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THE SINGULARITIES AT THE CUSPS AND RELATED PROBLEMS 

by F. HIRZEBRUCH 

§ I. The Hilbert modular group and the cusps. 

Let k be a real quadratic field over ® and o the ring o£ algebraic 

integers in k . Let x ~-~ x' be the non-trivial automorphism o£ k . The 

Hilbert modular group 

a b 
(I) SL2(°) = [(c d ) I a' b' c' d e °' ad - be : I ] 

acts on H × H where H is the upper hal£ plane o£ f : 

a b az I +b a'z 2+b' 

(c d) (z1'z2) = (cz1+d'c'z2+d') " 

The group G = SL2(o)/[I ,-I } acts e££ectively. For a description o£ a fundamental 

domain o£ G, see Siegel [13]. 

For any point x • H x H, the isotropy group G c G is £inite cyclic. The 
X 

singular points o£ the complex space H x H/G correspond bijectively to the Fini- 

tely many conjugacy classes o£ maximal £inite' cyclic subgroups in G . Their number 

has been determined by Prestel [12] (see also Gundlach [7]). If, £or example, 

D m I (4) , D / 0 (3) , D > 5 , D square free, k : 0(~/-D) , 

then there are h(-D) singular points o£ order 2 and h(-3D) singular points 

o£ order 3 where h(a) denotes the ideal class number o£ @(~/-a) . (Assume a 

to be square £ree.) 

G acts on the projective line k U [m] by 

ax+b 
x ~-@ 

CX+ d " 

There are £initely many orbit classes. The elements o£ (k U {m])/G 

cusps. They correspond bijectively to the ideal classes o£ o . I£ 

are called 

x = ~ (where 
n 
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m , n e ~ ) belongs to a certain orbit, then (m,n) is a corresponding ideal. We 

denote by C the group of ideal classes in £ . (The principal ideals represent 

the unit element of C -7 H x H/G can be compactified by adding finitely many 

points, namlely the cusps. The resulting space 

HxH7~ = (H×H/Q) OC 

is a compact algebraic surface (compare Gundlach [5]) with isolated singularities 

(the quotient singularities, as explained above, and the Finitely many cusps). We 

dish to resolve the singularities. This is well-known for the quotient singulari- 

ties (see, for example, [9] § 3.47. Object of this lecture is to do it for the 

cusps. For this we have to study the neighborhood of a cusp x in H x H~ and 

the local ring at x . 

We sometimes denote a cusp and a representing element ~ (m , n e ~) by 
n 

x . Let G = [~I ~ E G , yx = x] . We cannot, in general, trans- 
X 

by an element of G , but it can be done by a matrix A with 

k . Put ~ = (m,n) . Then, following Siegel [13], we take 

sL2(~)/{I,-I] 

(fractional ideal) and define 

= [(~ w a_ 2 
0 ~-I)I w~_ 3/[I,-13 

iS a unit of k ./If we agree to consider a matrix always as a projec- 

unit, we a-2]. 

the same symbol 

form x = m_ to 
n 

coefficients in 

= (m i/ 
(2) A ) e 

n v 

-I 
where u, v a a 

(3) G~ = A -I G xA . 

Then 

(4) 

where ¢ 

rive transformation, then 

¢2 w 
(5) ~ = [( )1 

0 I 

The group U of positive units of k is infinite cyclic. Let e ° be the genera- 

tor with e 
o 

> I . It is called the fundamental unit. Let U + be the group of 

totally positive units, i.e. 

u ÷ = [ ¢ I c e u  , ~ > o ,  ¢ ' > o } .  
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Equation (5) is a motivation to study data (M,V) where : 

1) 
(6) 

2) 

M is a ~-module of rank 2 contained in k ; 

+ 
V is a subgroup / {I} of the group U M of totally positive units 

which leave M invariant under multiplication (as is well-known 

Given the data (6) we have a group 

¢ w 

(7) {( ) I ¢ • V , w • M}. 
0 1 

In analogy to (4) such groups occur for cusps which are singular points o£ 

the compactiFied orbit spaces F of more general discontinuous groups acting on 

H x H (subgroups o£ finite index o£ certain Finite extensions o£ G ). In (4) we 

have M = _a -2 and V = U 2 and U M = U + . 

