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ABSTRACT. We study the normalized elliptic genera qb(X)= q~(X)/e k/2 for 4k-dimensional 
homogeneous  spin manifolds X and show that they are constant  as modular  functions. The basic 
tool is a reduction formula relating ~(X) to that of the self-intersection of the fixed point set of an 
involution 7 on X. When do(X) is a constant  it equals the signature of X. We derive a general 
formula for sign(G/H), G D H compact Lie groups, and determine its value in some cases by 
making use of the theory of involutions in compact  Lie groups. 

0 .  I N T R O D U C T I O N  

A genus in the sense of [14] is a homomorphism of the oriented bordism ring 
(of oriented, compact, differentiable manifolds) into a ring with unit. Well- 

known examples are the signature and the /l-genus. The elliptic genus ~o, 
recently introduced by Ochanine (see [22], [20]), is a homomorphism of 
the graded ring ~ to the graded ring of modular forms for the subgroup Fo(2) 
of SLz(Z ). As a general reference for the theory of elliptic genera we 
recommend the proceedings of the Princeton conference of 1986 [ i] edited by 
Landweber. There one also finds the survey article [20] which gives a 
historical introduction to the subject. 

On the complex projective spaces PZk(C),  the elliptic genus takes values 
given by the formula 

q~(P2k(C))t  2t~ = (1 - 26t 2 + et4) - 112 
k=0 

where 6 and e are modular forms of weights 2 and 4 respectively. The elliptic 
genus of a 4k-dimensional manifold X is a modular form of weight 2k. We 
shall study the genus • = ~o/e kl2 which (for k even) is a modular function for 
Fo(2). It will also be called elliptic genus. According to Witten [28, p. 173], the 
modular function q~(X) has (in one of the two cusps of Fo(2)) a q-development 
which can be regarded as the equivariant signature of the free loop space of X 
with respect to the natural action of S 1 on the loop space. We take this q- 
development (see 1.2(5)) as definition of ~(X). The coefficients of this q- 
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development are twisted signatures (cf. [4, §6]), namely indices of the 
signature operator twisted by complex vector bundles associated to the 
tangent bundle of X. The constant term of the q-series is the usual signature 
sign(X) of X. 

If a compact  Lie group acts on X, then the equivariant genus O(X)0 is 
defined for any g ~ G. The coefficients of its q-development are now equiva- 
riant twisted signatures (see 1.4). According to the rigidity theorem of 
Wi t t en -Taubes -Bo t t  [10] the value ¢b(X)g does not depend on g provided X 

is a spin manifold and G is connected. 
Let now X be a homogeneous space G/H where G and H are compact  Lie 

groups (G connected). Let H denote the upper half plane and put q = e 2~I~ for 

z ~ H. We may then view the equivariant elliptic genus as a function on G x H. 
If X -- G/H is a spin manifold the rigidity theorem tells us that this function 
does not depend on g ~ G. Our  main result (Theorem 2.3) will show that it also 
does not depend on z ~ H in this case, i.e. all coefficients of q" (n > 0) vanish. 
Since the constant term of q)(X) equals the signature, we thus get 

• (X) = sign(X) 

(for all homogeneous spin manifolds X). If X = G/H is not a spin manifold, 

then in general both independence statements are wrong. If, for example, 

X = Pzk(C), then ¢b(X)o depends non-trivially on g and z. 
The basic tool for our study is the formula 

• (X)~ = ~(X" o X") 

for an orientation-preserving involution g on an oriented differentiable 
manifold X. Here X g o X 9 denotes a transversal self-intersection of the fixed 

point set X g. By taking constant terms in the q-developments this gives back 
an old formula for the signature (see 1.4 (10) and [15], [4, Prop. 6.15]). A 
consequence of our formula is the following characterization of the elliptic 
genus (cf. 1.6): Whereas the signature may be viewed as the unique genus 
satisfying 

sign(X) = sign(X g o X g) 

for involutions g homotopic to the identity, the elliptic genus is characterized 

by the property 

• (X) = ~(X" o X") 

for spin manifolds X and involutions g contained in a circle action. 
After introducing some material on elliptic genera, the formula 

• (x) .  = ~ ( x .  o x~) 
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will be derived in Section 1 by means of the At iyah-Bot t -Singer  index 
theorem (Theorem 1.4). We also develop other consequences of the Atiyah-  
Bott-Singer index theorem which are needed later. 

Section 2 deals with homogeneous spin manifolds X = G/H. Our main 
result (Theorem 2.3) follows by induction once we have shown that the self- 
intersection X ° o X ° can itself be realized as a finite union of homogeneous 
spin manifolds. We also derive a formula (Theorem 2.5) for the signature of a 
homogeneous space G/H (hence for ~(G/H) in the spin case) generalizing an 
old formula for complex homogeneous spaces [6]. This formula has been 
used by Bliss et al. [7-] to compute the signatures of some exceptional 
symmetric spaces. 

In Section 3 we shall have a closer look at specific involutions on 
homogeneous spaces. These investigations were originally motivated by the 
search for a formula for the signature and finally led to our Theorem 2.5, now 
proved by different methods. However, as already indicated by some 
examples, the methods in Section 3 together with Theorem 1.5 (or [15]) might 
provide a more effective way to compute O(X) (or sign (X)). 

1. E L L I P T I C  G E N E R A  AND I N V O L U T I O N S  

1.1. We recall the theory of genera [14] for compact oriented 4k-dimensional 
differentiable manifolds. For  such a manifold X of dimension 4k we write the 
total Pontrjagin class in the form 

2k 
(1) p(X) = 1 + P l  q- P2 -I- " '" -~ l - I  (1 -I- xY), 

j = l  

where p~EH4i(x, 7/) and where the xs a re the  formal roots considered as 2- 
dimensional cohomology classes in some extension of the rational coho- 
mology ring of X. Consider a power series 

Q(x) = a o + a l X  -[- a2 X2 q.- . . .  

with coefficients a~ in some commutative algebra A over C. Suppose that Q is 
even. Then the genus q~o of X belonging to the power series Q is defined by 

(2) ~oQ(X) = \s= (~-]1 Q(xs))IX].  

We did not request here that ao -- 1. Therefore, it is important to have the 
formal roots xj in (1) indexed from 1 to 2k, where dim X = 4k. 

The genus q~e is a homomorphism from the bordism ring f~ ® C to the ring 
A. It is defined also for non-connected manifolds of mixed dimension not 
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necessarily divisible by 4. If the dimension is not divisible by 4, then the genus 
is 0. 

If the coefficient a 0 of Q(x) is invertible in A, then the power series 
aolQ(ao x) defines the same genus. The normalized power series (with 
constant term equal to 1) are in one-to-one correspondence to all possible 
genera. For  a normalized power series we can use in (1) formal roots xj 
indexed from 1 to r provided r ~> k. The signature of X equals the genus 
belonging to the power series (see [14, §8]) 

x 1 -~- e - x  e x /2  + e -x/2 
( 3 )  - -  = x 

tgh x/2 1 - e -x = x eX/2 _ e_X/2 

with constant term 2 or equivalently to the normalized power series 
x(tgh x)-  1. The power series in (3) is more natural because it indicates that for 
a complex manifold the signature equals the holomorphic Euler number with 
coefficients in the exterior algebra of the dual tangent bundle, or in other 
words the value of the xy-genus for y = 1. For  spin manifolds Equation (3) 
indicates that the signature is the index of the Dirac operator twisted with the 
full spinor bundle (compare [28]). 

Let W be a complex vector bundle over X. Then the signature of X with 
coefficients in W can be defined as 

(4) sign(X, W ) =  ch(W). ~ IX], 
j = l  

where X has dimension 2n. We use the splitting (1), and ch(W) denotes the 
Chern character of W. Indeed, sign(X, W) is an integer. It equals the index of 
some elliptic operator, obtained by twisting the signature operator ([4, §6]) 
with W. For  complex manifolds and a holomorphic bundle we have 
sign(X, W) = zI(X, W), see [14] and [16]. For  odd-dimensional manifolds 

sign(X, W) = 0. 

1.2. We shall define the elliptic genus ~(X) using Witten's q-development. 
For  a complex vector bundle W of dimension n 

A t W =  ~ AiW't  i 
i = 0  

StW = ~ S iW" t i, 
i = 0  

where AIW and SiW are the exterior and symmetric powers of W. Let T be the 
complex extension of the tangent bundle of X. The definition of ~(X) as a 
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formal power series in q with integral coefficients is 

(5) qb(X) = sign(X, n=l f i  Aq.T . ,=I  f l  Sq.T).  

