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Seminaire BOURBAKI

19e annee, 1966/67, n°314 Novembre 1966

SINGULARITIES AND EXOTIC SPHERES

by Friedrich HIRZEBRUCH

BRIESKORN has proved [4] that the n-dimensional affine algebraic variety

z3 + z2 + ... + z =0 (n odd, n ~ 1) is a topological manifold though the

variety has an isolated singular point (which is normal for n ~ 2). Such a

phenomenon cannot occur for normal singularities of 2-dimensional varieties, as

was shown by NUMFORD ([12], [6]). BRIESKORN’s result stimulated further research

on the topology of isolated singularities (BRIESKORN [5], MILNOR [11] and the

speaker [5], [7]). BRIESKORN [5] uses the paper of F. PHAM [14], whereas the

speaker studied certain singularities from the point of view of transformation

groups using results of BREDON ([2], [3]), W.C. HSIANG and W.Y. HSIANG [8] and

JANICH [9].

§ 1. The integral homology of some affine hypersurfaces .

PHAM [14] studies the non-singular subvariety Va = V(a0 ,a1,...,an) of

given by

where a = (ao, ... , an) consists of integers a . ? 2.
o n J

Let be the cyclic group of order aj multiplicatively written and

genera ted by w .. Define the group G = G x G x .. , x G and putJ a a~ a~ an
e . = exp ( 2nila . ) .
J J
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k k~ k k k n .Then wo w~ ... n is an element of G~ whereas ~o E~ ...En is a

complex number. a operates on. Va by

Let 6~ be the group of roots of unity and x ~ x the isomorphism

~ ~ &#x26; given by w_!2014~e.=w..
j j J J J

PHAN considers the following subspace U a of V a
a,

U~ = and z." real ~0 for j = 0,..~n)

LEMMA..- The subspace Ua is a deformation retract of V by a deformation

compatible with the operations of G . o
For the proof see PHAM [14], p. 338 

U can also be described by the conditions

a.

Put I z . I J 
= t . o Then V becomes the space of of complex numbersJ J a

with

Thus a can be identified with the join Gao*Ga1 * o o. * Gan of the finite

sets G (see MILNOR ~10J). oa.
J

LEMMA 2.1 in ~10J states in particular that the reduced integral homology groups

of the join A * B of two spaces A, B without torsion are given by a canonical

isomorphism
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whereas IEMMA 2.2 in [10] shows that A * B is simply connected provided B is

arcwise connected and A is any non-vacuous space. These properties of the join

together with its associativity imply

THEOREM. The subvariety Va of Cn+1 is (n-1)-connected. Moreover

This is a free abelian group of rank r = 03C0(aj-1).

The isomorphism (1) is compatible with the operations of Ga .
All other reduced integral homology g~roups of 

.. V a vanish.

It can be shown that V has the homotopy type of a connected union

Sn V,..V Sn of r spheres of dimension n.

The identification of U with a join was explained to the speaker by

MILNOR.

~a ~ Ga 1 *..0* a n is an n-dimensional simplicial complex which has an

n-simplex for each element of Ga. The n-simplex belonging to the unit of G
is denoted by e. o AR other n-simplices are obtained from e by operations of

a . . Thus we have for the n-dimensional simplicial chain group

where Ja is the group ring of Ga. The homology group Hn (Ua) = Hn (Va) is an

additive subgroup of J e = C (U) ~ J .a n a a

The face operator 8 , J commutes with all operations of G on C (U )
and furthermore satisfies o. = w. ~ .. Therefore

J J J

is a cycle. Thus It follows easily that = a h. This yields

the
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THEOREM. The map w ~ wh (w~Ga) induces an isomorphism

where Ia c a is the annihilator ideal of h which is generated by the

elements

Therefore w~ ~1 ...w ~n h (where 0 ~ k. ~ a .-2, j = 0,... ,n) basis

~ ~)-
We recall that is the integral singalar homology group (of course

with compact support). V is a 2n-dimensional oriented manifold without

boundary (non-compact for n ~ 1). Therefore the bilinear intersection form

S is well defined over H (V ). It is symmetric for n even, skew-symmetric

for n odd. It is compatible with the operations of G .
PHAM ([14], P.358) constructs an n-dimensional cycle h in V which is

homologous to h and intersects U exactly in two interior points of the

sinplices e and w w....w e (sign questions have to be observed) . In this

way he obtains (using the G -invariance of S) the following result,

reformulated somewhat for our purposes.