Data (M,V) as in (6) determine a torus bundle X over the circle : 

(8) v = 7,(s') , (~)/M : Toms 

wI(SI ) acts on the torus. X is associated to the universal cover o£ S I . The 

Following proposition seems to be well-known. I know it from J.-P. Serre. It 

Follows, For example, from the information given in [5]. 

PROPOSITION.- I9 a cusp with data (M,V) i ssingular point o9 an algebraic sur- 

face F (see above), then its neighborhood boundary is the torus bundle X 

defined by (8). (For "neighborhood boundary" see, for example, [10].) 

The local ring for a cusp (M,V) was described by Gundlach [5]. Let 

M ° C I~ 2 be the ~-module of all x • ~ such that 

(9) XlW + x2w' • 2 for all w • M . 

M O has rank 2 . We have by (9) a bilinear pairing 

B: M°xM -~ ~, 

V acts on B such that B(¢x,w) = B(x,¢w) for ¢ • V , x • M ° , w ~ M 
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PROPOSITION.- The local ring for the cusp (M,V) consists o£ all "convergent" 

Fourier series 

2 ~ i ( X l Z  1 + X2z2 ) 
(10) £ (Z l 'Z2 )  = Z a x e 

x e M  ° 

where a x / 0 only i£ both x I > 0 and x 2 > 0 or x = 0 , and where aCx = a x 

For ¢ • V . "Convergent" means that £ converges for Im(Zl).Im(z2) > c where 

c is a constant depending on f . 

§ 2. Binary indefinite quadratic forms. 

Let M be a Z-module of rank 2 contained in k . The 9unction 

(11) w ~ ,,,-,,,' = N (w)  (norm o f  w ) 

is a quadratic Form M ~ @ which is indefinite and does not represent 0 . We 

orient M by the basis (81,82) o£ M with 8182' - 828 I' > 0 I 

We now study oriented 2-modules M o9 rank 2 and quadratic Forms 

£ : M ~ @ 

which are indefinite and do not represent 0 . No specific Field k is given. 

We call (MI,FI) and (M2,F2) equivalent if there exists an isomorphism 

M I ~ M 2 o£ oriented Z-modules which carries fl in tf 2 where t is a 

positive rational number. 

Every (M,F) is equivalent to a quadratic Form 

g : ~ x ~ ~ Z 

where 2 x ~ is canonically oriented and such that for (u,v) • 2 x 

(12) g(u,v) = au 2 +buv + cv 2 

with (a,b,c) = I . Then b 2 - 4ac 

only on the equivalence class of 

is called the discriminant of £ . It depends 

f and is a positive integer which is not a 
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perfect square. The real number 

J -  F -b ~ b 2 4a~ ~ where - 4ac > 0 , rl = 2a ' 

is called the first root of g . 

We take the unique continued fraction 

I 
r I = a I - - I 

a2 - a3 - ! 
a 4 - • 

where a. ~ ~ and a. ~ 2 for j > I . A continued fraction will be denoted by 
3 3 

[al,a2,a3,... ] . Since r I is a quadratic irrationality its continued fraction is 

periodic from a certain point on. Let (bl,...,bp) be its primitive period 

(bj ~ 2) . Observe that the period (2) cannot occur because [2,2,...] = I is 

rational. 

A sequence of integers (bl,...,bp) with bj m 2 is called a period of 

length p , two periods are equivalent if they can be obtained from each other 

by a cyclic permutation. Such an equivalence class is called a cycle. A cycle is 

primitive if it is not obtainable from another cycle by an "unramified covering" 

of degree > I . Cycles are denoted by ((b I ..... bp)) . Thus ((2,3)) is primi- 

tive, but ((2,3,2,3)) is not. ((b I ..... bp)) m means the m-fold cover of 

((b I ..... bp)) . For ex~ple ((2,~)) 3 = ((2,~,2,5,2,5)) 

THEOREM.- The primitive cycle of the first root depends only on the equivalence 

class of (M,f) . If we associate to each (M,£) this primitive cycle, we obtain 

a bijectlve map from the set of equivalence classes of quadratic forms (M,f) to 

the set of all primitive cycles (where ((2)) is excluded). 