In fact, @(X) is the genus with respect to the power series Q(x) = x / f  (x), where 

_ e _ 2  c 

(6) f ( x )  - - -  
l + e  ~ 

1 - q " e  -x 1 - q " e  x 

,=1 1 + q"e -~ 1 + q"e x" 

This follows from (3), (4) and (5) using the formulas for the Chern character of 
the exterior and symmetric powers of T. For convenience we compare with 
the notation of [-16]: The power series Q(x) corresponds to (~(x) in (15) of 1-16] 
for y = 1. The genus • corresponds to ~92 (the level N equals 2). The complex 
extension T of the tangent bundle of X corresponds to T@ T* in 1-16]. There 
T was the complex tangent bundle of a complex manifold. 

1.3. Let us now recall the modular properties of the elliptic genus. If we put 
q = e 2 n l r  with z~ H (upper half plane), then the infinite product in (6) is 
compact uniformly convergent in H x C, where z ~ H and x ~ C. The power 
series Q(x) has constant term e-u4, where 

1 l~i (1 __q.)8 (7) 
n = l  

is the well-known modular form of weight 4 for the group F0(2 ) (denoted by ~s 
in 1-29, (19)]). The power series e u4. Q(x) is the normalized power series used 
for the usual definition of the elliptic genus of a 4k-dimensional manifold as a 
modular form of weight 2k for F0(2). Therefore ek/2. @(X) is a modular form of 
weight 2k for Fo(2), whereas ~(X) is a modular function for F0(2 ) (if k is even). 
In general, ~(X)  2 is a modular function for Fo(2). For brevity, we shall call 
@(X) a modular function for every k. 

The modular properties stem from the fact that f (x )  as defined in (6) is 
attached to the lattice L = 2~i(Zz + Z). The functionf(x) has zeros of order 1 
in L and poles of order 1 in 7ti + L. The function f (x )  satisfies 

f ( x  + 2rci) =f(x),  f ( x  + 2rciz) = - f ( x ) .  

It is elliptic for the lattice 2rci(Z. 2r + Z). The following property will be very 
important: 

(8) f ( x  + ni)"f(x) = 1. 

The modular function @(X) is holomorphic in H and also in the cusp given by 
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q = 0 in (5). It assumes the signature of X as value in this cusp. In the other 
cusp of Fo(2 ) the function ~(X) has a pole of order ~< k/2 if dim X = 4k. 

In fact, we can transform the other cusp (the local coordinate in this cusp is 
again denoted by q, not to be confused with the q in (5)) in such a way that the 
q-development becomes 

( 9 )  ~ ( X ) = q  -k/2" A(X, ,>~1l~ A-q"T" l~n>~2 Sq.T). 
n odd n even 

Putting q - - e  2~i*, this is again a modular function for 1"0(2 ). But as a 
definition of *(X) we always use (5). Remember that the q in (5) and (9) are 
local coordinates in different cusps. For  development (9) see [20] and [28]. 
For  (6) and (9) compare the formulas (16) and (6) in [29]. 

Observe that A-genus with coefficients in a complex vector bundle W 
(denoted by A(X, W)) is well defined even if X is not a spin manifold. 
Formally it equals the Riemann-Roch number T(X, W) in [14, §21, (1")], if 
one puts cl = 0. The coefficients of the q-development in (9) are integral i fX is 
a spin manifold. Then they are indices of the Dirac operator twisted with 
certain vector bundles [4]. In general, the coefficients are integral except at 
the prime 2 (see [6, §25]). 

1.4. Let G be a compact Lie group operating on the differentiable manifold X 
by orientation-preserving diffeomorphisms. The coefficient of q" in (5) is of 
the form sign(X, R,,) where R,, is a G-bundle over the G-manifold X, e.g. 

R 0 = 1, R 1 = 2T, R z -- 2(T + T ®  T) 

For 9 ~ G, the equivariant signature sign(X, R,,) o is defined and therefore also 
the equivariant elliptic genus 

@(X)o = ~ sign(X, Rm)oq m 
m = 0  

as a power series in q with complex coefficients which, in fact, are algebraic 
integers. The equivariant genus is defined for manifolds of all dimensions. It 
vanishes for odd-dimensional manifolds. 

According to the fixed point theorem of Atiyah et al. [4] we can calculate 
~(X)o in terms of the fixed point set X ° of 9 and the action of 9 in the normal 
bundle of the submanifold X g of X. 

We shall study this in the case where 9 is an (orientation-preserving) 
involution. The submanifold X g is not necessarily orientable and, of course, in 
general not connected. The embedding X g --* X has an approximation 
j:X°--.X which is also an embedding and is transversal to X °. Then 
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j -  l(Xg) = X ° c ~ j ( X  o) has as normal bundle in X 9 the restriction E of the 
normal bundle of X g in X to X ° c~j(X°).  The normal bundle of X ° c ~ j ( X  o) in 
X is isomorphic to E Q E and hence canonically oriented because E is even- 
dimensional. Also X ° c ~ j ( X  g) is canonically oriented and its oriented cobord- 
ism class does not depend on j. We denote it by X ° o X ° (self-intersection). In 
[15] it was pointed out that 

(10) sign(X)g = sign(X ° o X~), 

for this formula Jiinich and Ossa [18] gave an elementary proof without 
using the fixed point formula. The following theorem generalizes (10) to the 
elliptic genus. 

THEOREM.  L e t  g be a differentiable orientat ion-preserving involution on X .  

Then  

(11 ) (I)(X)g = ¢ ( x  ~ o xg). 

P r o o f  We can assume that X is even-dimensional. Let 2 t - - -d imX g 
(depending on the component of X g) and 2r = dim Ng( -  1) where Ng( -  1) is 
the normal bundle of X g in X. We use here the notation of [4, p. 582]. Write 
formally 

p ( X  o) -- l~I (1 + x 2) 
3=1 

p(N°( - 1))= 1LI (1 + y2). 
j = l  

Then 

(12) (i)(Xg ° X° ) = (i~i xj . ( I  f(yj) [XgoXq. 

This is true though our power series Q(x) -= x / f ( x )  is not normalized. The 
reason is that t - r is half the dimension of X ° o X g. According to the formula 
of [4, p. 582], we have 

sign(X) o = {u- e ( N ° ( -  1))} I X  °] 

where e(N°( - 1)) is the twisted Euler class, u some element of H*(Xg), and 
[ X  °] the twisted fundamental class of X °. By the general equivariant index 
theorem (twisting with R,, and its equivariant Chern character) 

sign(X, R,.)o = {ch(R,. I X°)(g) . u " e ( N a ( -  1))}[Xg]. 
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Standard properties of the twisted Euler class yield 

sign(X, Rm)g = {ch(Rm I Xg)(g) • u } [ X  g o X¢]. 

The class u (see [-4, p. 582]) is given by 

j = 1 tgh x j~2 j = 1 yj" tgh(yj + hi)~2 

= lZi xj h tgh y J 2  
j= 1 tgh x j 2  j = ~ yj 

We have 

Xj r 1 
u" Z ch(R, IX°)(g) 'q  " :  H • 

,=o j=l ~ j~=l y j . f ( y j  + hi) 

which proves the result in view of (8) and (12). 

1.5. If the involution g is homotopic to the identity, then sign(X)o = 
sign(X) = sign(X ° o X°). This is not true for the elliptic genus. 

EXAMPLE. Let X be the complex projective plane and g a projective 
involution with X ° consisting of a projective line and a point. Then X ° o X ° is 
a point (with positive orientation) and 

• (X)o = 1 (independent of q), 

whereas 

• ( x )  - , f i  1 + 32q + 

where 6 = ¼ + 6(q + qZ + 4q3 + . . . )  is a modular form of weight 2 for Fo(2), 
denoted by 6s in [29]. We have, for example, sign(X, T ) =  16 and 
sign(X, T)o = O. 

If a compact connected Lie group G acts differentiably on the spin 
manifold X, then ~(X)o does not depend on g for g eG.  This is the 
fundamental rigidity theorem on elliptic genera conjectured by Witten and 
proved by Taubes and by Bott and Taubes [10]. As a corollary of the rigidity 
theorem we have 

THEOREM.  Let  g be an involution contained in the compact connected Lie 

group G acting differentiably on the spin manifold X ,  then 

(13) ~(X) = @(X g o Xg). 