THEOREM. Put ~=(1-w)...(l-w~). The bilinear form S over 

is given by

where f : JA ~ ~ is the additive homomorphism with

and where y P- § is the ring automorphism of the group ring Ja induced

£i w P- if~ 
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§ 2. The quadratic form of a .
Let G be a finite abelian group, J(G) its group ring. The ring

automorphism of J(G) induced by g t2014~ $ 1 (g~G) is denoted by

x ~---~ x Give an element and a function f : G -~ ~.

The additive homomorphism J(G) -~ ~ induced by f is also called f.

Put f = E f(w)w. We assume
W(G

a) for all xeJ(G), [equivalently f~ = f’~~
or

b) -f(xTl) for all XEJ(G) , [equivalently f~ _ -f~ J .
The bilinear form S over the lattice defined by

= (x, 

is symmetric in case a), skew symmetric in case b). Since S is a form with

integral coefficients, its determinant is well-defined. The signature

T(S) = T+(S) - T (S), case a) ,

is the number T+(S) of positive minus the number T (S) of negative diagonal

entries in a diagonalisation of S over R. Let X run through the characters

of G.

LEMMA. With the preceeding assumptions

+ det S = ’(I’ X(.f) , order of the torsion subgroup of 

and in case a)

T+(S) _ number of characters X with x(f’~) > 0
T (S) = number of characters X with x(~!) ~ ~ ’

The proof is an exercise as in [1], p. 444.

The lemma and the last theorem of § 1 imply for the affine hypersurface

Va = V(ao,..., an) the



F. HIRZEBRUCH

THEOREM. Let S be the intersection form of V . Then

where E~ 
= For n even. we have

T+(S~ - number of (n+1 ) -tpls of integers (x o ,..., x n ~, 0  x  a ,

(2)

T"(S) = number of (n+1)-tpls of integers (x ..., x ), 0  x. a. ,on J J

See [5] for details.

REMARK. The intersection form S of with n ae 0 mod 2 is

even. i.e. S(x,x) = 0 mod 2 for Therefore, by a well-known

theorem, det S = + 1 im lies T+(S) - T (S) = T(S) = 0 mod 8.

Following MILNOR we introduce for a = (ao,..., an) the graph r(a) :

r(a) has the (n+1 ) vertices ao, ... , an. Two of them (say a., a.) are

joined by an edge if and only if the greatest common divisor (a., a.) is

greater than 1. Then we have [5]

LEMMA, det S as given in the preceeding theorem equals +1 if and only if

r(a) satisfies

a) r(a) has at least two isolated points, or~,

b) it has one isolated point and at least one connectedness component K

with an odd number of vertices such that (ai’ aj) = 2 for

ai, aj~K (i ~ j).
Now suppose n even and a = (a ,..., a ) = (p,q,2,..., 2) with p, q odd

and ( p , q ) = 1. Then de t S = +1 and
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where N is the number of q.x (1 ~ x c ~) whose remainder mod p of

smallest absolute value is negative. This follows from the preceding theorem.

Observe that by the above remark T(S) is divisible by 4 (even by 8) and that

this is related to one of the proofs of the quadratic reciprocity law ([1],

p. 450).

In particular, for n even and (a ,..., a ) = (3, 6k-1, 2,..., 2) the

signature T(S) equals (-1)n/2.8k.

§ 3. Exotic spheres.

A k-dimensional compact oriented differentiable manifold is called a

k-sphere if it is homeomorphic to the k-dimensional standard sphere. A

k-sphere not diffeomorphic to the standard k-sphere is said to be exotic.

The first exotic sphere was discovered by MILNOR in 1956. Two k-spheres are

called equivalent if there exists an orientation preserving diffeomorphism

between them. The equivalence classes of k-spheres constitute for k ~ 5

a finite abelian group @ under the connected sum operation. pk contains

the subgroup of those k-spheres which bound a parallelizable

manifold. bP4m (m ~ 2) is cyclic of order

where Bm is the m-th Bernoulli number. Let gm be a generator of bP 
4m 

.

If a (4m-1 )-sphere E bounds a parallelizable manifold B of dimension 4m,

then the signature T(B) of the intersection form of B is divisible by 8 and
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should be chosen in such a way that we have always the plus-sign in ( 1 ) ) ,
For m = 2 and 4 we have

bPe = Q,~ _ ~’28 , bP12 = p 11 _ ~992 . °

All these results are due to MILNOR-KERVAIRE. The group bP2n (n odd, n ~ 3)
is either 0 or ~2 . It contains only the standard sphere and the KERVAIRE

sphere (obtained by plumbing two copies of the tangent bundle of S~). It is

known that bP2n is :12 (equivalently that the KERVAIRE sphere is exotic) 3f

n 5 1 mod 4 and n ~ 5 (E. 

