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THE HILBERT MODULAR GROUP, RESOLUTION OF

THE SINGULARITIES AT THE CUSPS AND RELATED PROBLEMS

by F. HIRZEBRUCH

§ 1. The Hilbert modular group and the cusps.

Let k be a real quadratic field over ® and o the ring of algebraic
integers in k . Let x e x' be the non-trivial automorphism of k . The

Hilbert modular group

a b
(M SLZ(Q) = {(C d)la,b.C,dEQ,ad—bC=1}
acts on Hx H where H 1is the upper half plane of € :
a b az1+b a'z2+b'
(C d)(z1iz2) = (CZ1+d'C'22+d').

The group G = SL2(0_)/{1,—1} acts effectively, For a description of a fundamental

domain of G, see Siegel f[13].

For any point x € H x H, the isotropy group Gx C G is finite cyclic. The
singular points of the complex space H x H/G correspond bijectively to the fini-
tely many conjugacy classes of maximal finite'cyclic subgroups in G . Their number
has been determined by Prestel [12] (see also Gundlach [7]). If, for example,

p=E1 (4), pD¥0 (3), D>5, D square free, k = (/D) ,
then there are h(-D) singular points of order 2 and h(-3D) singular points
of order 3 where h(a) denotes the ideal class number of ®(+4/a) . (Assume a

to be square free.)

G acts on the projective line k U {@} by

ax+ b
cx+d °

X =)

There are finitely many orbit classes, The elements of (k U {»})/G are called

cusps. They correspond bijectively to the ideal classes of o . If x = E (where
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m, ne o ) belongs to a certain orbit, then (m,n) is a corresponding ideal. We
denote by C the group of ideal classes in o© . (The principal ideals represent
the unit element of C .) H x H/G can be compactified by adding finitely many

points, namely the cusps. The resulting space
Hx H/G = (HxHEG)UC

is a compact algebraic surface (compare Gundlach [5]) with isolated singularities
(the quotient singularities, as explained above, and the finitely many cusps). We
sish to resolve the singularities, This is well-known for the quotient singulari-
ties (see, for example, [9] § 3.4). Object of this lecture is to do it for the
cusps. For this we have to study the neighborhood of a cusp x in ﬁ_;-ﬁ7§ and

the local ring at x .

We sometimes denote a cusp and a representing element E (m,neo) by
the same symbol x . Let G = {Y|vyeG, yx = x} . We cannot, in general, trans-
form x = E to ®» by an element of G , but it can be done by a matrix A with

coefficients in Xk . Put 2a = (m,n) . Then, following Siegel [13], we take

(2) A = (: ‘:) e SLz(k)/{1,—1}

1

where u,v € a  (fractional ideal) and define

(3) ¢ - 4.

Then

(4) d, - (¢ :)I vea?}/{1,-1)
0 ¢

where € is a unit of k ./If we agree to consider a matrix always as a projec-

tive transformation, then

© & w 2
(5) g, = {( Y] e unit, wea }.
o 1

The group U of positive units of k is infinite cyclic. Let e, be the genera-
tor with e, > 1 ., It is called the fundamental unit. Let U' be the group of
totally positive units, i.e,

+

v = {eleecu, e>0, "' >01}.
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Equation (5) is a motivation to study data {(M,V) where :

1) M is a Z-module of rank 2 contained in %k ;

©) 2) V is a subgroup £ {1} of the group Uﬁ of totally positive units
which leave M invariant under multiplication (as is well-known
w4 1)),
Given the data (6) we have a group
%) (0 Dleev,vend.

In analogy to (4) such groups occur for cusps which are singular points of
the compactified orbit spaces F of more general discontinuous groups acting on
H x H {subgroups of finite index of certain finite extensions of G ). In {4) we

have M = 372 and V= U2

and U¥ = Ut ,
Data (M,V) as in (6) determine a torus bundle X over the circle :

(8) v o~ 111{81) , (M@z R}/ = Torus

n1(s1) acts on the torus. X is associated to the universal cover of §' . The
following proposition seems to be well-known. I know it from J.-P. Serre. It

follows, for example, from the information given in [5].

PROPOSITION.- If a cusp with data (M,V) is singular point of an algebraic sur-

face F (see above), then its neighborhood boundary is the torus bundle X

defined by {8). (For "neighborhood boundary" see, for example, [10].)