The involution g belongs to a circle group contained in G. The circle action is 
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either even or odd (see [3, Lemma 2.4]). (Assume that X is connected.) 
Therefore, all components o f X  9 have a codimension = 0 mod 4 (even action) 
or a codimension - 2 mod 4 (odd action). In the odd case all codimensions of 
X ° o X  g are _ 4 m o d 8 .  By (13) and (9) the order of the pole of ~(X) for 
dim X = 4k is half-integral and integral. Therefore, ~(X) = 0 which is well 
known. The vanishing of O(X) means that all coefficients in (9), in particular 
A(X) and A(X, T), vanish. Of course, also the coefficients in (5) vanish, in 
particular sign(X) and sign(X, T). We now consider even actions. By 
codim X ° >~ 4r we mean that the codimension of each component of X ° is 
greater than or equal to 4r. 

COROLLARY. Let g be an involution contained in the compact connected Lie 

group G acting differentiably on the 4k-dimensional spin manifold X.  I f  the 

action is odd, then O(X) = O. Suppose the action is even and codim X ° >~ 4r. 

Then O(X) has in the second cusp a pole of order ~<(k/2) - r. Therefore, in the 

Laurent series (9) the first r coefficients beginning with A(X) vanish. I f  r > 0, 
then A(X) = O. I f  r > 1, then A(X, T) = O. I f  r > 2, then A(X, AET) = 0. I f  

r ~ k/2, then ~ (X)  does not depend on q, it equals the signature of X.  I f  
r > k/2, then O(X) = O. 

The corollary generalizes the theorem on the vanishing of the A-genus [3]. 

1.6. The quaternionic projective spaces Pk(H) are 4k-dimensional spin 
manifolds. They admit projective involutions with a quaternionic hyperplane 
Pk-  1(H) and a point as fixed point set. The theorem in 1.5 (formula (13)) yields 

O(Pk(H)) = O(Pk_ 2(H)) 

and hence O(Pk(H)) = 1 for k even and = 0  for k odd. Since P2(C) and the 
Pk(H) generate the cobordism algebra f~ ®C,  the elliptic genus ~o is 
characterized by 

O(P2(C)) = 6/x/~ 

~(Pk(H)) = 1 for k even 

O(Pk(H)) = 0 for k odd, 

a well-known fact. 
For  the Cayley plane W of dimension 16 (cf., e.g., [5, §19]) we get in a 

similar way 

O(W) = 1. 

1.7. We mention some facts which will be of use later. 
(a) Let us consider the situation as in the theorem of 1.5. Then g respects the 
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spin structure of X because the set of possible spin structure is discrete. Then 
by a theorem of Edmonds used and proved again in [10, Lemma 10.1]), the 
fixed point set X ° is orientable. The normal bundle of X ° o X ° in X (see 1.4) is 

E @ E, where E is orientable in our case (wa(E)= 0). Therefore the total 
Stiefel-Whitney class w(E @ E) = w(E) 2 equals 1 + w2(E) 2 + higher terms. 
Hence E @ E  is a spin bundle. Therefore X g o X  9-or ,  more precisely, 
X ° c~j(X °) - i s  a spin manifold, because X is a spin manifold. 

(b) Let X be a compact  oriented 2n-dimensional differentiable manifold 
with a circle action with isolated fixed points. In each fixed point x the 
tangent space TxT splits as an Sl-module 

TxX = + V(m,) 
i = 1  

where V(mi) is isomorphic as a real Sa-module to C on which z s S 1 acts by 

v ~ z " ' v  (vet). 

If we choose the rotation numbers m i e Z  in such a way that the usual 
orientations on the summands V(mi)~ C induce the given orientation on 

TxX, then they are uniquely defined up to an even number of sign changes. In 
particular, their product ml . . . . .  m, e Z is well defined. 

Consider a polynomial P(Pl , . . . ,  Pk) of weight k in the universal Pontrjagin 
classes. For  each fixed point x we consider the number 

1 
Px - P(o'l . . . .  , ak) 

mlm2 "" mn 

where aj is the j th  elementary symmetric function in the m~. If we now replace 
the universal pj by the Pontrjagin classes of X, then we have for n = 2k 

(14) P(pl "" Pk)[X] = ~ Px. 
x ~ X s~ 

This formula and similar formulas for Chern numbers are due to Bott [9] and 
can be deduced from the fixed point formula of At iyah-Bot t -Singer :  Every 
Pontrjagin number P(Pl . . . .  , pk)[X] is a linear combination of numbers 
sign(X, W) where W is associated to the tangent bundle of X by some 
complex representation. The finite Laurent series sign(X, W)a (for a general 
element 2 orS a) can be calculated by the fixed point theorem for isolated fixed 

points. Then specializing to 2 -- 1 gives (14). 
If the action has no fixed points (though it is not necessarily free) it follows 

that all Pontrjagin numbers and hence all genera of X are 0. Then the 
manifold X represents the 0 of the bordism ring f~ ® C. 
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REMARK. If n # 2k, we can still ask for a meaning of the right-hand side of 
(14). The answer (which can also be obtained from the fixed point formula) is 
the following. Consider the universal Sl-bundle E over the infinite- 
dimensional complex projective space with 9~HZ(P~(C),~_) being the 
standard generator. Take the associated bundle Ex with X as fibre using the 
Sl-action on X. Then P(pl . . . . .  Pk) taken for the bundle along the fibres ofE x 
defines a 4k-dimensional cohomology class of Ex which can be integrated 
over the fibre to give a (4k - 2n)-dimensional class of P~(C) which equals 

Compare [23]. In particular (see [9]), 

P x = 0  for 2k < n. 
x ~ S  sl 

(c) The signature has the following very special property: The equivariant 
signature does not depend on 2. The rigidity is an immediate consequence of 
the topological definition of the signature and implies that for the L- 
polynomials 

Y' (L,)~=0 f o r 4 k # d i m X .  
x ~ S  st 

This corresponds to the strict multiplicativity of the L-polynomials ([6, 
§28.4]). The rigidity of the signature is also a consequence of the fixed point 
theorem: The contribution for sign(X)z coming from a fixed point equals 

(15) h 1 + A -m' 
i = 1  1 2 -mi  

The basic idea is to consider sign(X)z as a rational function in 2 (compare 
[-3]). As a finite Laurent series it can have poles only in 0 and ~ whereas the 
contribution coming from the fixed points have poles only in roots of unity. 
Hence sign(X)z is a constant whose value can be obtained for ), ~ oe in (14). 
The limit of (15) for the rotation numbers m, in the fixed point x equals 

where 

( -  1)l'(~) 

~(x) = # {i I m, < 0}. 

Note that the parity of #(x) is well defined. Thus the following formula results. 
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It was mentioned in [3, p. 26] and earlier in [4, p. 594.]: 

(16) s ign(X)= ~ (--1) "(~. 
x ~ X  s~ 

2. H O M O G E N E O U S  SPACES 

Let X be a compact spin manifold homogeneous under the action of a 
compact  Lie group G. The aim of this chapter is to show that the elliptic 
genus ~(X) is a constant modular  function. If one defines the elliptic genus as 
a modular  form (see 1.3), then this elliptic genus of X equals a constant times 

a power of e. 

2.1. Let X be an arbitrary homogeneous space of the compact Lie group G, 
and let F c G be an arbitrary subgroup (not necessarily Lie). Then the 

centralizer 

M = CG(F) = {g ~ G[ g7 = ?g for all 7 ~ F} 

is a closed subgroup of G, thus a compact  Lie subgroup (see, e.g., [2, 2.26, 
2.27]). Similarly, the fixed point set Y = X r = {x ~ X [ ?x = x for all ? ~ F} is a 
closed submanifold of X (without loss of generality we can replace F by its 

closure I ~ in G which is a compact  Lie subgroup, see above). It is clear that M 

acts on Y 

P R O P O S I T I O N .  The manifold Y decomposes into a f ini te  union o f  M-orbits.  