Let voa = Vo (ao,a1, ... , an) ~ Cn+1 (where aj ~ 2 ) be defined by

This affine variety has exactly one singular point, namely the origin of C .
Let

Then 03A3a = E(a ,..., a ) = VO n S2n+1 is a compact oriented differentiable

manifold (without boundary) of dimension 2n-1.

THEOREM. Let n z 3. Then E is (n-2)-connected. It is a (2n-1 )-sphere
if and only if the graph r(a) defined in § 2 satisfies the condition a) or

b). If Ea is a (2n-1)-sphere, then it belongs to If, moreover,,

n = 2m, then

03A3a = 03C4 8 gm,
where T = T~- T" are as in § 2 (2 ) . In particular
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is a (4m-1)-sphere embedded in S4m+1 ~ ~2m+1 which represents the element

(-1 )mk, gm~bP4m . Example: For m = 2 and k = 1 , ... , 28 we get the 28

classes of 7-spheres, for m = 3 and k = 1,..., 992 the 992 classes of

11-spheres.

COROLLARY. The affine variety v°(ao,..., an), n ’-_ 3, is a topological

manifold if and only if the graph r(a) satisfies a) or b) 2.

For this theorem and for the case n odd see BRIESKORN [5].

Proof. If we remove from va the points with zn = 0 we get a space N

whose fundamental group has n1 n1 as homomorphic image.

a is fibred over C~ with v(ao,..., an-1) as fibre which is simply-connected.
Thus 03C01(Va) ~ Z and is commutative. Because of this and by SMALE-

POINCARÉ we have to study only the homology of 03A3a .
Let be the affine variety

(V = V1). Let D2n+2 be the full ball in ~n+1 with center 0 anda a

radius 1 and S2n+1~ as before, its boundary. E is diffeomorphic toa

03A3~a = S2n+1 n VE for ~ > 0 and small. It is the boundary of B£ _ VE
whose interior (for ~ sma,ll) is diffeomorphic to Va and a . The exact

homology sequence of the pair (Ba , VE) shows that E is (n-2 )-connected.

Using POINCARÉ dua,lity we get the exact sequence

where the homomorphism Q is given by the bilinear intersection form S of

Va (see § 2). This determines H*(03A3a) completely : H (E ) = 0 if and only
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if det S ~ 0. If det S ~ 0, then I det S [ equals the order of H .(s ).
The manifold Ba is parallelizable since its normal bundle is trivial.

This finishes the proof in view of § 2.

§ 4. Manifolds with actions of the orthogonal group.

0(n) denotes the real orthogonal group with 0(m) c 0(n), m  n, by

Let X be a compact differentiable manifold of dimension 2n-1 on which

0(n) acts differentiably (n ~ 2). Suppose each isotropy group is conjugate

to 0(n-2) or O(n-1). Then the orbits are either Stiefel manifolds

0(n)/0(n-2) (of dimension 2n-3) or spheres 0(n)/0(n-1) (of dimension

n-1 ) . Suppose that the 2-dimensional representation of an isotropy group of

type 0(n-2) normal to the orbit is trivial whereas the n-dimensional

representation of an isotropy group of type 0(n-1) normal to the orbit is

the 1-dimensional trivial representation plus the standard representation of

O(n-1). Under these assumptions the orbit space is a compact 2-dimensional

manifold X’ with boundary, the interior points of X~ I corresponding to orbits

of type 0(n)/0(n-2), the boundary points of X’ to the orbits of type

0(n)/0(n-l). Suppose finally that X’ is the 2-dimensional disk.

It follows from the classification theorems of [8] and [9] tha~t the classes

of manifolds X with the above properties under equivariant diffeomorphisms

are in one-to-one correspondence with the non-negative integers. We let

W2n-1 (d) be the (2n-1 )-dimensional 0(n)-manifold corresponding to the integer

d ~ 0. The fixed point set of 0(n-2) in is a 3-dimensional

0(2)-manifold, namely W3(d), which by ([9], § 5, Korollar 6) is the lens
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space L(d,1). Thus in order to determine the d associated to a given

0(n)-manifold of our type we just have to look at the integral homology group

BLj of the fixed point set of 0(n-2). W-"-1 (0) is Sn x Sn 1, the manifold

W2n-1(1) is S2n-1, the actions of 0(n) are easily constructed. Consider

for d ~ 2 the manifold E (d,2, ... ,2) in given by

(see § 3). o It is easy to check that this is an 0(n)-manifold satisfying all

our assumptions. o The operation of AE,O(n) on (zo,zl,..., z ) is, of course,

given by applying the real orthogonal matrix on the complex vector

(Z1,..., z~) leaving z untouched. The fixed point set of 0(n-2) is

E(d,2,2) which is L(d,1), see [6].