This theorem is a suitable modification of classical results. It is related 

to Gauss' reduction theory of quadratic forms [3] . The continued fractions had 

to be modified also, but all relevant theorems in Perron [11] can be taken over. 
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To simplify notations we shall indicate a cycle by 

I S l , t  11 s2,t21 s3,t31 . . . .  

where s. is the number o£ two's occuring in the corresponding position and where 
3 

t. m 3 • For example, 
3 

( ( 2 , 2 , 2 , 2 , 3 , 3 , 2 , 5 ) )  = 14 ,310 ,311 ,51 .  

Let k be a real quadratic field over @ and d its discriminant ; it is 

the discriminant o9 the quadratic form (11) defined over the module ~ c k . I£ 

a>0 (square.ca) and k=Q($7) , then 

d = 4a i£ a -- 2 , 3 rood 4 

d = a i£ a - 1 rood 4 . 

Let C be as before the group o9 ideal classes o£ o and C + the group 

of ideal classes with respect to strict equivalence (for which an ideal is equi- 

valent I if it is principal with a totally positive generator). We have 

IO+l : ICI = 2 or I depending on whether the Fundamental unit e ° is totally 

positive or not. The order 99 C is the class number h(a) For k = ~(4r~) . 

If the discriminant of k is d , then C + is via (11) in one-to-one correspon- 

dence with the set of equivalence classes o£ quadratic Forms (M,£) with discri- 

minant d . 

Don Zagier (Bonn) has written a computer program which puts out (the Finitely 

many) primitive cycles For a given discriminant. For d = 257 the primitive cycles 

are 

a) Io,3114,31o,171 

b) 12,31 6,51o, 91 

c) Io,51 6,312, 91 • 

For d = 4"79 the primitive cycles are 
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I I 0,1810,91 

i I  115, 316,3] 

I I I  ] 2, 710,310,4] 

IV I 1, 514,310,3] 

V I 1, 31o,314,51 

VI ] 2, 4[0,310,71 • 

For k = @(2~) the ~undamental unit is not totally positive, the class 

number h(257) equals 3 • For k = @(~) the Fundamental unit is totally posi- 

tive, the class number h(79) equals 3 • The order of C + is 6 . The 6 qua- 

dratic Fornfs For d = 4"79 are listed by Gauss [3] Art. 187 and numbered £rom 

I to VI corresponding to our table above. 

The discriminant d = 20 , for example, is not the discriminant of a Field 

k . There is one primitive cycle namely 13,61 which belongs to the module 

74~S Z-I contained in ~(4~) and the quadratic Form defined on it by (11). 

§ 3. Resolution of the cusps. 

An isolated singular point x of a complex space of complex dimension 2 

admits a resolution by which x is blown up into a system of non-singular curves 

1[j . For each Kj we have the genus g(Kj) and the self-intersection number 

K o K . 
J 3 

The resolution is minimal (and then uniquely determined) if there is no K. J 

with g(Kj) = 0 and Kj @ Kj = -I • The matrix (K i @ Kj) is negative-definite 

(compare [ I 0]). 

The resolution is called cyclic iF all g(Kj) are zero (i.e. all curves 

are rational) and if j can be assumed to run through the residue classes 

rood q (q ~ 3) such that Kj+ I o Kj = Kj @ K;+ I = I For all j • ~/qZ (transver- 

sal intersection) and [r e Is = 0 For r - s / O, I ,-I . Example (q = 8) : 
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/ 
(13)  K3 

K 1 

:<5 

K 7 

The following result is a consequence of a theorem in § 4. 