Proo f  Since M and Y are compact,  it is sufficient to show for any point 
y ~ Y that the dimension of the M-orbit  Z = M-  y of y equals the dimension 
of Y in y or that the tangent spaces TyZ and Ty Y coincide. Consider the map  

~: G - ~  X ,  ~(g) = g .  y 

and its differential in the unit element e of G: 

Oeq~: ~ ~ TyX 

(here g = Lie G = T~G). We let F act on G by conjugation and on ~ by the 
induced adjoint action. With respect to the natural action of F on X and TyX 
the map q~ and hence Deq~ become F-equivariant. Since we can replace F by 
its compact  closure F we get splittings of F-modules 

g = m G n, TyX = Ty Y ~) N y Y 

where m = ~r = Lie K and TyY= (TyX) r. By F-equivariance we get 

D~cp(m) c TyY and Deq~(n) c N y Y  
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Since X is homogeneous, Detp is surjective. Thus TyZ -- DetP(m) = TyY which 
had to be shown. 

REMARK. The proof  of the proposition above goes through for algebraic 
groups G over algebraically closed fields of characteristic zero provided one 
assumes F, or its Zariski closure F in G, to be reductive. (Of course, X is 

assumed to be algebraic, too, i.e. H c G has to be Zariski closed.) 

2.2. The following transversality result will be useful in the next section. 

P R O P O S I T I O N .  Let G be a Lie group, X a homogeneous space of G, and 
Y ~ X a submanifold. Then there exist g~G such that Y and its translate g Y  

intersect transversally. 
Proof The map ud: G x Y ~  X, ~(g, y) = gy, is a submersion. Thus 

Z = ~I ' - ' (Y) = {(g, y ) e G x  Y[gye  Y} 

is a submanifold of G x Y Let n: Z ~ G, n(g, y) = g, denote the first projection 
and let g e G be a regular value of n which exists by Sard's theorem. The 

regularity of g is equivalent to the transversality of Z and {g} x Y in G x Y 
Since ~P is submersive, this implies the transversality of the submanifolds 

Y=  qJ(Z) and g Y =  qJ({g} x Y) in X. 

REMARKS. (1) If Y c X is equidimensional of codimension k, then 
Y n g Y =  qJ(n- l(g)) is a submanifold of codimension 2k in X (or empty). 

(2) By Sard's theorem, the set ofg  e G with Yand g Y  transversal is dense in 
G. If G, X and Y are algebraic, it is also Zariski-open. For an elaboration of 
that situation cf. [19], from which we have taken the basic idea of the proof 
(cf. also [12, II, §4, Remark after Lemma 4.6]). 

2.3. We can now establish our main result. 

T H E O R E M .  Let X be a connected homogeneous space of a compact Lie group 
G. Assume that X is oriented and admits a spin structure. Then the elliptic genus 
O(X) is a constant modular function 

(17) O(X) = sign(X). 

I f  dim X ~ 0 mod 8, then O(X) = sign(X) = 0. 

Proof. If O(X) is a constant, then it equals sign(X) by 1.3. We shall proceed 
by induction on the dimension of X, the case dim X = 0 being trivial. We may 
assume that G is connected and that it acts faithfully on X. Let ~ ~ G be a non- 
trivial involution in G and Y = X ~ its fixed point set. According to Theorem 
1.5 we have 

o ( x )  = ~ y  o y). 
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By Proposit ion 2.2 we can realize Y o Y as the transversal intersection of Y 
with a generic translate g Y, g ~ G. The intersection Y n g Yequals X r, where F 

is the subgroup of G generated by 7 and g~g- 1. Thus, by Proposition 2.1, the 
intersection Y n g Y  is a finite union of homogeneous spaces under the 
compact  group M = C~(F) (or its identity component  M°). According to 1.4 

and 1.7(a), the connected components of Y n g Y  are canonically oriented and 
spin manifolds. We conclude the proof of (17) by applying the induction 

hypothesis to these components. If  y is an odd involution, then O(X) = 0 (see 
1.5). If ~ is even, then dim X = dim(Y n g Y) mod 8, possibly Y n g Y is empty, 
and induction can also be used to prove O(X) = 0 for dim X ~ 0 mod 8. 

2.4. Many homogeneous manifolds bound modulo torsion, i.e. they repre- 
sent the 0 of the bordism algebra ~ ® C. All genera vanish on these 
manifolds. 

LEMMA. Let X = G/H be a connected homogeneous space under the compact 
Lie group G. Assume rank(H) < rank(G). Then X admits an Sl-action with 

empty fixed point set, X sl = ~ .  
Proof Let T c H be a maximal torus of H contained in a maximal torus 

S = G  of G and let W = N ~ ( S ) / S  be the Weyl group of S in G. Let 
X(T)  = Hom(S 1, T) c Lie(T) and X(S) = Hom(S 1, S) c Lie(S) denote the 

lattices of co-characters. Since rankz(X(T)) = rank(H) < rank(G) = 
rankz(X(S)) we can find a homomorphism 2: S 1 ~ S corresponding to a point 
in the complement of the finite union 

U w.X(T) 
w e W  

(note that W acts on X(S) by conjugation). We claim that the SX-action on X 

induced by 2 has no fixed point on X. Otherwise 2(S 1) would be conjugate 
into H, thus into T. However, elements of X(S) are G-conjugate if and only if 

they are W-conjugate. Thus 2 ~ Uw~w w . X ( T )  contradicting our choice of 2. 
(For the conjugacy results used, cf. [-2, 4.21 and 4.33].) 

REMARKS.  (1) The result above is due to Hopf  and Samelson [17, §6]. 
(2) Note that the SX-action constructed above need not be free. For 

example, all involutions of SU(n) are conjugate into the subgroup SO(n). 
Thus any involution of SU(n) has a fixed point on X = SU(n)/SO(n). 

Let G ~ H be compact  connected Lie groups with rank(G) = rank(H) and 
a common maximal torus T c H. Let E(T,H) and •(T, G) denote the 
corresponding root systems in X*(T) = Horn(T, $1). We call H small in G if 
there exists a root a~Z(T, G) which is orthogonal to all roots in E(T, H). 
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P R O P O S I T I O N .  Let X = G/H be a connected homogeneous space under the 

compact Lie group G and assume that either rank(H) < rank(G) or that H is 

small in G. Then X bounds modulo torsion, and all genera, in particular the 

elliptic genus ~(X), vanish. 
Proof If rank(H) < rank(G) combine the above lemma with 1.7(b). If H is 

small in G let ~ ~ Z(T, G) be a root orthogonal to E(T, H)  and let G~ c G 

denote the rank-1 subgroup of G corresponding to ~ (G~ ~ SU(2) or SO(3)). 
Then G~ and H commute, and their product forms a closed subgroup H'  of G 
with rank(H') = rank(G). The natural projection G/H --, G/H' realizes X as a 
G-bundle over G/H' with fibre H'/H _~ G~/G, c~ T ~- S z. Thus X bounds the 
associated G-bundle over G/H' with fibre the 3-disk D 3. 

REMARKS. (1) The proposition shows that our theorem in 2.3 is interesting 
only for X = G/H where G and H have equal rank and where H is large (i.e. 
not small) in G. 

(2) A necessary condition for H to be small in G is that the rank of the root 
system 12(T, H)  is strictly smaller than the rank of E(T, G). This condition is by 
no means sufficient (for example, U(2) × U(2) c U(4) and, more generally, 
U(2)" c U(2n) are not small). 

2.5. As another application of the At iyah-Bot t -S inger  fixed point theorem 
we shall now derive a formula for the signature of a homogeneous space 
X = G/H under a compact connected Lie group G. By our results in 2.4 we 
may concentrate on the case rank(G) = rank(H). We may also assume that X 
is simply connected which, in this case, is equivalent to H being connected. 

Let T c H c G be a common maximal torus and X*(T) = Hom(T, S 1) its 
character lattice which is in W-equivariant duality to the lattice 
X(T)  = Hom(S 1, T) of co-characters 

defined by 

X*(T) x X(T) ~ 77 

(~, 2) ~ <~, 2> 

~(2(z)) = z <~'~> 

for all o~X*(T) ,  2~X(T) ,  z ~ S  1. 

The root system E ' =  E(T, H)  of H is contained in the root system 
I2 = Z(T, G) c X*(T) of G. We let W' = W(H) = N~I(T)/T and W= W(G) 
= N~(T) /T  denote the corresponding Weyl groups. Let E + c 22 be a system 
of positive roots with basis A c 12+ of simple roots. Then 12'+ = 22' c~ Z + is a 
system of positive roots in 22'. Let A' c E' + be the basis of simple roots (we 
need not have A' c A !). Let • = {c~Z+ ]~¢22 '} denote the set of comple- 
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mentary  positive roots. For  any subset ~ c Z + and any w • W we put 

n(w) = { ~ • a l  w - l ( ~ ) ¢ z + } .  