THEOREM. o The 0 (n ) -manifold E(d,2,...,2) iven b (1) is equivariantly

diffeomorphic with n Z 2. It can also be obtained by equivariant

plumbing of d-1 copies of the tangent bundle of Sn along the graph Ad-1

For the proof it suffices to establish the 0(n)-action on the manifold
obtained by plumbing and check a31 properties :

0(n) acts on Sn and on the unit tangent bundle of Sn. Since the action of

0(n) on Sn has two fixed points the plumbing can be done equivariantly. The

fixed point set of 0(n-2) is the manifold obtained by plumbing d-1 tangent

bundles of S2 which is well-known to be L(d,1), (see [6], resolution of the

singularity of z~ + z~ + z2 _ 0).



E HIRZEBRUCH

The above theorem gives another method to calculate the homology of

E(d,2,...,2) and to prove that E(d,2,...,2) for d odd and an odd number

of 2’s is a sphere. In particular, 2(3,2,2,2,2,2) is the exotic

9-dimensional KEHVAIRE sphere (see § 3). The calculation of the ARF invariant

of the Ad-1-plumbing shows more generally that

IT(d,2,...,2) , (d odd, an odd number of 2’s)

is the standard sphere for d 5 +1 mod 8 and the KERVAIRE sphere for

d = +3 mod 8, in agreement with a more general result in [5].

REMABKS. The 0(n)-manifold coincides with BREDON’s manifolds
for d = 2k+1, see BREDON [3]. E(3,2,2,2) is the standard 5-sphere

(since Oc = 0). Therefore S~ admits a differentiable involution a with

the lens space L(3,1) as fixed point set and a diffeomorphism p of period

3 with the real protective 3-space as fixed point set. Compare [3]’

(y and p are defined on E(3,2,2,2) ~iven by (1) as follows

= 

= where e = exp(2Tri/3).

Many more such examples of "exotic" involutions etc. which are not

differentiably equivalent to orthogonal involutions etc. can be constructed.

§ 5. Manifolds associated to knots.

Let X be a compact differentiable manifold of dimension 2n-1 on which

O(n-l) acts differentiably (n ~ 3). Suppose each isotropy group is conjugate

to 0(n-3) or 0(n-2)~ or is O(n-l). Then the orbits are either Stiefel

manifolds 0(n-l)/0(n-3) (of dimension 2n-5) or spheres 0(n-l)/0(n-2) (of

dimension n-2) or points (fixed points of the whole action). The
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representations of the isotropy groups 0(n-3), 0(n-2) and 0(n-1) respectively

normal to the orbit are supposed to be the 4-dimensional trivial representation,

the 3-dimensional trivial plus the standard representation of 0(n-2), the

1-dimensional trivial plus the sum of two copies of the standard representation

of 0(n-1 ) . The orbit space X’ o is then a 4-dimensional manifold with

boundary. We suppose that X’ is the 4-dimensional disk D4.

Then the points of the interior of D4 correspond to Stiefel-manifold-

orbits, the points of aD4 - S3 to the other orbits. The set F of fixed

points corresponds to a 1-dimensional submanifold of S3, also called F.

We suppose F non-empty and connected, it is then a knot in S3. We

shall call an 0(n-1 )-manifold of dimension 2n-1 a "knot manifold" if all 
.

the above conditions are satisfied.

Let K be the set of isomorphism classes of differentiable knots (i.e.

isomorphism classes of pairs (S3,F) - F a compact connected 1-dimensional

submanifold - under diffeomorphisms of 83). For the following theorem see

JANICH ([9], § 6), compare also W.C. HSIANG and WoY. HSIANG [8].

THEOREM. For any n ’-_ 3 there is a one-to-one correspondence

~’n ’ . K ~’ ~2n-1 ’

where ~2n-1 is the set of isomorphism classes of (2n-1)-dimensional knot

manifolds under equivariant diffeomorphisms. associates to a knot

manifold the knot F considered above.

REMARK. The 2-fold branched covering of S~ along a knot F is an 0(1)-ma,ni-
fold which will be denoted by X2(F).



