150 20 6 49 56 
293 85 18 22 17 40 
313 200 8 8 65 74 
317 101 10 26 21 46 

I11. The Structure of the Surfaces yo (p) 

In this Chapter we shall prove the main result of this paper, as it is 
contained in the following theorem. 

Theorem IliA. The surfaces Y (p) are 

rational surfaces for p = 5 ,  13, 17; 

blown up elliptic K3-surfaces for p = 29, 37, 41 ; 

honestly elliptic surfaces for p = 53, 61, 73; 

surfaces of general type for p => 89. 

In the course of the proof we shall use the following auxiliary result. 

Proposition Ill.2. Let X be a non-singular algebraic surface with 
q(X) = 0 and with )C (X)>->_ 3. Let p: X ~ P1 be an elliptic fibring of X, and 
let C be an irreducible curve on X with p(C)=PI .  If there exists a holo- 
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morphic involution t: X ~  X without isolated fixed points and leaving C 
pointwise fixed, then the quotient of X by i is a rational algebraic surface. 

Proof Since X (X)> 3, X is neither a rational surface nor a blown up 
K3-surface. Therefore X is obtained by blowing up an honestly elliptic 
surface Y without exceptional curves (Theorem ROC and the remarks 
thereafter). Let a: X-- 'P1 be an elliptic fibring of X, induced by an 
elliptic fibring of Y. We shall identify two elliptic fibrings of X if they 
have set theoretically the same fibres. Then we claim: ~r is the only 
elliptic fibring of X (and therefore is equal to the given fibring p). For let 
r: X ~ P1 be another elliptic fibring of X (the base of any elliptic fibring 
of X is P~ since q(X)=0). Suppose, there is a fibre Go of r, which is set 
theoretically different from all the fibres of ~r. Then Go cannot be con- 
tained in a fibre of a because of the theorem of Zariski (loc. cit. in the proof 
of Proposition 1.9). Therefore ~r(Go)= P~, hence there is a neighbourhood 
U of Go on X such that for all the fibres G of r contained in U, we have 
cr (G)= Pv Since there is only a finite number of reducible fibres of r, we 
can find an irreducible fibre G of r with or(G)= P1, i.e. G intersects all the 
components of all fibres of a in a non-negative number of points. Using 
for the canonical class of Y a formula mentioned in Chapter I, and 
taking into account that at each blowing up the canonical class of the new 
surface is the pull back of the canonical class of the original surface plus 
the exceptional curve obtained, we find that 

Kx=6*(A)+ ~ a i C i, ai>O. 

In this formula A is a divisor class of strictly positive degree on P: 
(because x(X)=>3)and the curves C i are components of fibres of c~. This 
formula implies that Kx G is strictly positive, a contradiction. Hence p is 
the only elliptic fibring of X. Since the involution t transforms the fibres 
of an elliptic fibring of X into the fibres of an elliptic fibring of X, we find 
that ~ permutes the fibres of p. Now the curve C, left fixed pointwise by ~, 
intersects all fibres of p, hence t transforms every fibre of p into itself. 
Also the restriction of t to a fibre has at least one fixed point. Hence the 
quotient of any non-singular elliptic fibre of p by 1 is a non-singular 
rational curve, which has self-intersection 0 on the non-singular quotient 
surface Y= X/l. Since Y is algebraic (for example by [14J, Theorem 3.3) 
and q(Y)=0, the proposition now follows from Proposition 1.2. 

Proof of Theorem 111.1. In Chapter lI, we have introduced the basic 
configuration on the surface Y(p). 

As was already observed in [-11], the information contained in the 
basic configuration suffices to prove Theorem III.1 for p =  5, 13 and 17. 
In fact, for p =  5, after the blowing down of F 1 and E, the curve F 5 
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becomes a non-singular rational curve with F 2 = 0 (Propositions 1.1 and 
II.6). Thus Proposition 1.2 yields that Y(5) is a rational surface. Similarly, 
for p =  13, after the blowing down ofFt,  E and B 1, the curve F13 becomes a 
non-singular rational curve with F~ =0,  and for p =  17 the same holds 
for the curve $2 after the blowing down of F 1, E, B1, F1 ~ and C1 (by 
Table 1 the self-intersection S 2 = - 2  on Y(17)). 