The following result m a y  in principle be deduced from the orientability of  X. 

However,  it ma y  be quite satisfactory to have a purely root-theoret ic proof. 

P R O P O S I T I O N  1. Let w • Wand #(w) = card W(w). Then #(vw) =- #(w) rood 

2 for all v • W'. 
Proof Let l = la: W ~  N and l' = l a,: W' ~ N denote  the length functions 

on the Weyl groups corresponding to the systems of  simple roots  A and A'. 

For  any w • W  and y e W '  we have (of. [11, Cor. 2, p. 158]) 

l(w) = cardZ+(w) and l'(v) = cardZ'+(v).  

Thus, for all v • W' 

~(v) = l(v) - r(v). 

Since any reflection in W has determinant  - 1 (on X*(T) c (Lie T)*) we have 

( -  1) ltv) = det(v) = ( -  1) rtv) 

and hence #(v) -= 0 (mod 2) for all v • W'. F r o m  this we can deduce the general 

case of  our  assertion. Let v • W'. We decompose 

q '  = q'(v) w q'(v) ° 

- tt '  = - q ' ( v )  ~ - ' t ' ( v )  ° 

where tI'(v)° = {~ • tp I v -  1(~) • Y + }. Since W w - u / =  Z \ Z '  is stable under  

W' we get 

(,) v ( +  q ' ( v ) )  = T ~(~) 

v( _+ V(v) °) = + V(v) ° . 

N o w  let w • W We consider the induced decomposi t ions  

• (w) = (~(w) n ~(v)) ~ (~(w) n q'(v) °) 

q ' (vw)  = (q~(vw) n ~ ( v ) )  ~ (q ' (vw)  n q'(v)°) .  

F r o m  (*) it is clear that  

card(~(vw) n ~(v) °) = card(~(w) n tP(v)°) 

and 

card(~(vw) n tP(v)) = card{fl ~ - ~(v)[ w-  1(/3) ~ - I2 + } 

= card{c~ • U~(v) I w-  i(~) • Z + } 

= card ~(v) - card(tP(w) n tP(v)). 
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Since card uL(v) = #(v) is even we finally get 

card U/(vw) =- card ~ (w) (mod  2). 

R E M A R K .  In  the case where Z'  is rat ionally closed in Z we get A' c A. Then  
is stable under  W' and we even have #(vw) = #(w) for all w e W, v e W'. 

Examples  (e.g. A1 x A1 c B2) show that, in general, • need not  be stable 
under  W'. 

The following result is well known.  Let  2 e X(T) = H o m ( S ' ,  T) be a regular  
one -pa ramete r  subgroup  into G and denote the fixed point  set of 2(S 1) on 
X = G/H by X z. 

/ 

P R O P O S I T I O N  2. We have 

X ~ = X r = { w n e G / n l w e W } .  

In particular, X ~ is a finite set in bijection to W(G)/W(H). 

Proof (compare  [17, §§5, 7]). The inclusions ' = '  are obvious.  Conversely,  
let x = g H e X  z. Then 2(S ~) ~ gHg -x. Let T' ~ gHg -~ be a maximal  torus 
containing 2(S1). Since T '  is a maximal  torus of G, too, and since )~(S') 

is conta ined in a unique maximal  torus of G (see, e.g., [2, 4.35, 4.41]) we 
must  have T =  T ' c  9Hg -1 or g-~T9 ~ H. Let h e l l  be such that  
h - l g - l T g h  = T ~ H (use [-2, 4.23]), i.e. such that  gheNG(T  ). If  we denote by 
w the image of gh in w we have (with the usual abuse of language) 

x = oH = ghH = wH 

which had to be shown. 

With  the nota t ions  in t roduced above we can now prove: 

T H E O R E M .  Let X = G/H be a simply connected homogeneous space under 

the compact Lie group G and assume rank(H) = rank(G). Then 

(i) e (X)= #(W(G)/W(H)) 

(ii) + sign(X) = ( 1 / #  W(H)) ~w~w ( -  1) u(w). 

Proof (i) is a classical result due to H o p f  and Samelson (see Remark  l 
below). To  prove  (ii) we first fix an or ientat ion on X (for which the positive 
sign will result). It  is sufficient to fix an orientat ion on the tangent  space 
TuX ~- 9/b which decomposes  under  the act ion of T into a direct sum 

T u X =  ( ~ V~, 
a E t l  I 

where the s u m m a n d  V~ m a y  be identified as an ~ - T module  with C on 
which T acts by the root  

tv = a(t).v ( teT,  v e t ) .  
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Via this identification each V~ and thus TnX obtain an orientation. Now 
choose a regular 2 e X(T) inside the fundamental chamber. Then the rotation 
numbers of 2(S a) in the fixed point H e X  = G/H are given by the strictly 
positive numbers 

<~, 2>, ~ q ' .  

Computing the rotation numbers in another fixed point w-~HeX is 
equivalent to computing the rotation numbers of w(2) in H ~ X, which are 

<~, w(,~)> = < w -  1(~), ,l>, ~ e ~I'. 

Thus there are #(w) negative rotation numbers of 2 in w- 1H and we obtain (ii) 
from Proposition 2 above and 1.7(c), (16). 

REMARKS. (1) We have also mentioned (i) since, in the context of our proof 
of (ii), it can be deduced from the classical Lefschetz fixed point formula (for 
more details compare [17], see also [2, proof of 4.21], where G/T is treated). 

(2) Note that G/H carries no canonical orientation. Therefore we have 
admitted both signs of sign(X). If G/H admits a homogeneous complex 
structure, one can fix an orientation by fixing such a structure. 

(3) In this last case, our formula for sign(X) is already proved in I-6, Th. 
24.3], where the Hodge-theoretic expression for the signature gives: 

sign(X) = ~ (-1)Pb2p 
p=0 

(n = d i m c  X, b2p = 2pth Betti number). This formula is no longer valid in our 
general context (e.g. consider X = S 4 = SO(5)/SO(4)). In the complex case Z' 
is rationally closed in Y. Thus q~ is W'-stable and the numbers #(w) (not only 
( - 1) utw)) are invariants attached to the fixed points w- all, w e W. They can be 
used to express the Poincar6 series of the cohomology ring H*(G/H, Q) (cf. 
loc. cit.) 

~, b2ptP_ 1 
p=o # W(H) w~W~' t"tw)" 

This formula, too, breaks down in the general, non-complex case (e.g. the 
right-hand side gives ~(t: + 2t + 1) for the above example X = $4). 

(4) Our use of the function #(w) related to w IH instead of if(w) = #(w- 1) 
related to wH follows tradition. 

(5) Our formula for sign(X) remains valid for not necessarily simply 
connected spaces X = G/H as long as X is orientable. In this case W(H) need 
not be a Weyl group of a root subsystem. Note that we have made no use of 
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Proposition 1 in our proof  of (ii). Instead, Proposition 1 is a corollary of the 

orientability of X. 
(6) To evaluate sign(X) requires a summation over the W(H)-right cosets of 

W(G) only. Nonetheless, this may not be easily manageable in complicated 

cases (e.g. G = E8). In our table at the end, we list the (positive) value of 
sign(X), X a symmetric space, provided its value has been computed. 

2.6. The rigidity theorem [10] and our Theorem 1.5 hinge on the existence of 
a spin structure on the manifold X. Here we specify the well-known existence 
criteria for such a structure in the situation where X is a homogeneous space 
of the form G/H with rank(G) = rank(H). 

We fix a common maximal torus T ~  H ~ G, root systems 

Z' = Z(T, H)  ~ Z = E(T, G) ~ X*(T) 

and systems of positive roots E + and E '+ = E ' r q E  +. Let ~ = Z + \ Z  '+ 

denote the complementary positive roots. To any subset fl  c E + we attach a 

'spin weight' 

1 

aE~l 

which is an element of X*(T) @~ Q. 

P R O P O S I T I O N .  Set G be a connected, simply connected, compact Lie group, 
H a closed, connected subgroup with rank(H) = rank(G), and X = G/H. Then 
the following conditions are equivalent: 

(i) X admits a spin structure; 
(ii) X admits a unique spin structure; 

(iii) the second Stiefel-Whitney class w2(X) vanishes; 
(iv) the tangential representation z: H -~ SO(THX) lifts to the corresponding 

spin group: 

Spin(THX) 

H , SO(TnX). 