The local ring for a cusp (M,V) was described by Gundlach [5]. Let

»° C:R2 be the Z-module of all x ¢ R2 such that
(9) XV o+ X W' € 2 for all we M,

M° has rank 2 , We have by (9) a bilinear pairing
B: M xM - 1,

V acts on B such that B(ex,w) = B(x,ew) for eeV, xeM , weM.
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PROPOSITION.- The local ring for the cusp (M,V) consists of all "convergent"

Fourier series

2mi(x,z, +x,.z,.)
11 272
(10) f(z1,22) = Z a e
xeM°
where a_ £ 0 only if both X, >0 and x,>0 or x=0, and vhere a. = a

for € € V . "Convergent" means that f converges for Im(z1).Im(z2) > ¢ where

c 1is a constant depending on f ,

§ 2. Binary indefinite quadratic forms.

Let M be a 2Z-module of rank 2 contained in k . The function
(1) w b ww' = N(w) (norm of w)

is a quadratic form M - @ which is indefinite and does not represent 0 . We

orient M by the basis (B1 ,32) of M with B182' - B231' >0.
We now study oriented 2-modules M of rank 2 and quadratic forms

F: M > Q

which are indefinite and do not represent O . No specific field k 1is given.

We call (M, ,f ) and (M2,£2) equivalent if there exists an isomorphism

4

M1 - M2 of oriented 2Z-modules which carries f1 in tf2 where t is a
positive rational number,

Every (M,f) is equivalent to a quadratic form

g: 42x31 -» 1

where 2 x 72 1is canonically oriented and such that for (u,v) € 2 x 2
2 2
(12) gu,v) = au® + buv + cv

with (a,b,c) =1 . Then b2 ~ 4ac is called the discriminant of f . It depends

only on the equivalence class of f and is a positive integer which is not a
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perfect square, The real number

2 .
r, = -2t Db - gac \ where /b2 - 4ac >0,
1 2a

is called the first root of g .

We take the unique continued fraction

where aj € 2 and a‘j 22 for j>1 . A continued fraction will be denoted by

[a1,a2,a3,...] . Since r, is a quadratic irrationality its continued fraction is

1
periodic from a certain point on., Let (b1,...,bp) be its primitive period
(bj 2 2) . Observe that the period (2) cannot occur because [2,2,...] =1 is

rational.

A sequence of integers (b1,...,bp) with bj 2 2 is called a period of
length p , two periods are equivalent if they can be obtained from each other
by a cyclic permutation, Such an equivalence class is called a cycle. A cycle is
primitive if it is not obtainable from another cycle by an "unramified covering"
of degree > 1 ., Cycles are denoted by ((b1,...,bp)) . Thus ((2,3)) is primi-
tive, but ((2,3,2,3)) is not. ((b1,...,bp))m means the m-fold cover of

((b1,...,bp)) . For example ((2,5))° = ((2,5,2,5,2,5)) .

THEOREM.~ The primitive cycle of the first root depends only on the equivalence

class of (M,f) . If we associate to each (M,f) this primitive cycle, we obtain

a bijective map from the set of equivalence classes of quadratic forms (M,f) to

the set of all primitive cycles (where ((2)) is excluded).

This theorem is a suitable modification of classical results. It is related
to Gauss' reduction theory of quadratic forms [3] . The continued fractions had

to be modified also, but all relevant theorems in Perron [11] can be taken over.
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To simplify notations we shall indicate a cycle by
bsyatylspatylsgatylns
where sj is the number of two's occuring in the corresponding position and where
tj 2 3 , For example,
((2,2,2,2,3,3,2,5)) = |4,3/0,3]1,5] .

Let k be a real quadratic field over Q@ and 4 itsdiscriminant ; it is
the discriminant of the quadratic form (11) defined over the module o Ck . If

a> 0 (square free) and X = Q(vfg) , then

d = 4a if a

2,3 mod 4

d= a if a=1 mod 4 .

Let C Dbe as before the group of ideal classes of o and ¢t the group
of ideal classes with respect to strict equivalence (for which an ideal is equi-
valent 1 if it is principal with a totally positive generator). We have
Ic*|: |c] =2 or 1 depending on whether the fundamental unit e, is totally
positive or not. The order of C is the class number h(a) for k = @(+/a) .

If the discriminant of k is d , then C' is via (11) in one-to-one correspon-
dence with the set of equivalence classes of quadratic forms (M,f) with discri-

minant 4 .

Don Zagier (Bonn) has written a computer program which puts out (the finitely

many) primitive cycles for a given discriminant, For d = 257 the primitive cycles

are

a) 10,3114,310,17|
b) |2,3] 6,5]0, 9l
¢) lo,51 6,312, 9} .

For d = 4+79 the primitive cycles are
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1 | 0,18]0,9]

11 [15, 3]6,3|

111 | 2, 710,3]0,4|
v | 1, 5l4,3]0,3|
v | 1, 3]0,3]4,5|
VI | 2, 4|o,3]0,7] .