THEOREM.- A cusp (M,V) , see (67, admits a cyclic resolution. M determines by 

(117 and the theorem in § 2 a primitive cycle c = ((b I ..... bp)) . Put 

+ V] . Then q pm and m = [UM: = 

((-K I • K I ..... -Kq o Kq)) = c m 

(Exceptional cases pm = I o__rr 2 . I_~9 c m = ((b)) o_r.r ((bl,b2)) we have a 

cycle of 3 curves with self-intersection numbers -(b + 3) , -2 , -I or 

-(b I ÷ I),-I,-(b2÷ 17 respectively.) 

The cyclic resolution is the minimal one with these exceptions which can be 

blown down to minimal ones looking like this : 

Examples.- For k = W(qr~) with a > I (square free) and G as in § I we have 

h(a) cusps (h(a) = order o9 the ideal class group C , see § 27. Each cusp has 

the Z-module _a -2 where the ideal a represents an element of C • I9 a and 

b give the same element in C , then the Z-modules a -2 and b -2 are obtaina- 

ble From each other by multiplication with a totally positive number and (as 

fractional ideals) represent the same element of C + . Thus we have a homomor- 
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phi sm 

p: C -~ C + . 

The resolution of a cusp x e C is given by the equivalence class o£ the quadra- 

tic Form belonging to p(x) or rather by its corresponding primitive cycle c 

(§ 2). The cycle of the resolution is c m where m = 2 if the Fundamental unit 

e O of k is totally positive, otherwise m = I . For k = @(4~) and G as 

in § I, we have three cusps. We have to analyze what are the squares in C + and 

their periods. In the list of § 2 the squares are I, IV, V. The cusps IV, V give 

the same singularity (the periods are just reversed). They go over into each other 

by the permutation cy o£ the Factors of H x H (which leaves the cusp I inva- 

riant). The resolution of the cusp I looks like : 

/ 

/ 

-I 8 \ 

-18 ~9 

\ 
where we have indicated the self-intersection numbers. The (minimal) resolution 

of IV has 16 curves. 

For k = ~(2~/2~) we have C = C + and m = I . The resolutions of the 

three cusps are given bY the primitive cycles written down in § 2. 

The permutation (y on H x H carries the cusp b) into the cusp c) whereas 

on the cusp a) it carries the curve K with self-intersection number -17 

into itself, has the intersection point P of two curves of self-intersection 

number -2 as Fixed point 
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(14) 

f K ~ 

cusp at 

/ £or 

v 

and otherwise interc-hanges the curves according to the symmetry o£ the continued 

£raction o£ a quadratic irrationality w , which is equivalent to -w' under 

SL2(Z ) (Theore~a o£ Galois, see [11] § 23). The corresponding singulax'ity o9 

(H x H/G)/(T is a quotient singularity admitting a "linear resolution" 

_______I -2 
-9 / 

f 
(comp~e [9] § 3.4) 

obtained by "dividing" the diagram (14) by ~ and using that curves o9 sel£- 

intersection number -I can be "blown down" . 



285 

§ 4. Construction o£ cyclic singularities. 

Let bl,b2,...,b q (q > 3) be a sequence of integers > 2 not all equal 2 . 

For q = 3 also sequences (a + 3 , 2 , I) and (a I + I , I , a 2+ I) with a ~ 3 and 

a I > 3 or a 2 ~ 3 are admitted. Let j run through 2/q~ . Consider the matrix 

(Crs) , where r, s e ~/q~ , with 

= c . = I , c .... b. , c = 0 otherwise. 
cj+1,J J,3+I 33 3 rs 

L~A.- Under the preceding assumptions the matrix (Crs) is negative-definite. 

Let k run through the integers and define b k to be equal to bj above 

i£ k = j mod q . We now do a construction as in [9] § 3.4. For each k take a 

copy R k o£ C 2 with coordinates u k , v k . We define ~ to be the complement 

o£ the line u k = 0 and ~ to be the complement of the line v k = 0 . 

The equations 

b k 
h = h - 1  v~-1 

= ' / h - ,  

give a biholomorphic map ~Pk-1 : ~-I -~ ~ " If we make in the disjoint union 

U~ the identifications given by the %0k_ I we get a complex manifold Y in 

which we have a string o£ compact rational curves S k non-singularly imbedded. 