(v) p,~X*(W); 
(vi) px,+ eX*(T). 

Proof For the equivalence of(i), (ii), (iii) see [6, p. 350] and [21] (note that 
X is simply connected under our assumptions). It is obvious that (iv) implies 
(i). Conversely, let P ~ X denote the principal Spin(TuX ) bundle 'restricting' 
the principal SO(TnX ) bundle Q = G × n SO(TnX ) ~ X of some G-invariant 
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Riemannian  metric  on X. Since G is s imply connected we get compat ib le  G- 
actions on the triangle 

(use [3, Prop.  2.1-]). Thus  P is associated to the H-pr incipal  bundle G ~ G/H 

and a lift a: H ~ Spin(TnX) of z: H ~ SO(TnX ). Condi t ion  (v) is a well known 

reformula t ion  of (iv) in terms of the weights of  z. Finally, (v) and (vi) are 
equivalent  since 

Pz ÷ = Pz '+ + Pv 

is an element of  X*(T)  (again since G is s imply connected). 

A number  of cases can be dealt  with quite easily. 

C O R O L L A R Y .  Let G and H be as in the proposition. Assume that H contains 

no simple factor of type At (1 odd), Bt, Ct (l =- 1, 2(4)), Dt (1 -=- 2, 3(4)), or E 7. 

Then X = G/H admits a spin structure. 

Proof A glance at  the tables of  Bourbak i  [11, Planches, entry (VII)] shows 

that  pz,+ ~ Z Z '  c X*(T) under  these condit ions (partly, one might  also invoke 

that  the order  of  the fundamenta l  g roup  of an adjoint  g roup  of type Azl  , E6, 

Es, F4, G2 is odd). 
In the tables at the end of our  article we have indicated by a ° + '  (resp. ' - ' )  

the existence (resp. non-existence) of a spin s tructure on symmetr ic  spaces of  
the form G/H, rank(H) = rank(G). 

To  illustrate the use of condi t ion (iv) let us deal with the symmetr ic  space 
X = BI/B q × Dp, p + q = l, or  X = S O ( 2 / +  1)/SO(2q + 1) × SO(2p). We can 
choose bases of  simple roots  according to the following extended Dynk in  
d iagram (notat ions of  [11]): 

. . . . . . . . .  ~ = ~ = O  

Dp Bq 

The  weight lattice X*(T)  = P(BI) of Sp in (2 /+  1) is generated by the roots  ~1, 
. . . .  c~ I and  the spin weight ~o t = ~ 1  + 2~2 + "'" + l~t). Let Q(Bz) denote  the 
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root lattice, generated by the ~i only. Then we have (in obvious notation) 

Thus 

PDp ~ 
p(p -- 1) 

(aa  - ~)  = 0 m o d  Q(Bz) 

PBq -= l(ap+t + ap+3 + "" +a l ( -a ) )mod Q(B1). 

P)z '+ = Pop + PBq = ~(%+t + "'" + at(-1))m°d Q(Bt) • 

This element lies in X*(T)  = P(B~) exactly when p = 0 (which we need not 
consider) or when p = l, i.e. q = 0. Hence 

X = SO(2/+  1)/SO(2q + 1) × SO(2p) 

admits no spin structure for q > 0, whereas 

X -- SO(2 /+  1)/SO(2/) = S 2! 

admits a spin structure (which is of course also clear by condition (iii)). 
In the other cases of our table one can either use the corollary or a similar 

reasoning. In addition, note that for hermitian symmetric spaces one may 
also employ the computation of the first Chern class ca(X)~ Hz(x, ~-) in [5, 

16.1] since w2(X) is the image of ca(X) under the natural map 
H2(X, Z) ~ H2(X, Z/2Z). 

3. I N V O L U T I O N S  ON HOMOGENEOUS SPACES 

We shall now have a closer look at involutions on a homogeneous space X 
and shall show how formula (I0) in 1.4, resp, Theorem 1.5, leads, in some 
cases at least, to an effective determination of the signature, resp. the elliptic 

genus O(X). 

3.1. As previously, we may restrict our attention to spaces of the form 
X = G/H where G and H are compact of the same rank. Then the centre of G 
is contained in H and we may choose the global structure of G according to 

convenience. 
Let us now assume that G is of adjoint type (thus semisimple). We shall 

recall some facts about the involutions of G and the associated symmetric 
spaces. Let 7 ~ G  be a non-trivial involution and let K = C~(y) be its 
centralizer in G. Then S = G/K is a compact symmetric space with simply 
connected covering ;~= G/K ° (cf. [13, Ch. VII]). Let gyg-1 and gKg -1 be 
generic conjugates of y and K under G. Then the intersection 

M = K n g K g - 1  = C a ( F )  
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(where F is the subgroup of G generated by 7 and gyg- 1) can be regarded as a 
generic isotropy group (i.e. a principal isotropy group) for the left-action of K 
on S = G/K. According to the theory (of. [13, VII, §§3, 8]) this group can be 
described as the centralizer in K 

(18) M = C~(A) = K n CG(A) 

of a maximal 7-split torus A c G. Here a torus A c G is called 7-split if 

y a y - l = a - 1  for a l l a ~ A  

(this notation follows [25] and is motivated by the relative theory of 
reductive groups over arbitrary fields; cf., e.g., [-26], [27], [24]). All maximal 
y-split tori in G are conjugate by an element o fK  ° (cf. [-13, Ch. V, Lemma 6.3]) 
and M plays an important part in the classification theory of involutions (cf. 
[25]). In Table I in Section 4 we have listed all conjugacy classes of 
involutions in simple groups together with associated invariant objects and 
numbers: 

The affine coordinate diagram allows us to specify a representative y of the 
conjugacy class in the following way. Let T ~ G be a maximal torus and let 
A = {~1 . . . .  , c~t) be a system of simple roots. Then y is determined as an 
element of T by the conditions 

(19) c~,(7) = ( - 1 ) " ,  i =  1 . . . . .  1, 

where ml is the coefficient attached to the simple root c~i in the diagram. (If - 
denotes the negative of the highest root, then we shall automatically have 

( -  ~)(y) = ( -  1) ~, 

where r~ is the coefficient of the extra node - ~  in the affine diagram). The 
affine coordinate diagram was introduced by V. Kac in the more general 
context of classifying elements of finite order in G (cf. [13, Ch. X, §5]). It also 
determines the infinitesimal structure, i.e. the Lie algebra f of K = C~(y) 
whose Dynkin diagram is provided by the subdiagram formed by the vertices 
with 0 coefficient. Of course, dim S = dim G - dim K is known then. 

The index diagram attached to y can be derived as in [25] (where it is called 
the Araki diagram) or in the following way. Let G denote the real algebraic 
group (of adjoint type) giving rise to the non-compact symmetric space S dual 
to S (see, for example, [13, Ch. V, §§2, 5]; note that G need not be connected as 
a real Lie group). Then the index diagram is the index in the sense of Tits (cf. 
[26], [27], [24]) attached to G. The dimension of a maximal y-split torus A, 
or the rank of S and S, is then given by the number of circles in the index 
diagram, i.e. two in the example 
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The Dynkin diagram of the semisimple part of CG(A), or M = CK(A) (or 
C~(,71), where ,7t is a maximal E-split torus of G corresponding to A) is the 
subdiagram formed by the uncircled vertices. The Lie algebra m of M is 
obtained from c = Lie CG(A) by splitting off the Lie algebra a of A. Global 
information on M can be deduced from the following result: 

PROPOSITION.  The following properties hold: 

(i) C~(A) is connected. 
(ii) The commutator subgroup of C~(A) is contained in K. 

(iii) The centre of C~(A) is a V-stable torus of the form 

( s  ~ × s~) o × (s~) ~, 

where a + b = dim A and where y acts (by conjugation) as follows: on a 
factor S ~ x S 1 by (s, t)w-~(t, s), on a factor S 1 by t~--~ t -1. 

Proof. (i) follows since CG(A ) is the centralizer of a torus (cf. [-13, Ch. VII, 
2.8]), (ii) and (iii) follow from analogous statements for C~(,71) in [-24, II, 2.2 
and 4.1] which are easily transferred to our situation. 

We remark that also the relative root system and the Weyl group 
NK(A)/CK(A ) of S can be derived from the index (cf. [27], [13, Ch. X, Table 
vi]). 