F rom Chapter lI we know about the existence and part of the inter- 
section properties of the curves FN- not only for N = 1 and N = p, but for 
all N = 1, 2, 3 . . . .  - and the curve F, which is sometimes identical with F4. 
To prove Theorem IIl . l  for p > 29 we shall use the structure of the con- 
figuration formed by the curves of the basic configuration and (some of} 
the curves Fv and F. From now we assume that p>29.  By the results of 
Chapter II (see (15)), the arithmetic genus x(Y(P))is greater or equal to 2, 
in particular Y(p) is not a rational surface. Now let p = 29. After blowing 
down F~, E and B t we get S0 z = - 1  and KSo = + 1. (After the second 
blowing down we have BtS o =2.)We know from Chapter II that FSo = 1, 
hence after blowing down F we find KSo = So 2 = 0. Furthermore F does 
intersect neither S~ nor S ~ .  For if F would intersect either one of these 
curves, F would intersect both of them, since l ( F ) = F  and t ( S 0 = S  t. 
But on Y(29) we have by Table 1: S~ = s Z t  = - 2 ,  so i fF  would intersect 
St and S_a, after blowing down we would get a violation of Pro- 
position 1.6. Hence, if after blowing down F we set So = C and S t =D,  
then all the assumptions of Proposition 1.7 are satisfied and as a conse- 
quence Y(29) is a blown up elliptic K3-surface. For  p =  37 and p=41  the 
argument is similar. On Y(37) we have S 1F 3 = S _ t  F3 = 1. Since S~ = - 3  
we find that after blowing down F3 we have S~ = - 2  and can conclude 
again $1 F =  S ~  F = 0  on Y(37). After blowing down F1, E, Bt and F on 
Y(37) we can apply again Proposition 1.7 with So=C and St=D to 
obtain the required result. Similarly, in the case p = 41 the curves F~, E, 
B1, F2, F4( = F) and L are blown down, after which Proposition 1.7 again 
yields that Y(41) is a blown up elliptic K3-surface ~. 

1 It can be seen directly that F does not intersect S 1 and S 1 on any surface Y(p). The 
intersection of F with S can be described as follows (compare [12], w 4). If ~Y(/~ is the 
non-singular model for F, then ~ / F - ~ r  has 3 or 1 points depending on whether 2 is 
admissible or not. If 2 is not admissible, then the only intersection of F with S is the point 
p~ of the basic configuration. If 2 is admissible, then the three points of intersection are 
P5 and transversal intersections with S~ for the two reduced quadratic irrationalities w 
of the form 

M+I/p 
w =  w~L(p) 

16 
which always exist, 

b ~ - p  . 
Since N1 = ~ - - - - # 4 ,  the curve F does not intersect $1 and S_1 (compare Pro- 

position II.5). 
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Now we come to the case p >  53. Taking into account that for these 
values of p the arithmetic genus ,g (Y(p)) is greater than 2, we find from 
Theorem ROC that Y(p) is either honestly elliptic or a surface of general 
type. Let p =  53. In this case the curve F7 intersects $1 and S_1 (Table 1). 
Since on Y(53) we have $2=$2_1 = -2 ,  it follows from Proposition 1.6, 
1.1, and 1.5 that Fv is not an exceptional curve. From Proposition II.7 
we know that KF7 <=0. If KF7 would be strictly negative, it would follow 
from Proposition 1.4 and the adjunction formula that F 7 is an exceptional 
curve which is impossible by the remark above. Hence KF7 =0. Let Y(53) 
be obtained by blowing up from a surface Y without exceptional curves. 
Then F7 is not blown down to a point, because otherwise the curves $1, 
S_ t would again give a contradiction with Proposition 1.5 or 1.6. It also 
follows in the same way that none of the curves in the configuration 
{St, FT, S 1, $ 2  , S_3, $3, $2} (compare Table 1) intersects a curve on 
Y(53) which is blown down to get Y. By the adjunction formula F~ =0  or 
F 2 = --2 on Y(53) and on Y. Therefore, Y is not of general type, because 
all the curves in the configuration have intersection number 0 with Ky 
and would be mapped to a point under the map belonging to I nKrl, 
n large. But the configuration is connected and not negative definite. 
This is clear if F~ =0. If F 2 = - 2 ,  we have an elliptic (-2)-configuration. 

For  p=61  and p=73  the argument is similar. In the first case one 
uses the (-2)-configurat ion {$3, Fg, S_3, S_4, S_s,  $5, $4} and in the 
second case the (-2)-configuration {S 5, F s, S 5, S 6, F9, $6} (see Table 1). 

Next, let 89< p <  317, and let yo (p) be defined as in Chapter I1. Then 
(c~176 for all these values of p (see Table 2). It follows from 
Proposition 1.1 that yO(p) cannot be obtained by blowing up a surface 
Z(p) without exceptional curves for which (c~ z (Z(p))>O. Since Y(p) is 
not rational we derive from Theorem ROC that yO(p) and hence Y(p) 
is of general type. 