For X = Q(Vf§§7) the fundamental unit is not totally positive, the class
number h(257) equals 3 . For k = Q(4/79) the fundamental unit is totally posi-
tive, the class number h(79) equals 3 . The order of C* is 6 . The 6 qua-
dratic forms for d = 4°79 are listed by Gauss [3] Art. 187 and numbered from

I to VI corresponding to our table above,

The discriminant d = 20 , for example, is not the discriminant of a field
k . There is one primitive cycle namely |3,6| which belongs to the module

275 ® 2-1 contained in Q(ﬁ) and the quadratic form defined on it by (11).

§ 3. Resolution of the cusps.

An isolated singular point x of a complex space of complex dimension 2
admits a resolution by which x is blown up into a system of non-singular curves

Kj . For each Kj we have the genus g(Kj) and the self-intersection number

The resolution is minimal (and then uniquély determined) if there is no Kj
with g(Kj) = 0 and Kj ° Kj = =1 ., The matrix (Ici ° Kj) is negative-definite

(compare [10]).

The resolution is called cyclic if all g(Kj) are zero (i.e. all curves

are rational) and if j can be assumed to run through the residue classes

mod q (q 2 3) such that Kj+1 o Kj = Kj o Kj+1 =1 for all j e 2/qZ (transver-

sal intersection) and K. oK = 0 for r-s#£0,1,-1 . Example (q = 8) :
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(13)

The following result is a consequence of a theorem in § 4,

THEOREM.- A cusp (M,V) , see (6), admits a cyclic resolution. M determines by

(11) and the theorem in § 2 a primitive cycle ¢ = ((b1,...,bp)) . Put
m=[U;I:V] . Then q=pm and

((-x, o Epeerk oK) = <"

m

(Exceptional cases pm=1 or 2. 1If ¢ = ((b)) or ((b1,b2)) we have a

cycle of 3 curves with self-intersection numbers -(b+3),-2,-1 or

-(b1 +1),-1, -(b2+ 1) respectively.)

The cyclic resolution is the minimal one with these exceptions which can be

blown down to minimal ones looking like this :

O <

Examples.—- For k = Q(4/a) with a> 1 (square free) and G as in § 1 we have

h(a) cusps (h(a) = order of the ideal class group C , see § 2). Each cusp has
the 2Z-module 3_2 where the ideal a represents an element of C . If a and
b give the same element in C , then the Z-modules 2-2 and 1_3__2 are obtaina-

ble from each other by multiplication with a totally positive number and (as

fractional ideals) represent the same element of c* . Thus we have a homomor-
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phism

p:C = ct .

The resolution of a cusp x € C is given by the equivalence class of the quadra-
tic form belonging to p(x) or rather by its corresponding primitive cycle c

(§ 2). The cycle of the resolution is c" where m = 2 if the fundamental unit
eo of k 1is totally positive, otherwise m =1 . For k = O(~f7§) and G as

in § 1, we have three cusps. We have to analyze what are the squares in ¢t and
their periods. In the list of § 2 the squares are I, IV, V. The cusps IV, V give
the same singularity (the periods are just reversed). They go over into each other
by the permutation O of the factors of H x H (which leaves the cusp I inva-

riant), The resolution of the cusp I looks like :

where we have indicated the self-intersection numbers. The (minimal) resolution
of IV has 16 curves,

+

For k = Q(4/257) we have C =C" and m =1 . The resolutions of the

three cusps are given by the primitive cycles written down in § 2.

The permutation o on H x H carries the cusp b) into the cusp c) whereag
on the cusp a) it carries the curve K with self-intersection number -17
into itself, has the intersection point P of two curves of self-intersection

number -2 as fixed point
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k = (/257) .
(14)

and otherwise interchanges the curves according to the symmetry of the continued
fraction of a quadratic irrationality w , which is equivalent to -w' under

SLQ(Z) {Theorem of Galois, see [11] § 23). The corresponding singularity of

(H x H/G)/o* is a quotient singularity admitting a "linear resolution"

e -2

L

(compare [9] § 3.4)

obtained by "dividing" the diagram (14) by ¢ and using that curves of self-

intersection number -1 can be "blown down" .
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§ 4. Construction of cyclic singularities.