3.2. We keep the general assumptions and notations from 3.1. Since the self- 
intersection X ~ o X ~ rele~ ant in Theorem 1.5 can be realized in the form X r (F 
as in 3.1) and since X r consists of a finite union of orbits under M = CG(I?) 
(Proposition 2.1) it is natural to look for involutions y with M as small as 
possible. 

An involution y~G is called quasi-split if the centralizer Ca(A) of a 
maximal y-split torus A c G is a maximal torus of G. It is called split if there is 
a maximal torus of G which is V-split. 

REMARK. These definitions are inspired by those of [27]. It is easily seen 
that they are equivalent to those of [25] when transferred to the compact 
case. Note that any split involution is quasi-split. 

The classification of involutions shows that any simple adjoint group G 
contains exactly one conjugacy class of quasi-split involutions (characterized 
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by an index d iag ram all of  whose vertices are encircled, cf. also [25]). These 
involut ions are split exactly when the 'oppos i t ion  involut ion '  of the corre- 
sponding d iag ram is trivial, that  is when G is of  type A1, B t, Ct, Dz (l even), E7, 

E8, F4, G2. In these cases we get Co(A) = A, a maximal  torus of  G, and 

m = Cr(A) = K ~ A  = {a~A[Ta7 -1 = a - i  = a} 

consists of the 2-torsion points  of A, i.e. 

(20) M -~ , 1 = rank(G). 

In  the other  cases, At (1 >~ 2), Dt (l odd), E6, we  have CG(A) = T, A ~ T, where 
T is a max imal  torus of  G, and M = CK(A) = K n T is of  the form 

(21) M ~ ($1)" x , 

where a + b = dim A and 2a + b = dim T (the values (a, b) are (n, 0) for A2,, 

(n, 1) for A2,+1, (1, l - 2) for Dl (/odd), and (2,2) for E6). 

3.3. In this section we shall exploit  the existence of split involutions in certain 
groups.  We let G, H c G, ? e G ,  F c G, and M = Co(F) be as in 3.1. We 
further  assume in this section that  H is connected,  i.e. that  X = G/H is s imply 

connected.  Since genera behave multiplicatively under  coverings, results for 
non-s imply  connected spaces m a y  be derived immediately.  

L E M M A .  The group F has a fixed point on X = G/H if and only if the 

centralizer Co(H ) of H in G is conjugate to a subgroup of M. 
Proof A point  g H  e X is fixed under  F exactly when F c gHg-  1, which is 

equivalent  to M = C~(F) ~ gCG(H)g-1. 

T H E O R E M .  Let G be simple. Assume that G has a split involution, i.e. that G 
is of type A1, Bl, Ct, Dt (l even), E7, E8, F4, G2, and that Ca(H) is not an 
elementary abelian 2-group. Then the signature sign(X) of the homogeneous 

space X = G/H vanishes. I f  in addition wz(X) = O, then (1)(X) = sign(X) = 0. 
Proof Let 7 ~ G be a split involut ion in G. Then, in the earlier notat ions,  

sign(X) = sign(X r) 

or, if w2(X ) = 0, 

(I)(X) = ~ ) (x  r) 

(by 1.4(10), resp. Theo rem 1.5, (13)). By our  assumpt ion  on Co(H) and the 
previous  l emma  we get X r = ~ZS, thus our  assertion. 

We have some special cases: 
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C O R O L L A R Y  1. Let G be as in the theorem and assume that X = G/H 

admits a homogeneous complex structure. Then s ign(X)= 0. I f  in addition 

WE(X ) = 0, then ¢9(X) = O. 

Proof. According to a theorem of H. C. Wang (cf. [5, Prop. 13.5]) H is the 
centralizer of a torus, now. 

REMARK. I f X  is hermitian symmetric, then this result agrees with those in 
[14, p. 163]. The computations there as well as our later results show that the 
existence of a split involution in G is crucial. 

C O R O L L A R Y  2. Assume that G is simple, that H c G is maximal of maximal 

rank, and that X = G/H is not symmetric. Then ~(X) = sign(X) = 0. 
Proof. According to the classification of maximal subgroups H with 

rank(H) = rank(G) by Borel and de Siebenthal [8, §7], G is now of 
exceptional type and H is the connected centralizer of an element of order 3 
or 5. Checking through the tables of loc. cit. and using the criteria of 2.6 one 
easily verifies w2(X) = 0 in all cases. Moreover, the only case not covered by 

our theorem is that of G --- E 6 ,  H = A2 x A2 x A 2. But here dim G/H = 54 
which also leads to ~(X) = sign(X) = 0. 

REMARK.  The spaces X in Corollary 2 where our methods are effectively 

needed, i.e. where d i m X  is divisible by 8, are Ea/A 8 and E 8 / A 4 x A 4  of 
dimension 168, resp. 200. The space F J A 2  x A2 is of dimension 36 and thus 
covered by our Theorem 2.3. In the remaining cases we have dim X ~ 2(4). 

3.4. Our last section dealt with cases where X r is empty. Since X r is always a 

finite union of M-orbits, it is clear that X r consists of at most a finite number 
of points whenever M is finite, i.e. when M belongs to a split involution ~ e G. 
However, we shall show that this is still true for quasi-split involutions. We 
keep the previous notations and assumptions (in particular, H is connected 
and rank(H) = rank(G)). 

LEMMA. The connected centralizer Ca(M) ° of M = C~(F) in G acts trivially 
on X r. 

Proof. Let C = Cn(H) denote the centre of H. Since rank(H) = rank(G) we 
have H = Ca(C) ° by I-8, Theor4me 5]. Let gH ~ X be fixed under F, thus 

F c gHg-1 

o r  

M = Ca(F ) ~ gCa(H)g-1 ~ gCg-1. 

Centralizing once more gives 

Ca(M ) c gCa(C)g-1 
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hence 

Ca(M) ° c gCo(C)°g - 1 = gHg-1 .  

But this means that gH e X is fixed under Co(M) °. 

P R O P O S I T I O N .  Let ~ e G be a quasi-split involution, A c G a maximal 7- 

split torus and T =  Co(A ) its centralizer. Then the generic self-intersection 

X r = X ~ o X ~ is contained in X T. In particular, X r consists o f  at most f ini tely  

many points. 

Proof. By definition, T is a maximal torus of G. Since M = K c~ T c T we 
have T c CG(M) °. By the lemma we get 

X r ~ X T, 

and by 2.5, Proposition 2, these sets are finite. 
There is no loss in generality by assuming that the isotropy group H of 

X = G/H contains T. Then 

X r = { w H I w e W }  

by 2.5, Proposition 2, and by Lemma 3.3 (proof) we have 

S r = {wi l l  C~(H) c w - l M w }  

(since T acts trivially on M c T, the notation w -  ~Mw is independent of the 
representative of w in No(T)).  

We distinguish two cases, again: 
(1) if 7 is split, then M consists of all 2-torsion points of T and is stable 

under W.. Hence we have either X r = ~ or X r = X r. The situation where 

X r = X t is related to our approach to the signature formula in 2.5 by means 
of a regular Sl-action on X with fixed point set XS~= X r. By choosing 
suitable representatives for 7 and a generic conjugate STS- ~ (i.e. ? as a lift of 

- 1 e W to N o ( T  ) and s e T such that s z is regular) one can determine the 
canonical orientation of a point w-  ~H as component  of the self-intersection 
x r =  X ~ o X r (cf. 1.4) and compare it with the global orientation (i.e. the 

orientation on Tw-,HX given by the orientation of X). It turns out that both 
differ by the factor ( -  1) u(W) (or its negative, if the other global orientation is 
chosen). Thus one obtains a second proof  (in fact, our original one) of 
Theorem 2.5, in this case at least. In view of the proof  of formula 1.4(10) in 
[18], which avoids the use of the At iyah-Bot t -S inger  index theorem, this 
derivation may be called elementary. 

(2) If 7 is not split (but quasi-split) the group M = T ~ K is stable only 
under the subgroup 

W ~ = {w e W{ Ad(7)w = w Ad(~) on T} 
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which may be identified with the 'little' Weyl group N~(A) /CK(A)  of the 
symmetric space G / K  (cf. [13, VII, 8.10] and use that W(mo) of loc. tit .  is 
trivial since ~, is quasi-split). Obviously, the condition 

(22) C~(H) ~ w-1row 

is a condition on the double cosets W r w W ( H )  only. In general, X r will have 
less points than X T, however, we do not know a priori how many double 
cosets actually satisfy (22). In the following examples there will be only one, or 
none. 