S k is given by u k = 0 "in the k-th coordinate system" and by Vk_ I = 0 in 

the (k-1)-th coordinate system. S k , Sk+ I intersect in just one point trans- 

versally. S i , S k (i < k) do not intersect, if k-i / I . The self-intersection 

number S k o S k equals -b k . The complex manifold Y admits a biholomorphie map 

T : Y -~ Y which sends a point with coordinates u k , v k in the k-th coordinate 

system to the point with the same coordinates in the (k+ q)-th Coordinate system, 

thus T(Sk) = Sk+ q . The main point is the existence o£ a tubular neighborhood yO 

of U S k on which the infinite cyclic group Z = {T n I n • Z } operates freely 

such that Y°/Z is a complex manifold in which q rational curves 

IC I U ... U Kq = U Sk/Z are embedded. Their intersection behaviour is given by 
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the negative-definite matrix Crs (see Lemma 5. 

According to Grauert [4] the curves K I U ... U Kq can be blown down to a 

singular point x in a complex space where x has by construction a cyclic reso- 

lution as defined in § 3. 

THEOREM.- Let 8 = [bl,...,b q, bl,...,b q,...] • Then M = ~8 ~ Z'I is a Z-module 

contained in k = ~(8) • Suppose ((b I ..... bq) 5 is the m-th power o£ a primitive 

cycle. Then the local ring at the singular point x constructed above is isomor- 

phic to the local ring described in the second proposition of § I provided 

[UM: V] = m . 

The proof will be published elsewhere. 

§ 5. Applications. 

The resolution of the cusps can be used to calculate certain numerical 

invariants o£ H x H/G , (H x H/G)/e , for example, where ~ : H x H ~ H x H 

is the permutation o£ the factors as before. We have to use a result o£ Harder [8]. 

Compare the lecture of Serre in this Seminar. We mention two cases. 

!" For a cusp x = (M,V) with a resolution as in the theorem o£ § 3 we put 

q 

2 ~(x) ~ g( ~j o Kj)+ q 
j=1 

The number ~(x) is essentially the value at I o£ a certain L-Function. 

~(x) vanishes if the quadratic form f on M (see (11)5 is equivalent to -f 

(under an automorphism of M which need not be orientation preserving). 

THEOREM.- Suppose a > 6 , square Free, a ~ 0 (35 • Put k = ®(4Fa~ . Using the 

notation o£ § I we have : 

The signature o£ the (non-compact) rational homology manifold H × H/G 

equals Z ~(x) . 
xeC 
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[. For a prime p m I rood 4 we shall calculate the arithmetic genus Xp o£ the 

non singular model of the compact algebraic surface (Hx---~)/~ For k = ~(4~) • 

Information on the Fixed points (see § I) is needed. The Following result is closely 

related to theorems o9 Freitag [2] and Busam [I], see in particular [I] § 7. 

THEOREM.- Let p be a prime m I mod 4 and p > 5 • Put k = ~(4~) • The arithme- 

tic genus Xp is given by 

48 Xp = 12 ~k(-1) + 3h(-p) + 4h(-3p) - p + 8¢ + 12 6 + 29 

where ¢ = I For p m I rood 3 , ¢ = O For p m 2 rood 3 , 6 = I for 

p m I mod 8 , 5 = 0 For p m 5 mod 8 • ( ~k is the Zeta-function o£ the 

Field k .) 

For 

where ~1(n) 

~k(-1 ) we have the Following Formula [14] 

= 3-6 ~( ) 
b odd 

1 ~ b < 4 ~  

i s  t h e  sum o£ t h e  d i v i s o r s  o£  n . 

By calculations o£ R. Lundquist, Don Zagier and myself there are exactly 

24 primes m I mod 4 For which the arithmetic genus equals I , namely all such 

primes smaller than the prime 193 and 197 , 229 , 269 , 293 , 317 . For p = 5 

the s~Face (H ~----/3--/~/~ is rational (G=dlach [6]). Which of the 2S others 

are rational ? 

Final joke : At the end 09 my dissertation [9] I claim that there are no 

cycles in a resolution. This is nonsense, as I know For a long time, and as this 

talk proves, I hope. 
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