1

For q =3 also sequences (a + 3,2,1) and (a1+ 1,1, a

Let b ,b2,...,bq (q 2 3) be a sequence of integers = 2 not all equal 2.

o 1) with a> 3 and

2, 23 or a, 2 3 are admitted, Let j run through z/qz . Consider the matrix

(crs) , where r,s e 3/q2 , with

=1, ¢c,. ==b,, o =0 otherwise,

c., .= C. .
J+1,3 Jed+1 3 J rs

LEMMA.- Under the preceding assumptions the matrix (crs) is negative-definite,

Let k run through the integers and define b, to be equal to bj above

k

if k= j mod q . We now do a construction as in {9] § 3.4. For each k take a

copy Rk of 02 with coordinates W, v

(A We define Ri to be the complement

of the line u o= 0 and Rﬂ to be the complement of the line Ve = 0.

The equations

by
Ye T Y Vi
Ve = Vw_,

give a biholomorphic map ¢k—1 : Ri 17 Rﬁ . If we make in the disjoint union
u Rk the identifications given by the ¢k 1 we get a complex manifold Y in

which we have a string of compact rational curves § non-singularly imbedded.

k
Sk is given by W= 0 "in the k-th coordinate system" and by vk_1 =0 in
the (k-1)-th coordinate system. S¢ » 8, intersect in just one point trans-
versally. S, , 8 (i < x) do not intersect, if k-1i £ 1 . The self-intersection

number Sk ° Sk equals -bk . The complex manifold Y admits a biholomorphic map

T:Y - Y which sends a point with coordinates W Yy in the k-th coordinate
system to the point with the same coordinates in the (k+ q)-th coordinate system,
thus T(Sk) = Sk+q . The main point is the existence of a tubular neighborhood Y°

of U Sk on which the infinite cyclic group Z = {Tnl neig } operates freely

such that YO/Z is a complex manifold in which g rational curves

K1 U... U Kq = LJSk/Z are embedded. Their intersection behaviour is given by
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the negative-definite matrix c (see Lemma).

1

singular point x in a complex space where x has by construction a cyclic reso-

According to Grauert [4] the curves Kk, U ... U Kq can be blown down to a

lution as defined in § 3,

THEOREM.~ Let B=[b1,...,b ,b1,...,bq,...].Then M=128®21 is a Z-module

q
contained in k = @(B) . Suppose ((b1,...,bq)) is the m-th power of a primitive

cycle, Then the local ring at the singular point x constructed above is isomor-

phic to the local ring described in the second proposition of § 1 provided

[U;:v] =m.

The proof will be published elsewhere,

§ 5. Applications.

The resolution of the cusps can be used to calculate certain numerical
invariants of H x H/C , (H x H/b)/&r , for example, where ¢ : Hx H - Hx H
is the permutation of the factors as before. We have to use a result of Harder [8].

Compare the lecture of Serre in this Seminar, We mention two cases,

1. For a cusp x = (M,V) with a resolution as in the theorem of § 3 we put
q
A
X = - K. K.) + .
90) = 1Y K ex) e
1

The number ¢(x) is essentially the value at 1 of a certain L-function,
¢(x) vanishes if the quadratic form £ on M (see (11)) is equivalent to ~f

(under an automorphism of M which need not be orientation preserving).

THEOREM.~ Suppose a > 6 , square free, a # 0 (3). Put k = @(,/a) . Using the

notation of § 1 we have :

The signature of the (non-compact) rational homology manifold H x H/G

equals I o(x) .
xeC



287

2. For a prime p=1 mod 4 we shall calculate the arithmetic genus xp of the
non singular model of the compact algebraic surface (H x B/G)/c for k = Q(/p) .
Information on the fixed points (see § 1) is needed, The following result is closely

related to theorems of Freitag [2] and Busam [1], see in particular [1] § 7.
THEOREM.- Let p be a prime = 1mod 4 and p> 5. Put k = Q(,JE) . The arithme-
tic genus ip is given by

48 ip =12 G (1) + 3n(-p) + 4n(-3p) - p + 8e + 12 8 + 29

where e =1 for p=1mod3, e=0 for p=2mod 3, § =1 for

pE1md8, §=0 for p

5mod 8 . ( g is the Zeta-function of the

field k ,)

For g (-1) we have the following formula [14]

2
1 - b
G - 5 )Y q (),
b odd

1sb<.p

where 6, (n) is the sum of the divisors of n .

By calculations of R. Lundquist, Don Zagier and myself there are exactly
24 primes = 1 mod 4 for which the arithmetic genus equals 1 , namely all such
primes smaller than the prime 193 and 197 , 229 , 269 , 293 , 317 . For p=5
the surface (H x B/G)/0 is rational (Gundlach [6]). Which of the 23 others

are rational ?

Final joke : At the end of my dissertation [9] I claim that there are no
cycles in a resolution., This is nonsense, as I know for a long time, and as this

talk proves, I hope.
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