EXAMPLES. (1) Let us consider the Grassmannian X = Gk(C") of complex 
k-planes in C" which is homogeneous under the projective unitary group 
PU(n) of type A,_ ~. Since X is hermitian symmetric its signature can be 
computed by Hodge theory (see [14, p. 163]). By the same reason, our 
methods developed above simplify since all self intersection points in 
X r = X r o X r are positively oriented, now (X ~ is a complex submanifold of 
X). Hence sign(X) equals the cardinality of X r. 

For convenience, let us work with U(n) instead of PU(n) (their differences 
can be neglected in this context), and let T ~ U(n) denote the standard 
maximal torus consisting of all diagonal matrices 

The element 

6(al . . . . .  a,), a i E S  1. 

7 = 1 "'" 1] 
is a quasi-split involution of U(n) and a maximal 7-split torus is 

A = { 6 ( a l , . . . ,  a m, (1), a~, 1 . . . . .  a ;  1)} 

(here n = 2m or 2m + 1). We have Co(A  ) = Tand  

M = ( t ~ T [ T t  = t~} = {6(al, . . . ,  am, (a,,+l), a . . . . . .  aa) }. 

Let H = U(k) × U(n - k) be the isotropy group of G = U(n) on X = Grk(C"). 

Then 

Co(H)  = {6(a, . . . ,  a, b . . . .  , b) la,  b ~ S 1 } ,  
k n - k  

and we have 

w C ~ ( H ) w - 1  ~ M 
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for some w ~ W(G) = Sn if and only if at least one of  k or n - k is even. Thus 

sign(X) = 0 ifn is even and k is odd. Assume now, without  loss of  generality, k 

to be even, k = 2s, and H to be replaced by a conjugate such that 

C~(H) = {6(a . . . . .  a, b , . . . ,  b, a, . . . ,  a)}. 
s n - -2s  s 

We shall identify X r =  { w H [ w ~ W }  with the 

Sn/S~ × Sn-k and consider the map  

W/W(H) e ,{wCo(H)w-'lw W}. 

quotient W / W ( H ) =  

if k ¢ n - k this is a bijection, whereas for k = n - k it is two-to-one. Assume 

k # n - k first. Then wCG(H)w- 1 c M if and only if w is of the form wlw 2 

with w2 ~ W(H) and wl ~ W ~ ~ Sm (acting by permutat ion on the first m 

coordinates  and by the reflected permuta t ion  on the last m coordinates  of  T). 

there are ( 7 ) d i f f e r e n t  W-conjugates of  Co(H, in M. If  Accordingly, 

k = n - k we only get half the number  of conjugates but  this is made up for 

by c being 2: 1, so that  

{ i 7 )  n even' k °dd  
(23) sign(Grk(C")) = n = 2m or 2m + 1 

2s = k or n - k 

which agrees with [14, p. 1633. 
(2) In a similar way we can deal with the hermitian symmetric spaces for G 

of  type D2m+l and E6, which are 

Q4m = SO(4m + 2)/SO(4m) x SO(2) 

(complex quadric, dim e = 4m) 

F2m+l = SO(4m + 2)/U(2m + 1) 

(dime = m(2m + 1)) 

W c = E6/Spin(10 ) • S 1 

(complexified Cayley plane, dime = 16). 

If  we realize these spaces in the form G/H, G adjoint, H connected, then 

Ca(H ) ~- S 1 and H = Co(Co(H)). We also have No(H) = No(Co(H)) = H 
except for Q4m where H is of  index 2 in No(H ). 

Fix a maximal  torus T of  G. Then a quasi-split involution 7 ~ N o ( T  ) can be 
obtained as a lift of  w o ~ N o(T ) / T  (Wo is the longest element in W with respect 
to some basis of simple roots; we have Wo = - - l =  c h/z, where ~ is the 
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opposition involution, c a Coxeter element, h the Coxeter number). With this 
choice T contains a maximal 7-split torus A (of rank 2m resp. 4 for type D2m+ 1 
resp. E6) such that C~(A) = T and 

( f  z "x 2m-1 

--tC2~) 2XSIXS1 (E6) 

With the help of the affine coordinate diagram (attached to G/H, now) it is 
seen that M contains one (resp. no, resp. 3) conjugate(s) of C~(M) ~ S 1 in the 
case ofQ4m (resp. F2~+ 1, resp. Wc). Due to IN~(H)/H I = 2 in the first case, we 
get 

sign(Q,m) = @(Q,m) = 2, 

sign(F2m+ l) = dP(Fzm+ i) - 0, 

sign(We) = @(We) = 3, 

which, again, may be found in 1-14, p. 163] (for sign). 

REMARKS. (1) Another way to deduce the signature of X = Grk(C" ) from 
formula (10) in 1.4 is the following. Let a denote the usual complex 
conjugation on X (which is not homotopic to the identity). Then X" is the real 
Grassmannian Grk(~ n) of which X is the complexification. Accordingly, the 
normal bundle of X ~ in X is isomorphic to the (real) tangent bundle of X5 
This gives 

sign(X" o X ") = ( -  1) d/2. e(X~), 

where d = dimcX (note that we have kept the usual complex orientation on 
X, compare [18, §3]). Since all homology classes of X can be represented by 
algebraic cycles defined over R, the involution a acts on Hd(X, R) by 
multiplication with ( -  1) ~/2. Thus 

sign(X) = ( -  1) d/2 sign(X)~, 

hence by (10) 

sign(X) = e(X'~). 

The same reasoning works in the case of Q4m and We. In the first case one 
has to choose a complex conjugation associated to a split real form. In the 
second case the real form is the Cayley plane W = F4/Spin(9 ) with e(W) = 3. 

(2) Along the lines of the examples above one may also attack the non- 
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hermitian symmetric spaces of type D2m + 1 and E 6. In these cases X r is always 
reduced to an orbit under the 'small' Weyl group W r (_-_ W(B2,,), W(F4) ) and 
the signature can be expressed as a sum of terms ( -  1) "(w), w ranging over 
representatives of this orbit (e.g. for X = E6/A 5 × Aa there are 12 terms in 
contrast to the formula of Theorem 2.5 which yields 36). 

(3) In the above developments (from 3.2 on) we have concentrated on 
quasi-split involutions y only, the advantage being the discreteness of X r. On 
the other hand, the associated orientation sums are hard to compute (in case 
X is not complex) and one would like to cluster together groups of points of 
X r to sum in two steps. In a sense this is achieved by considering the self- 
intersection sets X ~ o X ~ for involutions 7 with 'big' group M. The result of the 
first summing process is then given by the signature of the components of 
X r o X r (which are homogeneous under M). We have studied a number of 
such involutions, in particular the natural symmetries on symmetric spaces 
(where X ~ is an antipodal set). Here, the determination of the compo- 
nents of X r and X ~ o X r requires quite detailed and specific information on 
conjugacy classes and centralizers in G. The problem of computing orienta- 
tion numbers remains, and, at this moment, we have not got beyond the 
known cases. However, we hope to complete these investigations (with which 
we originally started) and to report about them at some other occasion. 

4. TABLES 

In Table I we have listed the conjugacy classes of involutions in simple 
(adjoint) groups. The first six columns are explained in 3.1. The + (resp. - )  in 
the 'spin' column indicates the existence (resp. non-existence) of a spin 
structure on the simply connected symmetric space S = G/K °. Column 8 
gives the Euler number e(S) = ]W(G)/14'(K°)[ of ~ column 9 the signature as 
far as we know it (in the case of the real and quaternionic Grassmannians we 
have refrained from inserting the value for obvious cases, like spheres, 
projective spaces, spin manifolds of dimension ~ 0 (8), etc.). 

The signatures of the spaces E6/A 5 x A1, ET/D 6 x A1, Es /E  7 x A 1 and 
Es/D 8 have been computed by Bliss, Moody and Pianzola, cf. their appendix 
to this paper I-7]. 

For the exceptional symmetric spaces we have also listed the middle Betti 
number b,,, m=½dim ~ One notes that the intersection form on H,,(S, Q) is 
indefinite only if S = Es/Ds. In the definite (exceptional) cases the intersection 
form is the standard diagonal form except for Ea/E 7 x A1 where it might also 
be the form of type Es. We leave it as a problem to settle this question. 
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