In fact, it can be proved that for all p > 89 the inequality c~(Y~ 1 
holds, but this requires some estimates ([13]). For p >  317 we therefore 
apply the following argument. The involution ~ on Y(p) induces an 
involution t ~~ on y0(p), which has no isolated fixpoints. r leaves the 
curve Fp pointwise fixed. By Chapter II, formula (15), we have Z ( yO (p)) > 4, 
therefore by Theorem ROC yO(p) is either honestly elliptic or of general 
type. Now we know from Chapter II that yO(p)/r is not rational since 
the arithmetic genus z{Y~ Therefore, by Proposition III.2, if 
yO (p) were an honestly elliptic surface, Fp would be contained in a fibre 
of an elliptic fibring of yO(p), which would be induced by an elliptic 
fibring of an honestly elliptic surface Y without exceptional curves. 
Certainly this is not possible in case the genus of Fp is at least 2. For  then 
also a fibre of an elliptic fibring of Y would contain a curve of virtual 
genus at least 2, which is impossible, either by Kodaira's classification 
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of fibres in elliptic fibrings, or by the adjunction formula and Zariski's 
theorem (loc. cit. in Chapter I). Now by Hellings recent result, cited after 
Proposition II.6, for p>317  the curve F r is always of genus at least two. 
Therefore, we can finish our proof by applying Hellings result. However, 
it is also possible to exclude the remaining cases, i.e. the cases for which 
the genus of Fp is 0 or !, in the following way. If yO (p) would be honestly 
elliptic, yO (p) would be obtained from a minimal honestly elliptic surface 
Y by blowing up. All we have to show is that the image of Fp on Y (either 
curve or point) cannot be included in a fibre of the elliptic fibring of Y. 
Suppose Fp is an elliptic curve. Since h ( - p )  and h ( - 3 p )  are strictly 
positive, the curve D 1 and the curves C~, C't are always present on Y(p), 
and none of these curves has been touched by the blowing down from 
Y(p) to yO(p). From the formula for Kr,  given in Chapter I, and the fact 
that if the non-singular surface Z is obtained from the non-singular 
surface X by blowing up a point to the curve E, then Kz is the inverse 
image of Kx  plus E, it follows that for every irreducible curve A on yO(p), 
not contained in a fibre, we have that Kyotp ~A > 1. So if on the surface yO (p) 
the curve F v would be contained in a fibre, the curves D1, C1 and C] 
would be contained in the same fibre. Furthermore, Kodaira's classifica- 
tion ([16], p. 565) or the adjunction formula combined with Zariski's theo- 
rem yield that if F v would be elliptic, and contained in a fibre, this curve 
would be the only component of the corresponding fibre on Y,, necessarily 
nonsingular. In particular, the curve D 1 would be blown down to a point. 
Since on yO(p) the curves F, and D1 intersect in two points this would 
imply that on Y the curve Fp would be singular. This contradiction con- 
cludes the proof for the case that Fp is elliptic. Finally, we come to the 
case that Fp is rational. (The facts used about the structure of fibres in 
elliptic fibrings follow again from Kodaira's classification or alter- 
natively from the adjunction formula combined with Zariski's theorem). 
We consider several cases separately. Let us first assume that F r is not 
blown down to a point on Y.. Then either there is a fibre on Y consisting 
of Fp only, or not. In the first case this fibre has one singular point, either 
an ordinary double point or a cusp. The curve D1 goes to a point on Y,, 
as do C 1 and C'~. But this leads to a contradiction: since DI c~F v consists 
of two points on y0 (p), the only singularity of Fp on Y has to be the image 
point of D I. But then the curves CI and C'~ can never meet on Fp. In the 
second case, Fp has to be non-singular on Y, and Da therefore has to go to a 
curve on Y. But then the fibre of Y, containing Fp and Dt can only exist of 
these two curves, necessarily non-singular. Hence C~ and C'~ go to a non- 
singular point of Fp on Y,, but then on yO(p) they cannot meet on Fp. 
Finally, suppose Fp is blown down to a point on Y. Since Fp n D  t consists 
of two points, D~ does not go to a point on Y. But then the image of D~ 
is singular and the only component of a fibre on Y. Hence also Ct and C'1 
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are b l o w n  d o w n  to a po in t  on  Y. Th i s  gives the  last con t r ad i c t i on ,  since 
three curves go ing  d o w n  to a po in t  can n e v e r  meet  as Fp, C a and  C'  1 
do o n  yO(p). 

Remark 1. If we ca lcu la te  for 29 < p < 73 the  n u m b e r  {c~ 2 (Y~ (p)), we 
find it to be 0. Thus  for all these cases yO(p) is a m i n h n a l  surface, in 
a c c o r d a n c e  wi th  the con j ec tu r e  s ta ted at the  end  of  C h a p t e r  II.  In fact, 
the con jec tu re  can  also be p roved  for some va lues  of p>= 89, see [25].  

Remark 2. The  reade r  can  easi ly c o n v i n c e  h imse l f  of  the fact that  for 
p < 7 3  the p r o p o s i t i o n s  of C h a p t e r  I can be used to  give several  a l ter-  
na t ive  proofs  of  the s t a t e m e n t  of  T h e o r e m  III .  1. 

Remark 3. Since all K 3-surfaces a re  h o m e o m o r p h i c  (E 18], T h e o r e m  13) 
and  hence s imply  connec t ed ,  a n d  since all r a t i ona l  surfaces are  s imply  
c o n n e c t e d  we have t h a t  Y(p) is s imply  c o n n e c t e d  for p = 5, 13, 17, 29, 37 
a n d  41. Recen t ly ,  A. Kas  has  p roved  tha t  also the  hones t ly  el l ipt ic 
H i lbe r t  surfaces Y(53), Y(61) a n d  Y(73) are s imply  connec ted .  
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