E HIRZEBRUCH

If we plumb 8 copies of the tangent bundles of Sn (n ’-_ 1) according to

the tree E8

we get a (2n-1)-dimensional manifold 1 (E 8 ). For n=2 this is 

where G is the binary pentagondodecahedral group [6]. For n odd,

is the standard sphere, as the ARF invariant shows. For n = 

the manifold M4m 1(E ) is an exotic sphere, it is the famous MILNOR sphere

which represents the generator ± gm of bP4m (see § 3).

admits an action of O(n-1) as follows : 0(n-1 ) operates as

subgroup of 0(n+l) on Sn and thus on the unit tangent bundle of Sn. The

action on Sn leaves a great circle fixed.

When plumbing the eight copies of the tangent bundle we put the center of

the plumbing operation always on this great circle ; (for one copy, corresponding

to the central vertex of the E8-tree, we need three such centers, therefore,

we cannot have an action of 0(n), which has only 2 fixed points on Sn. )

Then the action of 0(n-1) on each copy of the tangent bundle is compatible

with the plumbing and extends to an action of 0(n-1) on M2n 1(E ) which,

for n ~ 3, becomes a knot manifold as can be checked. The resulting knot

can be seen on a picture attached at the end of this lecture. The speaker

had convinced himself that this is the torus knot t(3,5), but ZIESCHANG and

VOGT showed him a better proof. This implies the

THEOREM. Suppose n ’-_ 3. Then is equivariantly diffeomorphie to

Mfn-1(Es) with the 0(n-1)-action defined by equivariant plumbing. (This is

still true for n=2, see Remark above).
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We now consider the manifold E(p,q,2,2,... ,2) c given by the equations

(see § 3)

This is an 0(n-1 )-manifold, the action being defined similarly as in § 4.

Suppose (p,q) = 1. Then it can be shown that E (p,q,2 ,2 , ... ,2 ) is a knot

manifold : It is where t(p,q) is the torus knot. Therefore,

by the preceeding theorem we have an equivariant diffeomorphism

This gives a different proof (based on the classification of knot manifolds)
that E(3,5,2, . , , ,2 ) represents for m -’_ 2 a generator of bP.. .. - 

° 

4m
2m-1

(compare § 3).

§ 6. A theorem on knot manifolds.

Let F be a knot in S3. Then the signature T(F) can be defined in the

following way which MILNOR explained to the speaker in a letter. MILNOR also

considers higher dimensional cases. We cite from his letter, but restrict to

classical knots :

Let X be the complement of an open tubular neighbourhood of F in S3,
Then the cohomology

H* = H*(X, R)
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where X is the infinite cyclic covering of X, satisfies Poincare duality

just as if X were a 2-dimensional manifold bounded by Fo 0

In. particular the pairing

U : 1 ~ 1 !R

is non-degenerate. Let t denote a generator for the group of covering

transformations of X. ~ Then for a, the pairing

 a,b > = a U t*b + b U t~a

is symmetric and non-degenerate. Hence, the signature

T+(F) - T-(F) = T(F) is defined.

There exist earlier definitions of the signature by MURASUGI [13] and

TROTTER [17]. The signature is a cobordism invariant of the knot. 0 A

cobordism invariant mod 2 was introduced by ROBERTELLO [15] inspired by

an earlier paper of KERVAIRE-MILNOR. Let F be a knot and Q its Alexander

polynomial, then the ROBERTELLO invariant c(F) is an integer mod 2,

namely

c(F) _ 0, if ~(-1) = +1 mod 8

c(F) = 1, if p(-1 ) _ +3 mod 8

We recall that the first integral homology group of x2(F), the 2-fold

branched covering of the knot F (see a remark in § 5), is always finite,

its order is odd, and equals up to sign the determinant of F ð We have

+ det F = p(-1), ,

THEOREM. Let F be a knot, then x (F) , n ~ 2, is the boundary of a

parallelizable manifold. For n odd, x (F) is homeomorphic to 

and thus represents an element of bP2n , it is the standard sphere if
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c(F) =0, the KERVAIRE sphere if c(F) = 1. If n = 2m, then is

(2m-2)-connected and A2m _ 1(~’2m(F~’~~ = $1(~2(F~’~~~ For m ~ 2 it is

homeomorphic 
. 

to S4m-1 if and only if det F = +1. Then represents

(up to sign) an element of bP4m which is + - T 8 F . gm (see § 3).

The proof uses an equivariant handlebody construction starting out from a

Seifert surface [16] spanned in the knot F. For simplicity, not out of

necessity, we have disregarded orientation questions in § 5 and § 6.

REMARK- § 2(3) gives up to sign a formula for the signature of the torus knot

t(p,q), (p,q odd with (p,q) = 1).
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ERRATUM

Page 314-07. Ligne 4 du bas, au lieu de "Let s be a generator of bP4m."
lire: "Let g~ be the Milnor generator of bP4m’ see p. 314-14."
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